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Abstract

We present sequential change-point detection procedures based on linear sketches of high-dimensional signal
vectors using generalized likelihood ratio (GLR) statistics. The GLR statistics allow for an unknown post-change mean
that represents an anomaly or novelty. We consider both fixed and time-varying projections, derive theoretical
approximations to two fundamental performance metrics: the average run length (ARL) and the expected detection
delay (EDD); these approximations are shown to be highly accurate by numerical simulations. We further characterize
the relative performance measure of the sketching procedure compared to that without sketching and show that
there can be little performance loss when the signal strength is sufficiently large, and enough number of sketches are
used. Finally, we demonstrate the good performance of sketching procedures using simulation and real-data
examples on solar flare detection and failure detection in power networks.
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1 Introduction
Online change-point detection from high-dimensional
streaming data is a fundamental problem arising from
applications such as real-time monitoring of sensor net-
works, computer network anomaly detection, and com-
puter vision (e.g., [2, 3]). To reduce data dimensionality,
a conventional approach is sketching (see, e.g., [4]), which
performs random projection of the high-dimensional data
vectors into lower-dimensional ones. Sketching has now
been widely used in signal processing and machine learn-
ing to reduce dimensionality and algorithm complexity
and achieve various practical benefits [5–11].
We consider change-point detection using linear

sketches of high-dimensional data vectors. Sketching
reduces the computational complexity of the detection
statistic from O(N) to O(M), where N is the original
dimensionality and M is the dimensionality of sketches.
Since we would like to perform real-time detection, any
reduction in computational complexity (without incur-
ringmuch performance loss) is highly desirable. Sketching
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also offers practical benefits. For instance, for large sen-
sor networks, it reduces the burden of data collection
and transmission. It may be impossible to collect data
from all sensors and transmit them to a central hub in
real time, but this can be done if we only select a small
subset of sensors to collect data at each time. Sketch-
ing also reduces data storage requirement. For instance,
change-point detection using the generalized likelihood
ratio statistic, although robust, is non-recursive. Thus, one
has to store historical data. Using sketching, we only need
to store the much lower dimensional sketches rather than
the original high-dimensional vectors.
In this paper, we present a new sequential sketching pro-

cedure based on the generalized likelihood ratio (GLR)
statistics. In particular, suppose we may choose anM×N
matrix A with M � N to linearly project the original
data: yt = Axt , t = 1, 2, . . .. Assume the pre-change
vector is zero-mean Gaussian distributed and the post-
change vector is Gaussian distributed with an unknown
mean vector μ while the covariance matrix is unchanged.
Here, we assume the mean vector is unknown since it typ-
ically represents an anomaly. The GLR statistic is formed
by replacing the unknown μ with its maximum likelihood
ratio estimator (e.g., [12]). Then we further generalize to
the setting with time-varying projections At of dimension
Mt × N . We demonstrate the good performance of our
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procedures by simulations, a real data example of solar
flare detection, and a synthetic example of power network
failure detection with data generated using real-world
power network topology.

1.1 Our contribution
Our theoretical contribution is mainly in two aspects. We
obtain analytic expressions for two fundamental perfor-
mance metrics for the sketching procedures: the aver-
age run length (ARL) when there is no change and the
expected detection delay (EDD) when there is a change-
point, for both fixed and time-varying projections. Our
approximations are shown to be highly accurate using
simulations. These approximations are quite useful in
determining the threshold of the detection procedure
to control false alarms, without having to resort to the
onerous numerical simulations. Moreover, we character-
ize the relative performance of the sketching procedure
compared to that without sketching. We examine the
EDD ratio when the sketching matrix A is either a ran-
dom Gaussian matrix or a sparse 0-1 matrix (in partic-
ular, an expander graph). We find that, as also verified
numerically, when the signal strength and M are suf-
ficiently large, the sketching procedure may have little
performance loss. When the signal is weak, the per-
formance loss can be large when M is too small. In
this case, our results can be used to find the mini-
mumM such that performance loss is bounded, assuming
certain worst case signal and for a given target ARL
value.
To the best of our knowledge, our work is the first

to consider sequential change-point detection using the
generalized likelihood ratio statistic, assuming the post-
change mean is unknown to represent an anomaly. The
only other work [13] that considers change-point detec-
tion using linear projections assumes the post-change
mean is known and further to be sparse. Our results are
more general since we do not make such assumptions.
Assuming the post-change mean to be unknown provides
a more useful procedure since in change-point detection,
the post-change setup is usually unknown. Moreover, [13]
considers Shiryaev-Robert’s procedure, which is based
on a different kind of detection statistic than the gen-
eralized likelihood ratio statistic considered here. The
theoretical analyses therein consider slightly different per-
formance measures, the probability of false alarm, and
average detection delay, and our analyses are completely
different.
Our work is also distinctive from the existing Statistical

Process Control (SPC) charts using random projections
(reviewed below in Section 1.3) in that (1) we developed
new theoretical results for the sequential GLR statistic, (2)
we consider the sparse 0-1 and time-varying projections ,
and (3) we study the amount of dimensionality reduction

can be performed (i.e., the minimumM) such that there is
little performance loss.

1.2 Notations and outline
Our notations are standard: χ2

k denotes the chi-square dis-
tribution with degree-of-freedom k; In denotes an identity
matrix of size n;X† denotes the pseudo-inverse of amatrix
X; [ x]i denotes the ith coordinate of a vector x; [X]ij
denotes the ijth element of a matrix X; and xᵀ denotes the
transpose of a vector or matrix x.
The rest of the sections are organized as follows.We first

review some related work. Section 2 sets up the formula-
tion of the sketching problem for sequential change-point
detection. Section 3 presents the sketching procedure.
Section 4 contains the performance analysis of the sketch-
ing procedures. Section 5 and Section 6 demonstrate good
performance of our sketching procedures using simula-
tion and real-world examples. Section 7 concludes the
paper. All proofs are delegated to the appendix.

1.3 Related work
In this paper, we use the term “sketching” in a broader
sense to mean that our observations are linear projections
of the original signals. We are concerned with how to per-
form sequential change-point detection using these linear
projections. The traditional sketching [4] is concerned
with designing linear dimensionality reduction techniques
to solve the inverse linear problem Ax = b, where b is of
greater dimension than x. This can be cast as a problem of
designing a dimensionality reduction (sketching) matrix
S such that Sb = SAx is of smaller dimension to reduce
computational cost. In our problem, the linear projections
can be designed or they can be determined by problem
set-up (such as missing data or subsampling procedure).
A closely related work is [14], which considers one-

dimensional observations, and the pre-change distribu-
tion is Gaussian with zero mean and unit variance, and
the post-change distribution is Gaussian with unknown
mean and unit variance. Siegmund and Venkatraman [14]
also uses the GLR statistic, by estimating the post-change
mean and plug-in the likelihood ratio statistic. Our strat-
egy for deriving the detection statistic is similar to [14].
However, there is one crucial difference. Since the num-
ber of linear projections is much smaller than the original
dimension, we cannot obtain a unique MLE for the post-
change mean vector, but can only determine the equation
that the MLE needs to satisfy. Thus, the derivation and
the analysis of GLR detection statistic for our setting are
different from [14]. Another closely related work is [15]:
we adapt a result therein (Theorem 1) in deriving the
ARL and EDD of the sketching procedure, when the pro-
jection matrix is fixed. The scope of the two papers are
quite different: [15] studies change-point detection when
the post-change mean is sparse, and here, we are not
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concerned with detecting sparse change but with detect-
ing using linear projections of the original data; moreover,
our analysis for the time-varying projection case is new
and different from [15].
Change-point detection problems are closely related to

industrial quality control and multivariate statistical pro-
cess control (SPC) charts, where an observed process
is assumed initially to be in control and at a change-
point becomes out of control. The idea of using random
projections for change detection has been explored for
SPC in the pioneering work [16] based on U2 multivari-
ate control chart, the follow-up work [17] for cumulative
sum (CUSUM) control chart and the exponential weight-
ing moving average (EWMA) schemes, and in [18, 19]
based on the Hotelling statistic. These works provide a
complementary perspective from SPC design, while our
method takes a different approach and is based on sequen-
tial hypothesis testing, treating both the change-point
location and the post-change mean vector as unknown
parameters. By treating the change-point location as an
unknown parameter when deriving the detection statistic,
the sequential hypothesis testing approach overcomes the
drawback of some SPC methods due to a lack of mem-
ory, such as the Shewhart chart and the Hotelling chart,
since they cannot utilize the information embedded in the
entire sequence [20].Moreover, our sequential GLR statis-
tic may be preferred over the CUSUM procedure in the
setting when it is difficult to specify the post-change mean
vector.
This paper extends on our preliminary work reported

in [1] with several important extensions. We have added
(1) time-varying sketching projections and their theoreti-
cal analysis, (2) extensive numerical examples to verify our
theoretical results, and (3) new real-data examples of solar
flare detection and power failure detection.
Our work is related to compressive signal processing

[21], where the problem of interest is to estimate or
detect (in the fixed-sample setting) a sparse signal using
compressive measurements. In [22], an offline test for
a non-zero vector buried in Gaussian noise using linear
measurements is studied; interestingly, a conclusion sim-
ilar to ours is drawn that the task of detection within this
setting is much easier than the tasks of estimation and
support recovery. Another related work is [23], which con-
siders a problem of identifying a subset of data streams
within a larger set, where the data streams in the subset
follow a distribution (representing anomaly) that is differ-
ent from the original distribution; the problem considered
therein is not a sequential change-point detection prob-
lem as the “change-point” happens at the onset (t = 1).
In [24], an offline setting is considered and the goal is to
identify k out of n samples whose distributions are differ-
ent from the normal distribution f0. They use a “temporal”
mixing of the samples over the finite time horizon. This

is different from our setting since we project over the sig-
nal dimension at each time. Other related works include
kernel methods [25, 26] that focus on offline change-point
detection. Finally, detecting transient changes in power
systems has been studied in [27].
Another common approach to dimensionality reduc-

tion is principal component analysis (PCA) [28], which
achieves dimensionality reduction by projecting the sig-
nal along the singular space of the leading singular values.
In this case, A or At corresponds to the signal singular
space. Our theoretical approximation for ARL and EDD
can also be applied in these settings. It may not be easy to
find the signal singular space when the dimensionality is
high, since computing singular value decomposition can
be expensive [29].

