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Abstract

An efficient robust fusion estimation (RFE) for distributed fusion system without knowledge of the cross-covariances
of sensor estimation errors is suggested. With the hypothesis that the object lying in the intersection of some
ellipsoids related to sensor estimations, the robust fusion estimation is designed to be a minimax problem, which is
solved by proposing a novel relaxation strategy. Some properties of the RFE are discussed, and numerical simulations
are also present to compare the tracking performance of RFE with that of the centralized fusion and CI method. The
numerical examples show that the average tracking performance of RFE is slightly better than that of the CI method,
and the performance degradation of RFE is acceptable compared with the centralized fusion.
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1 Introduce
In recent years, multisensor information fusion has
received significant attention for both military and civil-
ian applications. The fusion center integrates information
frommultiple sensors to achieve improved accuracies and
system survivability than could be achieved by the use of
a single sensor alone. If the communication channel and
processor bandwidth are not constrained, then all obser-
vations from local sensors can be transmitted to a central
processor for fusing. In this case, there is no preprocess-
ing in each sensor, and the local sensors only act as simple
observers. Therefore, the multisensor fusion system can
be viewed as a single sensor system in nature, and con-
ventional optimal methods can be implemented (see [20]).
Such a multisensor fusion is called the centralized fusion.
Clearly, the centralized fusion has the best performance
since all observations are used. However, in many practi-
cal applications, processing all sensor measurements at a
single location is sometimes infeasible due to communi-
cation or reliability constraints. So one may require that
a preprocessing is performed at the individual sensors
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and a compressed sensor data is transmitted to the fusion
center. Accordingly, we call this multisensor fusion the
distributed fusion or decentralized fusion. In a distributed
fusion system, the sensors will form sensor tracks from
themeasurements and communicate the tracks with other
sensors or processors. The tracks are then associated and
the estimates of associated tracks are fused in the fusion
center. Many distributed fusion architectures have been
proposed over the years.
With the assumption that the cross-covariance of the

errors of local estimators is known, Bar-Shalom and
Campo proposed a track-to-track fusion for two-sensor
distributed estimation systems. The analysis of the opti-
mality of the fusion formulae is given in [2]. For the system
with l local sensors, the fusion equations presented in [8]
and [10] use the fusion center’s one-step prediction as well
as the l sensors’ state estimates and their one-step pre-
dictions to obtain a final fusion. Moreover, they proved
rigorously that the presented fusion formulae can be con-
verted equivalently from the corresponding centralized
Kalman filtering. Recently, the best linear unbiased esti-
mation (BLUE) (see, e.g., [12, 18]) was proposed, and a
general version of the linear minimum variance of esti-
mation fusion rule is derived . The above two estimation
fusion methods turn into the special cases of BLUE fusion
method with some appropriate assumptions. The BLUE
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fusion method relies on two assumptions: (1) the local
estimators are unbiased; (2) the error covariance matrix
of the sensor estimates at each time is known. The cross-
covariance of estimation errors is the key to optimally
fuse the sensor estimates in the distributed estimation sys-
tems, but it is very difficult to realize in many practical
applications.
Over the last three decades, many works have been

performed to design different appropriate distributed
fusion estimations with unknown cross-covariance of esti-
mation errors. Considering a distributed fusion system,
when there exist some uncertainties in state equation or
sensor observation equations, some researchers seek to
design robust distributed fusion estimation by modeling
the uncertainties appropriately (including deterministic
and stochastic uncertainties, see [5, 6], and references
therein). When the state equation and sensor observation
equations are unavailable, and only the sensors estimators
are given, the well-known covariance intersection (CI) fil-
ter (see [7, 11, 13]) is designed to fuse sensor estimates
without cross-covariance of sensor estimators. The objec-
tive of CI filter is to obtain a