2 Formulation
2.1 Change-point detection as sequential hypothesis test
Consider a sequence of observations with an open time
horizon x1, x2, . . . , xt , t = 1, 2, . . ., where xt ∈ RN and
N is the signal dimension. Initially, the observations are
due to noise. There can be a time κ such that an unknown
change-point occurs and it changes the mean of the signal
vector. Such a problem can be formulated as the following
hypothesis test:

H0 : xt ∼ N (0, IN ), t = 1, 2, . . .
H1 : xt ∼ N (0, IN ), t = 1, 2, . . . , κ ,

xt ∼ N (μ, IN ), t = κ + 1, κ + 2, . . .
(1)

where the unknownmean vector is defined as

μ �[μ1, . . . ,μN ]ᵀ ∈ R
N .

Without loss of generality, we have assumed the noise
variance is 1. Our goal is to detect the change-point as
soon as possible after it occurs, subjecting to the false
alarm constraint. Here, we assume the covariance of the
data to be an identity matrix and the change only happens
to the mean.
To reduce data dimensionality, we linearly project each

observation xt into a lower dimensional space, which
we refer to as sketching. We aim to develop procedures
that can detect a change-point using the low-dimensional
sketches. In the following, we consider two types of lin-
ear sketching: the fixed projection and the time-varying
projection.
Note that when the covariancematrix is known, the gen-

eral problem is equivalent to (1), due to the following sim-
ple argument. Suppose we have the following hypothesis
test:

H0 : x′
t ∼ N (0,�), t = 1, 2, . . .

H1 : x′
t ∼ N (0,�), t = 1, 2, . . . , κ ,
x′
t ∼ N (μ′,�), t = κ + 1, κ + 2, . . .

(2)
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where the covariance matrix� is positive definite. Denote
the eigen-decomposition as � = Q�Qᵀ. Now, trans-
form each observation xt using xt = �−1/2Qᵀx′

t , t =
1, 2, . . . , where �−1/2 is a diagonal matrix with the diag-
onal entries being the inverse of the square root of the
diagonal entries of �. Then, the original hypothesis test
can be written in the same form as (1), by defining
μ = �−1/2Qᵀμ′.
Fixed projection. Choose an M × N (possibly random)

projection matrix A with M � N . We obtain low-
dimensional sketches via:

yt � Axt , t = 1, 2, . . . (3)

Then the hypothesis test for the original problem (1),
becomes the following hypothesis test based on the
sketches (3)

H0 : yt|A ∼ N (0,AAᵀ), t = 1, 2, . . .
H1 : yt|A ∼ N (0,AAᵀ), t = 1, 2, . . . , κ ,

yt|A ∼ N (Aμ,AAᵀ), t = κ + 1, κ + 2, . . .
(4)

Above, the distributions for the sketches are for given pro-
jections. Note that both mean and covariance structures
are affected by the projections A.
Time-varying projection. In certain applications, one

may use different sketching matrices at each time. The
projections are denoted by At ∈ R

Mt×N and the number
of sketchesMt can change as well. The hypothesis test for
sketches becomes:

H0 : yt|At ∼ N
(
0,AtAᵀ

t
)
, t = 1, 2, . . .

H1 : yt|At ∼ N
(
0,AtAᵀ

t
)
, t = 1, 2, . . . , κ ,

yt|At ∼ N
(
Atμ,AtAᵀ

t
)
, t = κ + 1, κ + 2, . . .

(5)

Above, the distributions for the sketches are for given pro-
jections. Intuitively, for certain setting, the time-varying
projection is preferred, e.g., when the post-change mean
vector μ is sparse, and the observations corresponding to
missing data (i.e., only observe a subset of entries). One
would expect observing a different subset of entries at
each time would be better, because if the missing locations
overlap with sparse mean shift locations, then we will miss
the signal entirely.

2.2 Sketching matrices
In this paper, we assume that (1) when the sketching
matrices A or Ai are random, then they have to be full
row rank with probability 1; (2) when A or Ai are deter-
ministic, then they have to be full row rank. The sketching
matrices can either be user-specified or determined by
the physical sensing system and not user specified. Below,
we give several examples. Examples (i)–(iv) correspond to
situations where the projections are user designed, and

example (v) (missing data) corresponds to the situation
where the projections are imposed by the setup.
(i) (Dimensionality reduction using random Gaussian

matrices). To reduce the dimensionality of a
high-dimensional vector (i.e., to compress data), one
may use random projections. For instance, random
Gaussian matrices A ∈ R

M×N whose entries are i.i.d.
Gaussian with zero mean and variance equal to 1/M.

(ii) (Expander graphs). Sketching matrices with {0, 1}
entries are also commonly used: such a scenario is
encountered in environmental monitoring (see, e.g.,
[15, 30]). Expander graphs are “sparse” 0-1 matrices
in the sense that very few entries are zero and thus
are desired for efficient computation since each
linear projection only requires summing a few
dimensions of the original data vector. Due to good
structural properties, they have been used in
compressed sensing (e.g., [31]). We will discuss more
details about the expander graph in Section 4.4.3.

(iii) (Pairwise comparison). In applications such as social
network data analysis and computer vision, we are
interested in a pairwise comparison of variables [32, 33].
This can be modeled as observing the difference
between a pair of variables, i.e., at each time t, the
measurements are [ xt]i −[ xt]j, for a set of i �= j.
There are a total of N2 possible comparisons, and we
may randomly select M out of N2 such comparisons
to observe. The pairwise comparison model leads to a
structured fixed projection with only {0, 1,− 1} entries.

(iv) (PCA). There are also approaches to change-point
detection using principal component analysis (PCA)
of the data streams (e.g., [28, 34]), which can be
viewed as using a deterministic fixed projection A,
which is pre-computed as the signal singular space
associated with the leading singular values of the data
covariance matrix.

(v) (Missing data). In various applications, we may only
observe a subset of entries at each time (e.g., due to
sensor failure), and the locations of the observed
entries also vary with time [35]. This corresponds to
At ∈ R

Mt×N being a submatrix of an identity matrix
by selecting rows from an index set �t at time t.
When the data are missing at random, each entry of
At is i.i.d. Bernoulli random variables.

3 Methods: sketching procedures
Below, we derive the sketching procedure, when the
projection matrices are fixed (across all times) and time-
varying, respectively. In both cases, the MLE of the
post-change mean vector cannot be uniquely determined
generally. We tackle this issue and derive different gen-
eralized likelihood ratio (GLR) detection statistics and
provide different analysis for the detection performances
in the two cases.
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3.1 Sketching procedure: fixed projection
3.1.1 Derivation of GLR statistic
Wenow derive the likelihood ratio statistic for the hypoth-
esis test in (4). The strategy for deriving the GLR statistic
in this case (with the fixed projection) is similar to [14].
However, [14] only considers the univariate case, where
the MLE of the post-change mean can be obtained explic-
itly. Here, we consider the multi-dimensional case, and
since the number of linear projections is much smaller
than the original dimension, we cannot obtain a unique
MLE for the post-change mean vector, but can only deter-
mine the equation that the MLE needs to satisfy; we need
different derivation to obtain the GLR detection statistic.
Define the sample mean within a window [ k, t]

ȳk,t =
∑t

i=k+1 yi
t − k

. (6)

Since the observations are i.i.d. over time, for an
assumed change-point κ = k, for the hypothesis test in
(4), the log-likelihood ratio of observations accumulated
up to time t > k, given the projection matrix A, becomes

�(t, k,μ)

= log
∏k

i=1 f0(yi) ·∏t
i=k+1 f1(yi)∏t

i=1 f0(yi)
=

t∑

i=k+1
log

f1(yi)
f0(yi)

= (t − k)
[
ȳᵀk,t(AA

ᵀ)−1Aμ − 1
2
μᵀAᵀ(AAᵀ)−1Aμ

]
,

(7)

where f0 = N (0,AAᵀ) denotes the probability density
function of data under the null and f1 = N (Aμ,AAᵀ)

denotes the probability density function of yi under the
alternative. Note that since A is full row rank (with proba-
bility 1), AAᵀ is invertible (with probability 1).
Since μ is unknown, the GLR statistic replaces it with

a maximum likelihood estimator (MLE) for fixed values
of k and t in the likelihood ratio (7) to obtain the log-
GLR statistic. Taking the derivative of �(t, k,μ) in (7) with
respect to μ and setting it to 0, we obtain an equation that
the maximum likelihood estimator μ∗ of the post-change
mean vector needs to satisfy:

Aᵀ(AAᵀ)−1Aμ∗ = Aᵀ(AAᵀ)−1ȳt,k , (8)

or equivalently Aᵀ [(AAᵀ)−1Aμ∗ − (AAᵀ)−1ȳt,k
] = 0.

Note that since Aᵀ is of dimension M-by-N, this defines
an under-determined system of equations for the maxi-
mum likelihood estimator μ∗. In other words, any μ∗ that
satisfies

(AAᵀ)−1Aμ∗ = (AAᵀ)−1ȳt,k + c,

for a vector c ∈ R
N that lies in the null space of A,

Aᵀc = 0, is a maximum likelihood estimator for the post-
change mean. In this case, we could use pseudo-inverse to
solve for μ∗, but we choose not to do this as the resulted

detection statistic is too complex to analyze. Rather, we
choose a special solution by setting c = 0, which will
lead to a simple detection statistic and tractable theoreti-
cal analysis. Then, the correspondingmaximum estimator
satisfies the equation below:

(AAᵀ)−1Aμ∗ = (AAᵀ)−1ȳt,k . (9)

Now substitute such aμ∗ into (7). Using (9), the first and
second terms in (7) become, respectively,

ȳᵀk,t(AA
ᵀ)−1Aμ∗ = ȳᵀk,t(AA

ᵀ)−1ȳt,k ,
1
2
μ∗ᵀAᵀ(AAᵀ)−1Aμ∗ = 1

2
ȳᵀk,t(AA

ᵀ)−1ȳt,k .

Combining above, from (7), we have that the log-GLR
statistic is given by

�(t, k,μ∗) = t − k
2

ȳᵀk,t(AA
ᵀ)−1ȳk,t . (10)

Since the change-point location k is unknown, when
forming the detection statistic, we take themaximum over
a set of possible locations, i.e., the most recent samples
from t − w to t, where w > 0 is the window size. Now we
define the sketching procedure, which is a stopping time
that stops whenever the log-GLR statistic raises above a
threshold b > 0:

T = inf
{
t : max

t−w≤k<t

t − k
2

ȳᵀk,t(AA
ᵀ)−1ȳk,t > b

}
. (11)

Here, the role of the window is twofold: it reduces the
data storage when implementing the detection procedure
and it establishes a minimum level of change that we want
to detect.

3.1.2 Equivalent formulation of fixed projection sketching
procedure

We can further simplify the log-GLR statistic in (10) using
the singular value decomposition (SVD) of A. This will
facilitate the performance analysis in Section 4 and lead
into some insights about the structure of the log-GLR
statistic. Let the SVD of A be given by

A = U�Vᵀ, (12)

where U ∈ R
M×M , V ∈ R

N×M are the left and right sin-
gular spaces, � ∈ R

M×M is a diagonal matrix containing
all non-zero singular values. Then (AAᵀ)−1 = U�−2Vᵀ.
Thus, we can write the log-GLR statistic (10) as

�(t, k,μ∗) = t − k
2

ȳᵀk,tU�−2Uᵀȳk,t . (13)

Substitution of the sample average (6) into (13) results in

�(t, k,μ∗) =
∥
∥�−1Uᵀ (∑t

i=k+1 yi
)∥∥2

2(t − k)
.

Now define transformed data

zi � �−1Uᵀyi.
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Since under the null hypothesis yi|A ∼ N (0,AAᵀ),
we have zi ∼ N (0, IM). Similarly, under the alternative
hypothesis yi|A ∼ N (Aμ,AAᵀ), we have zi ∼
N (Vᵀμ, IM). Combing above, we obtain the following
equivalent form for the sketching procedure in (11):

T ′ = inf
{

t : max
t−w≤k<t

∥∥∑t
i=k+1 zi

∥∥2

2(t − k)
> b

}

. (14)

This form has one intuitive explanation: the sketch-
ing procedure essentially projects the data to form M
(less than N) independent data streams and then form a
log-GLR statistic for these independent data streams.

3.2 Sketching procedure: time-varying projection
3.2.1 GLR statistic
Similarly, we can derive the log likelihood ratio statistic
for the time-varying projections. For an assumed change-
point κ = k, using all observations from k + 1 to time t,
we find the log likelihood ratio statistic similar to (7):

�(t, k,μ)

=
t∑

i=k+1

[
yᵀi
(
AiAᵀ

i
)−1 Aiμ − 1

2
μᵀAᵀ

i
(
AiAᵀ

i
)−1 Aiμ

]
.

(15)

Similarly, we replace the unknown post-change mean
vector μ by its maximum likelihood estimator using data
in [ k + 1, t]. Taking the derivative of �(t, k,μ) in (15) with
respect to μ and setting it to 0, we obtain an equation that
the maximum likelihood estimator μ∗ needs to satisfy
⎡

⎣
t∑

i=k+1
Aᵀ
i
(
AiAᵀ

i
)−1 Ai

⎤

⎦μ∗ =
t∑

i=k+1
Aᵀ
i
(
AiAᵀ

i
)−1 yi. (16)

Note that in the case of time-varying projection, we no
longer have the structure in (8) for the fixed project. Thus,
in this case, we will use a different strategy to derive the
detection statistic based on pseudo-inverse. One needs to
discuss the rank of the matrix

∑t
i=k+1 A

ᵀ
i
(
AiAᵀ

i
)−1 Ai on

the left-hand side of (16). Define the SVD ofAi = U iDiVᵀ
i

withU i ∈ R
Mi×Mi and V i ∈ R

N×Mi being the eigenspaces
andDi ∈ R

Mi×Mi being a diagonal matrix that contains all
the singular values. We have that

t∑

i=k+1
Aᵀ
i
(
AiAᵀ

i
)−1 Ai =

t∑

i=k+1
V iVᵀ

i = QQᵀ, (17)

where Q =[V k+1, . . . ,V t]∈ R
N×S and S = ∑t

i=k+1Mi.
Consider the rank of

∑t
i=k+1 A

ᵀ
i
(
AiAᵀ

i
)−1 Ai for two

cases below:
From above, we can see that this matrix is rank deficient

when t − k < N/M, i.e., the number of post-change sam-
ples t− k is small. However, this is generally the case since

we want to detect the change quickly once it occurs. Since
the matrix in (17) is non-invertible in general, we use the
pseudo-inverse of the matrix. Define

Bk,t �

⎛

⎝
t∑

i=k+1
Aᵀ
i
(
AiAᵀ

i
)−1 Ai

⎞

⎠

†

∈ R
N×N .

From (16), we obtain an estimate of the maximum
likelihood estimator for the post-change mean

μ∗ = Bk,t

t∑

i=k+1
Aᵀ
i
(
AiAᵀ

i
)−1 yi.

Substituting such a μ∗ into (15), we obtain the log-GLR
statistic for time-varying projection:

�(t, k,μ∗)

=1
2

⎛

⎝
t∑

i=k+1
Aᵀ
i
(
AiAᵀ

i
)−1 yi

⎞

⎠

ᵀ

Bk,t

·
⎛

⎝
t∑

i=k+1
Aᵀ
i
(
AiAᵀ

i
)−1 yi

⎞

⎠ .

(18)

3.2.2 Time-varying 0-1 project matrices
To further simplify the expression of GLR in (18), we con-
sider a special case when At has only one entry equal to 1
for each row and all other entries equal to 0. This means
that at each time, we only observe a subset of the entries
and can correspond to the missing data case. Now AtAᵀ

t
is an Mt-by-Mt identity matrix, and Aᵀ

t At is a diagonal
matrix. For a diagonal matrix D ∈ R

N×N with diagonal
entries λ1, . . . , λN , the pseudo-inverse of D is a diagonal
matrix with diagonal entries λ−1

i if λi �= 0 and with diag-
onal entries 0 if λi = 0. Let the index set of the observed
entries at time t be �t . Define indicator variables

Itn =
{
1, if n ∈ �t ;
0, otherwise. (19)

Then, the log-GLR statistic in (18) becomes

�(t, k,μ∗) =
N∑

n=1

(∑t
i=k+1[ xi]n Iin

)2
∑t

i=k+1 Iin
, (20)

Hence, for 0-1 matrices, the sketching procedure based on
log-GLR statistic is given by
T{0,1} =

inf
{

t : max
t−w≤k<t

1
2

N∑

n=1

(∑t
i=k+1[ xi]n Iin

)2
∑t

i=k+1 Iin
> b

}

,

(21)

where b > 0 is the prescribed threshold and w is the
window length. Note that the log-GLR statistic essentially
computes the sum of each entry within the time window
[ t − w, t) and then averages the squared sum.
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4 Results: Theoretical
In this section, we present theoretical approximations to
two performance metrics, the average run length (ARL),
which captures the false alarm rate, and the expected
detection delay (EDD), which captures the power of the
detection statistic.

4.1 Performance metrics
We first introduce some necessary notations. Under the
null hypothesis in (1), the observations are zero mean.
Denote the probability and expectation in this case by
P

∞ and E
∞, respectively. Under the alternative hypothe-

sis, there exists a change-point κ , 0 ≤ κ < ∞ such that
the observations have mean μ for all t > κ . Probability
and expectation in this case are denoted by P

κ and E
κ ,

respectively.
The choice of the threshold b involves a tradeoff

between two standard performance metrics that are com-
monly used for analyzing change-point detection proce-
dures [15]: (i) the ARL, defined to be the expected value
of the stopping time when there is no change, and (ii)
the EDD, defined to be the expected stopping time in the
extreme case where a change occurs immediately at κ = 0,
which is denoted as E0{T}.
The following argument from [14] explains why we con-

siderE0{T}. When there is a change at κ , we are interested
in the expected delay until its detection, i.e., the condi-
tional expectation E

κ {T − κ|T > κ}, which is a function
of κ . When the shift in the mean only occurs in the posi-
tive direction [μ]i ≥ 0, it can be shown that supκ E

κ {T −
κ|T > κ} = E

0{T}. It is not obvious that this remains true
when [μ]i can be either positive or negative. However,
since E0{T} is certainly of interest and reasonably easy to
analyze, it is common to consider E0{T} in the literature
and we also adopt this as a surrogate.

4.2 Fixed projection
Define a special function (cf. [36], page 82)

ν(u) = 2u−2 exp
[

−2
∞∑

i=1
i−1


(−|u|i1/2/2)
]

,

where 
 denotes the cumulative probability function
(CDF) for the standard Gaussian with zero mean and unit
variance. For numerical purposes, a simple and accurate
approximation is given by (cf. [37])

ν(u) ≈ 2/u[
(u/2) − 0.5]
(u/2)
(u/2) + φ(u/2)

,

where φ denotes the probability distribution function
(PDF) for standard Gaussian. We obtain an approxima-
tion to the ARL of the sketching procedure with a fixed
projection as follows:

Theorem 1 (ARL, fixed projection) Assume that 1 ≤
M ≤ N, b → ∞ with M → ∞ and b/M fixed. Then, with
w = o(br) for some positive integer r, for a given projection
matrix A that is full rank deterministically or with proba-
bility 1, the ARL of the sketching procedure defined in (11)
is given by

E
∞{T} =
2
√

π

c(M, b,w)

1
1 − M

2b

1√
M

(
M
2b

)M
2
eb−

M
2 (1 + o(1)),

(22)

where

c(M, b,w) =
∫ √

2b
(
1− M

2b
)

√
2b
w
(
1− M

2b
) uν2(u)du. (23)

This theorem gives an explicit expression for ARL as a
function of the threshold b, the dimension of the sketches
M, and the window length w. As we will show below,
the approximation to ARL given by Theorem 1 is highly
accurate. On a higher level, this theorem characterizes the
mean of the stopping time, when the detection statistic is
driven by noise. The requirement for w = o(br) for some
positive integer r comes from [15] that our results are
based on; this ensures the correct scaling when we pass to
the limit. This essentially requires that the window length
be large enough when the threshold b increases. In prac-
tice, w has to be large enough so that it does not cause
a miss detection: w has to be longer than the anticipated
expected detection delay as explained in [15].
Moreover, we obtain an approximation to the EDD of

the sketching procedure with a fixed projection as follows.
Define


 = ‖Vᵀμ‖, (24)

where V contains the left singular vectors of A. Let S̃t �∑t
i=1 δi be a random walk where the increments δi are

independent and identically Gaussian distributed with
mean 
2/2 and variance 
2. We can find the expected
value of the minimum is given by [37]

E

{
min
t≥0

S̃t
}

= −
∞∑

i=1
i−1

E

{
S̃−
i

}
,

where (x)− = −min{x, 0}, and the infinite series con-
verges and can be evaluated easily numerically. Also,
define

ρ(
) = 
2/4 + 1 −
∞∑

i=1
i−1

E

{
S̃−
i

}
.

Theorem 2 (EDD, fixed projection) Suppose b → ∞
with other parameters held fixed. Then, for a given matrix
Awith the right singular vectors V, the EDD of the sketching
procedure (11) when κ = 0 is given by
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E
0{T} = b + ρ(
) − M/2 + E{mint≥0 S̃t} + o(1)


2/2
, (25)

The theorem finds an explicit expression for the EDD
as a function of threshold b, the number of sketches
M, and the signal strength captured through 
 which
depends on the post mean vector μ and the projection
subspace V .
The proofs for the above two theorems utilize the equiv-

alent form of T in (14) and draw a connection of the
sketching procedure to the so-called mixture procedure
(cf. T2 in [15]) whenM sensors are affected by the change,
and the post-change mean vector is given by Vᵀμ.

4.2.1 Accuracy of theoretical approximations
Consider a A generated as a Gaussian random matrix,
with entries i.i.d. N (0, 1/N). Using the expression in
Theorem 1, we can find the threshold b such that the
corresponding ARL is equal to 5000. This can be done
conveniently; since the ARL is an increasing function of
the threshold b, we can use bisection to find such a thresh-
old b. Then, we compare it with a threshold b found from
the simulation.
As shown in Table 1, the threshold found using

Theorem 1 is very close to that obtained from simulation.
Therefore, even if the theoretical ARL approximation is
derived for N tends to infinity, it is still applicable when N
is large but finite. Theorem 1 is quite useful in determin-
ing a threshold for a targeted ARL, as simulations for large
N and M can be quite time-consuming, especially for a
large ARL (e.g., 5000 or 10,000).
Moreover, we simulate the EDD for detecting a signal

such that the post-change mean vector μ has all entries
equal to a constant [μ]i = 0.5. As also shown in Table 1,
the approximation for EDD using Theorem 2 is quite
accurate.
We have also verified that the theoretical approxima-

tions are accurate for the expander graphs and details
omitted here since they are similar.

4.2.2 Consequence
Theorems 1 and 2 have the following consequences:

Table 1 Verification of numerical accuracy of theoretical results

M b (theo) b (simu) EDD (theo) EDD (simu)

100 84.65 84.44 3.4 4.3 (0.9)

70 64.85 64.52 4.0 5.1 (1.2)

50 51.04 50.75 4.8 5.9 (1.6)

30 36.36 36.43 7.7 7.6 (2.5)

10 19.59 19.63 19.8 17.4 (9.8)

A being a fixed Gaussian randommatrix. N = 100, w = 200, ARL = 5000, for
simulated EDD [μ]i = 0.5. Numbers in the parentheses are the standard deviation
of the simulated EDD

Remarks 1 For a fixed large ARL, when M increases,
the ratio M/b is bounded between 0.5 and 2. This is a
property quite useful for establishing results in Section 4.4.
This is demonstrated numerically in Fig. 1 when N = 100,
w = 200, for a fixed ARL being 5000. The corresponding
threshold b is found using Theorem 1, when M increases
from 10 to 100. More precisely, Theorem 1 leads to the
following corollary:

Corollary 1 Assume a large constant γ ∈ (
e5, e20

)
. Let

w ≥ 100. For any large enough M > 24.85, the threshold
b such that the corresponding ARL E

∞{T} = γ satisfies
M/b ∈ (0.5, 2). In other words,max{M/b, b/M} ≤ 2.

Note that e20 is on the order of 5 × 108; hence, it
means that ARL can be very large; however, it is still
bounded above (this means that the corollary holds for an
non-asymptotic regime).

Remarks 2 As b → ∞, the first order approximation to
the EDD in Theorem 2 is given by b/(
2/2), i.e., the thresh-
old b divided by the Kullback-Leibler (K-L) divergence (see,
e.g., [15] shows that 
2/2 is the K-L divergence between
N (0, IM) and N (Vᵀμ, IM)). This is consistent with our
intuition since the expected increment of the detection
statistics is roughly the K-L divergence of the test. For finite
b, especially when the signal strength is weak and when the
number of sketches M is not large enough, the other terms
than b/(
2/2) will play a significant role in determining
the EDD.

4.3 Time-varying 0-1 random projection matrices
Below, we obtain approximations to ARL and EDD for
T{0,1}, i.e., when 0-1 sketching matrices are used. We

Fig. 1 For a fixed ARL being 5000, the threshold b versusM obtained
using Theorem 1, when N = 100 and w = 200. The dashed line
corresponds to a tangent line of the curve at one point



Cao et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:42 Page 9 of 22

assume a fixed dimension Mt = M, ∀t > 0. We also
assume that at each time t, we randomly select M out of
N dimensions to observe. Hence, at each time, each signal
dimension has a probability

r = M/N ∈ (0, 1)

to be observed. The sampling scheme is illustrated in
Fig. 2, whenN = 10 andM = 3 (the number of the dots in
each column is 3) over 17 consecutive time periods from
time k = t − 17 to time t.
For such a sampling scheme, we have the following

result:

Theorem 3 (ARL, time-varying 0-1 random projection)
Let r = M/N. Let b′ = b/r. When b → ∞, for the
procedure defined in (21), we have that

E
∞{T{0,1}}

= 2
√

π

c(N , b′,w)

1√
N

1
1 − N

2b′

(
N
2

)N
2
b′−N

2 eb
′−N

2 + o(1),

(26)

where c(N , b′,w) is defined by replacing b with b′ in (23).

Moreover, we can obtain an approximation to EDD of
T{0,1}, as justified by the following arguments. First, relax
the deterministic constraint that at each time we observe
exactlyM out ofN entries. Instead, assume a random sam-
pling scheme that at each time we observe one entry of xi
with probability r, 1 ≤ n ≤ N . Consider i.i.d. Bernoulli
random variables ξni with parameter r for 1 ≤ n ≤ N and
i ≥ 1. Define

Zn,k,t �
∑t

i=k+1[ xi]n ξni√
(t − k)r

.

Fig. 2 A sampling pattern when At is a 0-1 matrix,M = 3, and N = 10.
Dots represent entries being observed

Based on this, we define a procedure whose behavior is
arguably similar to T{0,1}:

T ′{0,1} = inf
{

t ≥ 1 : max
t−w≤k<t

1
2

N∑

n=1
Z2
n,k,t > b

}

,

where b > 0 is the prescribed threshold. Then, using the
arguments in Appendix 2, we can show that the approxi-
mation to EDD of this procedure is given by

E
0
{
T ′{0,1}

}
=
(

2b − N
∑N

n=1 μ2
n

+ o(1)
)

· N
M

, (27)

and we use this to approximate the EDD of T{0,1}.
Table 2 shows the accuracy of the approximations for

ARL in (26) and for EDD in (27) with various M′s when
N = 100, w = 200, and all entries of [μ]i = 0.5. The
results show that the thresholds b obtained using the the-
oretical approximations and that the EDD approximations
are both very accurate.

4.4 Bounding relative performance
In this section, we characterize the relative performance of
the sketching procedure compared to that without sketch-
ing (i.e., using the original log-GLR statistic). We show
that the performance loss due sketching can be small,
when the signal-to-noise ratio andM are both sufficiently
large. In the following, we focus on fixed projection to
illustrate this point.

4.4.1 Relative performancemetric
We consider a relative performance measure, which is the
ratio of EDD using the original data (denoted as EDD(N),
which corresponds to A = I), versus the EDD using the
sketches (denoted as EDD(M))

EDD(N)

EDD(M)
∈ (0, 1).

We will show that this ratio depends critically on the
following quantity

� � ‖Vᵀμ‖2
‖μ‖2 , (28)

Table 2 Verification of numerical accuracy of theoretical results

M b (theo) b (simu) EDD (theo) EDD (simu)

100 84.65 84.44 2.8 3.3 (0.8)

70 83.72 83.41 3.8 4.5 (1.2)

50 82.84 83.02 5.3 6.1 (1.5)

30 81.46 82.48 8.7 9.8 (2.4)

10 78.32 79.27 23.4 26.6 (6.4)

A′
ts being time-varying. N = 100, w = 200, ARL = 5000; for simulated EDDs, all

[μ]i = 0.5. Numbers in theparentheses are standard deviation of the simulated results
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which is the ratio of the KL divergence after and before the
sketching.
We start by deriving the relative performance measure

using theoretical approximations we obtained in the last
section. Recall the expression for EDD approximation in
(25). Define

h(
,M) = ρ(
) − M/2 − E{S̃−
i }. (29)

From Theorem 2, we obtain that the EDD of the sketch-
ing procedure is proportional to

2b
‖Vᵀμ‖2 ·

(
1 + h(‖Vᵀμ‖,M)

2b

)
· (1 + o(1)).

Let bN and bM be the thresholds such that the cor-
responding ARLs are 5000, for the procedure without
sketching and withM sketches, respectively. DefineQM =
M/bM, QN = N/bN and

P = 1 + h(‖μ‖,N)/bN
1 + h(‖Vᵀμ‖,M)/bM

. (30)

Using the definitions above, we have

EDD(N)

EDD(M)
= P· bN

bM
· ‖Vᵀμ‖2

‖μ‖2 (1 + o(1))

= P · N
M

· QM
QN

· �(1 + o(1)).
(31)

4.4.2 Discussion of factors in (31)
We can show that P ≥ 1 for sufficiently largeM and large
signal strength. This can be verified numerically. Since all
quantities that P depends on can be computed explicitly:
the thresholds bN and bM can be found from Theorem 1
once we set a target ARL, the h function can be evaluated
using (29) which depends explicitly on 
 and M. Figure 3
shows the value of P when N = 100 and all the entries of
the post-change mean vector [μ]i are equal to a constant
value that varies across the x-axis. Note that P is less than 1
only when the signal strength μi are small andM is small.
Thus, we have,

EDD(N)

EDD(M)
≥ N

M
· QM
QN

· �(1 + o(1)),

for sufficiently largeM and signal strength 
.
Using Corollary 1, we have that QM ∈ (0.5, 2) and

QN ∈ (0.5, 2), and hence, a lower bound of the
ratio EDD(N)/EDD(M) is between (1/4)(N/M)� and
4(N/M)�, for largeM or large signal strength.
Next, we will bound � when A is a Gaussian matrix and

an expander graph, respectively.

4.4.3 Bounding�

Gaussian matrix. Consider A ∈ R
M×N whose entries are

i.i.d. Gaussian with zero mean and variance equal to 1/M.
First, we have the following lemma

Fig. 3 The P factor defined in (30) for differentM and [μ]i , when the post-change mean vector has entries all equal to [μ]i . Assume N = 100. The
white regions correspond to P ≥ 1, and dark regions correspond to P < 1 and the darker, the smaller P is (note that the smallest P in this graph is
above 0.75). We also plot theMmin (defined later in (35)) required in these cases such that the EDD of the sketching procedure is no more than δ

larger than the corresponding procedure without sketching (fixing ARL = 5000), for δ = 1 and δ = 0.5. TheMmin are obtained by Monte Carlo
simulation. TheMmin versus [μ]i correspond to the blue and the red curves, respectively. Above these two curves, the EDD with sketching is almost
the same as before (without sketching), i.e., the regime where sketching has little loss. The left-bottom corner corresponds to the region where
sketching has more loss. This also shows that indeed P < 1 is an indicator of significant performance loss using sketching



Cao et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:42 Page 11 of 22

Lemma 1 ([38]) Let A ∈ R
M×N have i.i.d. N (0, 1)

entries. Then, for any fixed vector μ, we have that

� ∼ Beta
(
M
2
,
N − M

2

)
. (32)

More related results can be found in [39]. Since the
Beta(α,β) distribution has a mean α/(α+β), we have that

E {�} = M/2
M/2 + (N − M)/2

= M
N

.

We may also show that, provided M and N grow pro-
portionally, � converges to its mean value at a rate expo-
nential in N. Define δ ∈ (0, 1) to be

δ � lim
N→∞

M
N

. (33)

We have the following result.

Theorem 4 (Gaussian A) Let A ∈ R
M×N have entries

i.i.d. N (0, 1). Let N → ∞ such that (33) holds. Then, for
0 < ε < min(δ, 1 − δ), we have that

P {δ − ε < � < δ + ε} → 1. (34)

Hence, for Gaussian A, � is approximately M/N with
probability 1.

Note that Theorem 4 is different from the restricted
isometry property (RIP) invoked in compressed sensing,
since here we assume one fixed and given vector μ, but in
compressed sensing, one cares about norm preservation
uniformly for all sparse vectors (with the same sparsity
level) with probability 1.
Expander graph A. We can show that for expander

graphs, � is also bounded. This holds for the “one-sided”
changes, i.e., the post-change mean vector is element-wise
positive.
A matrix A corresponds to a (s, ε)-expander graph with

regular right degree d if and only if each column of A
has exactly d “1”s, and for any set S of right nodes with
|S| ≤ s, the set of neighborsN (S) of the left nodes has size
N (S) ≥ (1 − ε)d|S|. If it further holds that each row of A
has c “1”s, we say A corresponds to a (s, ε)-expander with
regular right degree d and regular left degree c.
Assume [μ]i ≥ 0 for all i. Let A ∈ R

M×N be con-
sisting of binary entries, which corresponds to a bipar-
tite graph, illustrated in Fig. 4. We further consider a
bipartite graph with regular left degree c (i.e., the num-
ber of edges from each variable node is c) and regu-
lar right degree d (i.e., the number of edges from each
parity check node is d), as illustrated in Fig. 4. Hence,
this requires Nc = Md. Expander graphs satisfy the
above requirements. The existence of expander graphs is
established in [40]:

Fig. 4 Illustration of an expander graph with d = 2 and c = 3.
Following coding theory terminology, we call the left variables nodes
(there are N such variables), which correspond to the entries of xt , and
the right variables parity check nodes (there areM such nodes), which
correspond to entries of yt . In a bipartite graph, connections between
the variable nodes are not allowed. The adjacency matrix of the
bipartite graph corresponds to our A or At

Lemma 2 ([40]) For any fixed ε > 0 and ρ � M/N < 1,
when N is sufficiently large, there always exists an (αN , ε)
expander with a regular right degree d and a regular left
degree c for some constants α ∈ (0, 1), d and c.

Theorem 5 (Expander A) If A corresponds to a (s, ε)-
expander with regular degree d and regular left degree c,
for any nonnegative vector [μ]i ≥ 0, we have that

� ≥ M(1 − ε)

dN
.

Hence, for expander graphs, � is approximately greater
thanM/N · (1/d), where d is a small number.

4.4.4 Consequence
Combine the results above, we showed that for the regime
where M and the signal strength are sufficiently large,
the performance loss can be small (as indeed observed
from our numerical examples). In this regime, when A
is a Gaussian random matrix, the relative performance
measure EDD(N)/EDD(M) is a constant, under the con-
ditions in Corollary 1. Moreover, when A is a sparse 0-1
matrix with d non-zero entries on each row (in particular,
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an expander graph), the ratio (31) EDD(N)/EDD(M) is
lower bounded by (1/4) ·d/(1−ε) for some small number
ε > 0, when Corollary 1 holds.
There is one intuitive explanation. Unlike in compressed

sensing, where the goal is to recover a sparse signal and
one needs the projection to preserve norm up to a fac-
tor through the restricted isometry property (RIP) [41],
our goal is to detect a non-zero vector in Gaussian noise,
which is a much simpler task than compressed sensing.
Hence, even though the projection reduces the norm of
the vector, as long as the projection does not diminish the
signal is normal below the noise floor.
On the other hand, when the signal is weak, and M is

not large enough, there can be significant performance
loss (as indeed observed in our numerical examples) and
we cannot lower bound the relative performancemeasure.
Fortunately, in this regime, we can use our theoretical
results in Theorems 1 and 2 to design the number of
sketches M for an anticipated worst-case signal strength

, or determine the infeasibility of the problem, i.e., it is
better not to use sketching since the signal is too weak.

5 Results: numerical examples
In this section, we present numerical examples to demon-
strate the performance of the sketching procedure. We
focus on comparing the sketching procedure with the
GLR procedure without sketching (by letting A = I in
the sketching procedure). We also compare the sketching
procedures with a standard multivariate CUSUM using
sketches.
In the subsequent examples, we select ARL to be 5000

to represent a low false detection rate (similar choice
has been made in other sequential change-point detec-
tion work such as [15]). In practice, however, the target
ARL value depends on how frequent we can tolerate false
detection (e.g., once a month or once a year). Below, EDDo
denotes the EDD when A = I (i.e., no sketching is used).
All simulated results are obtained from 104 repetitions.
We also consider the minimum number of sketches

Mmin = argmin{M : EDD(M) ≤ δ + EDDo}, (35)

such that the corresponding sketching procedure is only δ

sample slower than the full procedure. Below, we focus on
the delay loss δ = 1.

5.1 Fixed projection, Gaussian randommatrix
First, consider Gaussian A with N = 500 and different
number of sketchesM < N .

5.1.1 EDD versus signal magnitude
Assume the post-change mean vector has entries with
equal magnitude: [μ]i = μ0, to simplify our discussion.
Figure 5a shows EDD versus an increasing signal magni-
tude μ0. Note that when μ0 and M are sufficiently large,

(a)

(b)
Fig. 5 A being a fixed Gaussian randommatrix: the standard
deviation of each point is less than half of its value. a EDD versus μ0,
when all [μ]i = μ0; b EDD versus p when we randomly select 100p%
entries [μ]i to be 1 and set the other entries to be 0; the smallest
value of p is 0.05

the sketching procedure can approach the performance of
the procedure using the full data as predicted by our the-
ory. When signal is weak, we have to use a much largerM
to prevent a significant performance loss (and when sig-
nal is too weak, we cannot use sketching). Table 3 shows
Mmin for each signal strength; we find that when μ0 is suf-
ficiently large, we may even use Mmin less than 30 for an

Table 3 Assume A being a fixed Gaussian randommatrix

μ0 0.3 0.5 0.7 1 1.2

Mmin 300 150 100 50 30

The table showsMmin required for various mean shifts μ0 as shown in Fig. 5a. Here
N = 500, w = 200, and all [μ]i = μ0
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N = 500 to have little performance loss. Note that here,
we do not require signals to be sparse.

5.1.2 EDD versus signal sparsity
Now assume that the post-change mean vector is sparse:
only 100p% entries μi being 1 and the other entries being
0. Figure 5b shows EDD versus an increasing p. Note that
as p increases, the signal strength also increases; thus,
the sketching procedure will approach the performance
using the full data. Similarly, the Mmin required is listed
in Table 4. For example, when p = 0.5, we find that
one can use Mmin = 100 for an N = 500 with little
performance loss.

5.2 Fixed projection, expander graph
Now assume A being an expander graph with N = 500
and different number of sketches M < N . We run the
simulations with the same settings as those in Section 5.1.

5.2.1 EDD versus signal magnitude
Assume the post-changemean vector [μ]i = μ0. Figure 6a
shows EDDwith an increasingμ0. Note that the simulated
EDDs are smaller than those for the Gaussian random
projections in Fig. 5. A possible reason is that the expander
graph is better at aggregating the signals when [μ]i are
all positive. However, when [μ]i can be either positive or
negative, the two choices of A have similar performance,
as shown in Fig. 7, where [μ]i are drawn i.i.d. uniformly
from [− 3, 3].

5.2.2 EDD versus signal sparsity
Assume that the post-change mean vector has only 100p%
entries [μ]i being 1 and the other entries being 0.
Figure 6b shows the simulated EDD versus an increasing
p. As p tends to 1, the sketching procedure approaches the
performance using the full data.

5.3 Time-varying projections with 0-1 matrices
To demonstrate the performance of the procedure T{0,1}
(21) using time-varying projection with 0-1 entries, again,
we consider two cases: the post-change mean vector
[μ]i = μ0 and the post-change mean vector has 100p%
entries [μ]i being 1 and the other entries being 0. The
simulated EDDs are shown in Fig. 8. Note that T{0,1} can
detect change quickly with a small subset of observations.
Although EDDs of T{0,1} are larger than those for the fixed

Table 4 A being a fixed Gaussian randommatrix

p 0.1 0.2 0.3 0.5 0.7

Mmin 300 200 150 100 50

MinimumMmin required for various sparsity setting with parameter p as shown in
Fig. 5b. N = 500, w = 200, and 100p% of entries [μ]i = 1

(a)

(b)
Fig. 6A being a fixed expander graph. The standard deviation of each
point is less than half of its value. a EDD versus μ0, when all [μ]i = μ0;
b EDD versus p when we randomly select 100p% entries [μ]i to be 1
and set the other entries to be 0; the smallest value of p is 0.05

projections in Figs. 5 and 6, this example shows that pro-
jection with 0-1 entries can have little performance loss
in some cases, and it is still a viable candidate since such
projection means a simpler measurement scheme.

5.4 Comparison with multivariate CUSUM
We compare our sketching method with a benchmark
adapted from the conventional multivariate CUSUM pro-
cedure [42] for the sketches. A main difference is that in
multivariate CUSUM, one needs a prescribed post-change
mean vector (which is set to be an all-one vector in our
example), rather than estimate it as the GLR statistic does.
Hence, its performancemay be affected by parametermis-
specification. We compare the performance again in two



Cao et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:42 Page 14 of 22

Fig. 7 Comparison of EDDs for A being a Gaussian randommatrix
versus an expander graph when [μ]i ’s are i.i.d. generated from [− 3, 3]

settings, when all [μ]i are equal to a constant and when
100p% entries of the post-change mean vector are positive
valued. In Fig. 9, the log-GLR-based sketching procedure
performs much better than the multivariate CUSUM.

6 Examples for real applications
6.1 Solar flare detection
We use our method to detect a solar flare in a video
sequence from the Solar Data Observatory (SDO)1. Each
frame is of size 232 × 292 pixels, which results in an
ambient dimension N = 67, 744. In this example, the nor-
mal frames are slowly drifting background sun surfaces,
and the anomaly is a much brighter transient solar flare
emerges at t = 223. Figure 10a is a snapshot of the orig-
inal SDO data at t = 150 before the solar flare emerges,
and Fig. 10b is a snapshot at t = 223 when the solar
flare emerges as a brighter curve in the middle of the
image. We preprocess the data by tracking and removing
the slowly changing background with the MOUSSE algo-
rithm [43] to obtain tracking residuals. The Gaussianity
for the residuals, which corresponds to our xt , is verified
by the Kolmogorov-Smirnov test. For instance, the p value
is 0.47 for the signal at t = 150, which indicates that the
Gaussianity is a reasonable assumption.
We apply the sketching procedure with fixed projection

to the MOUSSE residuals, choosing the sketching matrix
A to be an M-by-N Gaussian random matrix with entries
i.i.d. N (0, 1/N). Note that the signal is deterministic in
this case. To evaluate our method, we run the procedure
500 times, each time using a different random Gaussian
matrix as the fixed projectionA. Figure 11 shows the error
bars of the EDDs from 500 runs. As M increases, both
the means and standard deviations of the EDDs decrease.
1The video can be found at http://nislab.ee.duke.edu/MOUSSE/. The Solar
Object Locator for the original data is SOL2011-04-30T21-45-49L061C108.

(a)

(b)
Fig. 8 A′

ts are time-varying projections. The standard deviation of each
point is less than half of its value. a EDD versus μ0, when all [μ]i = μ0;
b EDD versus p when we randomly select 100p% entries [μ]i to be 1
and set the other entries to be 0; the smallest value of p is 0.05

WhenM is larger than 750, EDD is often less than 3, which
means that our sketching detection procedure can reliably
detect the solar flare with only 750 sketches. This is a sig-
nificant reduction, and the dimensionality reduction ratio
is 750/67, 744 ≈ 0.01.

6.2 Change-point detection for power systems
Finally, we present a synthetic example based on the real
power network topology. We consider the Western States
Power Grid of the USA, which consists of 4941 nodes
and 6594 edges. The minimum degree of a node in the
network is 1, as shown in Fig. 12. The nodes represent
generators, transformers, and substations, and edges rep-
resent high-voltage transmission lines between them [44].
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(a)

(b)
Fig. 9 Comparison of the sketching procedure with a method
adapted from multivariate CUSUM. a EDDs versus variousMs, when
all [μ]i = 0.2; b EDDs versus variousMs, when we randomly select
10% entries [μ]i to be 1 and set the other entries to be 0

Note that the graph is sparse and that there are many
“communities” which correspond to densely connected
subnetworks.
In this example, we simulate a situation for power fail-

ure over this large network. Assume that at each time, we
may observe the real power injection at an edge.When the
power system is in a steady state, the observation is the
true state plus Gaussian observation noise [45]. We may
estimate the true state (e.g., using techniques in [45]), sub-
tract it from the observation vector, and treat the residual
vector as our signal xi, which can be assumed to be i.i.d.
standard Gaussian. When a failure happens in a power
system, there will be a shift in themean for a small number
of affected edges, since in practice, when there is a power
failure, usually only a small part of the network is affected
simultaneously.
To perform sketching, at each time, we randomly choose

M nodes in the network and measure the sum of the
quantities over all attached edges as shown in Fig. 13.
This corresponds to A′

ts with N = 6594 and various
M < N . Note that in this case, our projection matrix is
a 0-1 matrix whose structure is constrained by the net-
work topology. Our example is a simplified model for
power networks and aims to shed some light on the
potential of our method applied to monitoring real power
networks.
In the following experiment, we assume that on aver-

age, 5% of the edges in the network increase by μ0. Set
the threshold b such that the ARL is 5000. Figure 14
shows the simulated EDD versus an increasing signal
strength μ0. Note that the EDD from using a small
number of sketches is quite small if μ0 is sufficiently
large. For example, when μ0 = 4, one may detect
the change by observing from only M = 100 sketches
(when the EDD is increased only by one sample), which
is a significant dimensionality reduction with a ratio of
100/4941 ≈ 0.02.

(a) (b)
Fig. 10 Snapshot of the original solar flare data (a) at t = 150; (b) at t = 223. The true change-point location is at t = 223
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Fig. 11 Solar flare detection: EDD versus variousM when A is an
M-by-N Gaussian randommatrix. The error bars are obtained from 104

repetitions with runs with different Gaussian randommatrix A

7 Conclusion
In this paper, we studied the problem of sequential
change-point detection when the observations are linear
projections of the high-dimensional signals. The change-
point causes an unknown shift in the mean of the signal,
and one would like to detect such a change as quickly
as possible. We presented new sketching procedures for
fixed and time-varying projections, respectively. Sketch-
ing is used to reduce the dimensionality of the signal
and thus computational complexity; it also reduces data
collection and transmission burdens for large systems.

Fig. 12 Power network topology of the Western States Power Grid of
the USA

Fig. 13 Illustration of the measurement scheme for a power network.
Suppose the physical quantities at edges (e.g., real power flow) at
time i form the vector xi , we can observe the sum of the edge
quantities at each node. When there is a power failure, some edges
are affected, and their means are shifted

The sketching procedures were derived based on the
generalized likelihood ratio statistic. We analyzed the
theoretical performance of our procedures by deriving
approximations to the average run length (ARL) when
there is no change, and the expected detection delay
(EDD) when there is a change. Our approximations were
shown to be highly accurate numerically and were used to
understand the effect of sketching.
We also characterized the relative performance of the

sketching procedure compared to that without sketching.
We specifically studied the relative performance mea-
sure for fixed Gaussian random projections and expander
graph projections. Our analysis and numerical examples

Fig. 14 Power system example: A being a power network topology
constrained sensing matrix. The standard deviation of each point is
less than half of the value. EDD versus μ0 when we randomly select
5% edges with mean shift μ0
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showed that the performance loss due to sketching could
be quite small in a big regime when the signal strength and
the dimension of sketches M are sufficiently large. Our
result can also be used to find the minimum required M
given a worst-case signal and a target ARL. In other words,
we can determine the region where sketching results in
little performance loss. We demonstrate the good per-
formance of our procedure using numerical simulations
and two real-world examples for solar flare detection and
failure detection in power networks.
On a high level, although after sketching, the Kullback-

Leibler (K-L) divergence becomes smaller, the threshold
b for the same ARL also becomes smaller. For instance,
for Gaussian matrix, the reduction in K-L divergence is
compensated by the reduction of the threshold b for the
same ARL, because the factor that they are reduced by are
roughly the same. This leads to the somewhat counter-
intuitive result that the EDDs with and without sketching
turns to be similar in this big regime.
Thus far, we have assumed that the data streams are

independent. In practice, if the data streams are depen-
dent on a known covariance matrix �, we can whiten the
data streams by applying a linear transformation �−1/2xt .
Otherwise, the covariance matrix � can also be estimated
using a training stage via regularized maximum likelihood
methods (see [46] for an overview). Alternatively, we may
estimate the covariance matrix �′ of the sketches A�Aᵀ

or At�Aᵀ
t directly, which requires fewer samples to esti-

mate due to the lower dimensionality of the covariance
matrix. Then, we can build statistical change-point detec-
tion procedures using �′ (similar to what has been done
for the projection Hotelling control chart in [19]), which
we leave for future work. Another direction of future
work is to accelerate the computation of sketching using
techniques such as those in [47].

Appendix 1: Proofs
We start by deriving the ARL and EDD for the sketching
procedure.

Proofs for Theorems 1 and 2 This analysis demonstrates
that the sketching procedure corresponds to the so-called
mixture procedure (cf. T2 in [15]) in a special case of
p0 = 1, M sensors, and the post-change mean vector is
Vᵀμ. In [15], Theorem 1, it was shown that the ARL of
the mixture procedure with parameter p0 ∈[ 0, 1] and M
sensors is given by

E
∞{T} ∼ H(M, θ0)/

∫ [2Mγ (θ0)/m0]1/2

[2Mγ (θ0)/m1]1/2
yν2(y)dy

︸ ︷︷ ︸
c′(M,b,w)

, (36)

where the detection statistic will search within a time win-
dowm0 ≤ t−k ≤ m1. Let g(x, p0) = log(1−p0+p0ex

2/2).

Then, ψ(θ) = logE{eθg(U ,p0)} is the log moment gener-
ating function (MGF) for g(U , p0),U ∼ N (0, 1), θ0 is the
solution to ψ̇(θ) = b/M,

H(M, θ) = θ [ 2πψ̈(θ)]1/2

γ (θ)M1/2 exp{M[ θψ̇(θ) − ψ(θ)] },
(37)

and

γ (θ) = 1
2
θ2E{[ ġ(U , p0)]2 exp[ θg(U , p0) − ψ(θ)] }.

Note that U2 is χ2
1 distributed, whose MGF is given by

E

{
eθU2

}
= 1/

√
1 − 2θ . Hence, when p0 = 1,

ψ(θ) = logE
{
eθU

2/2
}

= −1
2
log(1 − θ).

The first-order and second-order derivative of the log
MGF are given by, respectively,

ψ̇(θ) = 1
2(1 − θ)

, ψ̈(θ) = 1
2(1 − θ)2

(38)

Set ψ̇(θ0) = b/M. We obtain the solution that 1 − θ0 =
M/(2b), and θ0 = 1 − M/(2b). Hence, φ̈(θ0) = 2b2/M2.
We have g(x, 1) = x2/2, and ġ(x, 1) = x.

γ (θ) = θ2

2
E

{
U2e

θU2
2

}
elog

√
1−θ

= θ2

2
· 1
(1 − θ)3/2

· √
1 − θ = θ2

2(1 − θ)
,

where

E

{
U2e

θU2
2

}
= 1√

2π

∫
x2e

θx2
2 e−

x2
2 dx

= 1√
2π

∫
x2e−

x2
2/(1−θ) dx = 1

(1 − θ)3/2
.

Combining the above, we have that the ARL of the
sketching procedure is given by

E
∞{T} =

θ0
[
2π · 1

2(1−θ0)2

]1/2

c′(M, b,w)
θ20

2(1−θ0)

√
M

e
Mθ0

2(1−θ0) (1 − θ0)
M/2+ o(1)

=
√

π

c′(M, b,w)

2
θ0

√
M

e
Mθ0

2(1−θ0) (1 − θ0)
M/2 + o(1).

(39)

Next, using the fact that 1/(1−θ0) = 2b/M, we have that
the two terms in the above expression can be written as

Mθ0
2(1 − θ0)

= Mθ0
2

2b
M

= θ0b, (1 − θ0) = M
2b

,



Cao et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:42 Page 18 of 22

then (39) becomes

E
∞{T} =

√
π

c′(M, b,w)

2
θ0

√
M

eθ0b
(
M
2b

)M
2 + o(1)

= 2
√

π

c′(M, b,w)

1√
M

1
1 − M

2b
e(b−

M
2 )

(
M
2b

)M
2 + o(1)

= 2
√

π

c′(M, b,w)

1√
M

1
1 − M

2b

(
M
2

)M
2
b−M

2 eb−
M
2 + o(1).

Finally, note that we can also write

γ (θ0) = θ20 /[ 2(1 − θ0)]= (1 − M/(2b))2/(M/b),

and the constant is

c′(M, b,w) =
∫ [2Mγ (θ0)]1/2

[2Mγ (θ0)/w]1/2
yν2(y)dy

=
∫ √

2b
(
1− M

2b
)

√
2b
w
(
1− M

2b
) yν2(y)dy.

(40)

We are done deriving the ARL. The EDD can be derived
by applying Theorem 2 of [15] in the case where 
 =
‖Vᵀμ‖, the number of sensors isM, and p0 = 1.

The following proof is for the Gaussian randommatrixA.

Proof of Theorem 4 It follows from (32), and a standard
result concerning the distribution function of the beta
distribution ([48], 26.5.3) that

P{� ≤ b} = Ib
(
M
2
,
N − M

2

)
, (41)

where I is the regularized incomplete beta function (RIBF)
([48], 6.6.2). We first prove the lower bound in (34).
Assuming N → ∞ such that (33) holds, we may combine
(41) with ([49], Theorem 4.18) to obtain

lim
(M,N)→∞

1
N

lnP{� ≤ δ − ε}

= −
[
δ ln

(
δ

δ − ε

)
+ (1 − δ) ln

(
1 − δ

1 − δ + ε

)]
= −c < 0,

from which it follows that there exists Ñ such that for all
N ≥ Ñ ,

1
N

lnP{� ≤ δ − ε} < − c′

2
,

which rearranges to give

P{� ≤ δ − ε} < e
−c′N
2 ,

which proves the lower bound in (34). To prove the upper
bound, it follows from (41) and a standard property of the
RIBF ([48], 6.6.3) that

P{� ≥ b} = I1−b

(
N − M

2
,
M
2

)
. (42)

Assuming N → ∞ such that (33) holds, we may
combine (42) with ([49], Theorem 4.18) to obtain

lim
(M,N)→∞

1
N

lnP{� ≥ δ + ε}

= −
[
(1 − δ) ln

(
1 − δ

1 − δ − ε

)
+ δ ln

(
δ

δ + ε

)]
= −d < 0,

and the argument now proceeds analogously to that for
the lower bound.

Lemma 3 If a 0-1 matrix A has constant column sum d,
for every non-negative vector x such that [x]i ≥ 0, we have

‖Ax‖2 ≥ √
d‖x‖2. (43)

Proof of Lemma 3 Below, Aij =[A]ij.

‖Ax‖22 =
M∑

i=1

⎛

⎝
N∑

j=1
Aijxj

⎞

⎠

2

≥
M∑

i=1

N∑

j=1
(Aijxj)2 = d‖x‖22.

Lemma 4 (Bounding σmax(A)) If A corresponds to a
(s, ε)-expander with regular degree d and regular left
degree c, for any nonnegative vector x,

‖Ax‖2
‖x‖2 ≤ d

√
N
M

, (44)

thus,

σmax(A) ≤ d
√

N
M

. (45)

Proof of Lemma 4 For any nonnegative vector x,

‖Ax‖22 =
M∑

i=1

⎛

⎝
N∑

j=1
Aijxj

⎞

⎠

2

=
M∑

i=1

⎛

⎝
N∑

j=1
(Aijxj)2 +

N∑

j=1

N∑

l=1,l≤j
(AijAilxjxl)

⎞

⎠

≤
M∑

i=1

⎛

⎝
N∑

j=1
(Aijxj)2 +

N∑

j=1

N∑

l=1,l≤j

AijAil
2

(
x2j + x2l

)
⎞

⎠
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=
M∑

i=1

N∑

j=1

N∑

l=1

AijAil
2

(
x2j + x2l

)

=
N∑

j=1

N∑

l=1

M∑

i=1

AijAil
2

(
x2j + x2l

)

≤
N∑

j=1
dc(xj)2 (46)

= d2N
M

‖x‖22. (47)

Above, (46) holds since for a given column j, Aij = 1
holds for exactly d rows. And for each row i of these d
rows, Ail = 1 for exactly c columns with l ∈ {1, . . . , p};
(47) holds since dN = Mc. Finally, from the definition of
σmax, (45) holds.

Proof for Theorem 5 Note that


 = (μᵀVVᵀμ)1/2 = (muᵀAᵀU�−2UᵀAμ)1/2

≥ σ−1
max(A)‖UᵀAμ‖2 = σ−1

max(A)‖Aμ‖2, (48)

where σmax = σmax(A), and (48) holds sinceU is a unitary
matrix. Thus, in order to bound 
, we need to charac-
terize σmax, as well as ‖Aμ‖2 for a s sparse vector μ.
Combining (48) with Lemma 3 and 4, we have that for
every nonnegative vector μ, [μ]i ≥ 0,


 ≥ 1
d

√
M
N
√
d(1 − ε)‖μ‖2 =

√
M(1 − ε)

dN
‖μ‖2. (49)

Finally, Lemma 2 characterizes the quantity [M(1 −
ε)/(dN)]1/2 in (49) and establishes the existence of such
an expander graph. When A corresponds to an (αN , ε)
expander described in Lemma 2, 
 ≥ ‖βμ‖2 for all non-
negative signals [μ]i ≥ 0 for some constant α and some
constant β = (ρ(1 − ε)/d)1/2. Done.

Proof for Corollary 1 We define that x � M/b, then
Theorem 1 tells us that when M goes to infinity, we have
that

E
∞{T} =
2
√

π

c(M, x,w)

1
1 − x

2

1√
M

(x
2

)M
2 exp

(
M
x

− M
2

)
+ o(1),

(50)

where

c(M, x,w) =
∫
√

2M
x (1− x

2 )

√
2M
xw (1− x

2 )

uν2(u)du, (51)

and

ν(u) ≈ 2/u[
(u/2) − 0.5]
(u/2)
(u/2) + φ(u/2)

.

Define that γ � E
∞{T}. One claim is that when M >

24.85 and γ ∈[ e5, e20], there exists one x∗ ∈ (0.5, 2) such
that (50) holds. Next, we prove the claim.
Define the logarithm of the right-hand side of (50) as

follows:

p(x) � log(2
√

π) − log(C(M, x,w)) − log
(
1 − x

2

)

+ M
2

log
x
2

+ M
x

− M
2

− 1
2
logM.

Since ν(u) → 1 as u → 0 and ν(u) → 2
u2 as u →

∞, we know that
∫∞
0 uν2(u)du exists. From the numerical

integration, we know that
∫∞
0 uν2(u)du < 1. Therefore,

− log(C(M, x,w)) > 0. Then,

p (0.5) >

(
3
2

− 1
2
log 4

)
M− 1

2
logM+log(2

√
π)−log

3
4
.

WhenM > 24.85, we have that p(0.5) > 20. Then, when
γ < e20, we have that p(0.5) − log γ > 0.
Next, we prove that we can find some x0 ∈ (0.5, 2) such

that p(x0)− log γ < 0 provided that γ > e5. Since φ
(u
2
)

<

0.5 and

0.5 + 1√
2π

exp
[
−1
2

(u
2

)2] (u
2

)
≤ 


(u
2

)
≤ 1,

for any u > 0. We have that

ν(u) >

√
2
π

·
exp

(
−u2

8

)

u + 1
.

Then, we have that for any u > 0,

uν2(u) >
2
π

· u · exp(−u2/4)
(u + 1)2

.

We define that x0 is the solution to the following
equation:

√
2M
x

(
1 − x

2

)
= 1. (52)

Then, we have that

C(M, x0,w) >
2
π

·
∫ 1

1/
√
w

u · exp(−u2/4)
(u + 1)2

du

>
2
π

·
∫ 1

1/
√
w

u · exp(−u2/4)
4

du

= 1
π

·
(
exp

(
− 1
4w

)
− exp

(
−1
4

))

>
1
π
exp

(
−1
4

)
·
(
1
4

− 1
4w

)
,

where the second inequality is due to the fact that the
upper bound for the integral interval is 1 and the third
inequality is due to the fact that exp(−x) is a convex
function. Therefore, we have that

− logC(M, x0,w) < logπ + 1
4

− log
(
1
4

− 1
4w

)
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Note that the upper bound above for − logC(M, x0,w) is
not dependent onM, which is because we choose a x0 that
depends onM. Solving the Eq. (52), we have that

x0 = 2 + 1
M

−
√

1
M2 + 4

M
< 2,

and x0 → 2 as M → ∞. By Taylor’s expansion, we have
that x0 = 2 − 2M−1/2 + M−1 + o

(
M−1), or x0 = 2 −

2M−1/2 + o
(
M−1/2). Then, we have that

− log
(
1 − x0

2

)
= − log

(
M−1/2)+ o(1),

and
M
2

log
x0
2

=M
2

log
(
1 − M−1/2)

=M
2

·
(

−M−1/2 − 1
2
M−1 + o(M−1)

)

= − 1
2
M1/2 − 1

4
+ o(1),

and
M
x0

=M
2

· 1
1 − (

M−1/2 + M−1/2 + o
(
M−1))

=M
2

· (M−1/2 + M−1/2 + o(M−1)

+ (
M−1/2 + M−1/2 + o

(
M−1))2 + o

(
M−1))

=1
2
M1/2 + 1

2
+ o(1)

Combining the above results, we have that

p(x0) < log(2
√

π)+ logπ − log
(
1
4

− 1
4w

)
+ 1
2

+o(1).

(53)

One important observation is that the right-hand side of
(53) converges as M → ∞. In fact, p(x0) as a function of
M is decreasing and converges as M → ∞. Since we set
w ≥ 100, then for any M > 24.85, p(x0) < 5. Therefore,
for any γ > e5 and any M > 24.85, we can find a x0 close
to 2 such that p(x0) − log γ < 0.
Since p(x) is a continuous function, there exists a solu-

tion x∗ ∈ (0.5, 2) such that Eq. (50) holds.

Proof of Theorem 3 The proof uses a similar argument
as that in [15].
By law of large number, when t − k tends to infinity, the

following sum converges in probability

1
t − k

t∑

i=k+1
Iin

p−→ r. (54)

Moreover, from central limit theorem,

1√
t − k

t∑

i=k+1
[ xi]n (Iin − r) d−→ N (0, r(1 − r)). (55)

So by continuous mapping theorem,
⎛

⎝ 1√
(t − k)r(1 − r)

t∑

i=k+1
[ xi]n (Iin − r)

⎞

⎠

2
d−→ χ2

1 ,

(56)

i.e., the squared and scaled version of the sum is asymptot-
ically a χ2

1 random variable with one degree of freedom.
By Slutsky’s theorem, combining (54) and (56),

1
1 − r

[
∑t

i=k+1[ xi]n (Iin − r)]2
∑t

i=k+1 Iin

d−→ χ2
1

Using Lemma 1 in [50], for X ∼ χ2
1 ,

P{X ≥ 1 + 2
√

ε + 2ε} ≤ e−ε

P{X ≤ 1 − 2
√

ε} ≤ e−ε

Therefore, with probability at least 1−2e−ε , the difference
is bounded by a constant
⎛

⎜
⎝

∑t
i=k+1[ xi]n Iin√∑t

i=k+1 Iin

− r
∑t

i=k+1[ xi]n√∑t
i=k+1 Iin

⎞

⎟
⎠

2

< (1 + 2
√

ε + 2ε)(1 − r).

On the hand, by central limit theorem, when t− k tends
to infinity,

1√
t − k

t∑

i=k+1
[ xi]n

d−→ N (0, 1).

and by law of large number and continuous mapping
theorem

(∑t
i=k+1 Iin

t − k

)−1/2

− 1√
r

p−→ 0

Hence, invoking Slutsky’s theorem again, we have
⎛

⎜
⎝

∑t
i=k+1[ xi]n√∑t

i=k+1 Iin

−
∑t

i=k+1[ xi]n√
r(t − k)

⎞

⎟
⎠

2

d−→ 0

Hence, combining the above, by a triangle inequality type
of argument, we may conclude that, with high probability,
the difference is bounded by a constant c

⎛

⎜
⎝

∑t
i=k+1[ xi]n Iin√∑t

i=k+1 Iin

− √
r
∑t

i=k+1[ xi]n√
(t − k)

⎞

⎟
⎠

2

< c.
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Hence, to control the ARL for the procedure defined in
(21)
T{0,1} =

inf{t : max
t−w≤k<t

1
2

N∑

n=1

(∑t
i=k+1[ xi]n Iin

)2
∑t

i=k+1 Iin
> b}, (57)

one can approximately consider another procedure

T̃{0,1} = inf
{

t : max
t−w≤k<t

1
2

N∑

n=1
U2
n,k,t >

b
r

}

,

with

Un,k,t �
∑t

i=k+1[ xi]n√
t − k

,

This corresponds to the special case of the mixture proce-
dure with N sensors and all being affected by the change
(p0 = 1), except that the threshold is scaled by 1/r. Hence,
we can use the ARL approximation for mixture procedure,
which leads to (26).

Appendix 2: Justification for EDD of (27)
Proof Below, let T = T ′{0,1} for simplicity. Define Sn,t =

∑t
i=1[ xi]n ξni for any n and t. To obtain an EDD approxi-

mation to T ′{0,1}, first we note that

1
2

N∑

n=1
Z2
n,k,T = 1

2

N∑

n=1

(∑T
i=k+1[ xi]n ξni

)2

r(T − k)

=1
2

N∑

n=1

(
Sn,T − Sn,k

)2

r(T − k)

=
N∑

n=1
μn
[
Sn,T − Sn,k − (T − k)rμn/2

]

+
N∑

n=1

[
Sn,T − Sn,k − (T − k)rμn

]2
/(2r(T − k)).

(58)

Then, we can leverage a similar proof as that to Theorem
2 in [15] to obtain that as b → ∞,

E
0
{

max
0≤k<T

1
2

N∑

n=1
Z2
n,k,T

}

=E
0
{ N∑

n=1
μn(Sn,T − rTμn/2)

}

+ E
0
{ N∑

n=1
(Sn,T − Trμn)

2/(2Tr)
}

+ E
0
{

min
0≤k<b1/2

( N∑

n=1
μn(Sn,k − krμn/2)

)}

+ o(1).

(59)

The first term on the right-hand side of (59) is equal
to E

0
{
T ′{0,1}

}
· r∑N

n=1 μ2
n/2. Using the fact that random

variables ([ xi]n ξni − rμn)/
√
r are i.i.d. with mean zero

and unit variance, together with the Anscombe-Doeblin
Lemma [36], we have that as b → ∞, the second term
on the right-hand side of (59) is equal to N/2 + o(1). The
third term can be shown to be small similar to [15]. Finally,
ignoring the overshoot of the detection statistic exceeding
the detection threshold, we can replace the left-hand side
of (59) with b. Solving the equation, we obtain the first
order approximation of the EDD is given by (27).
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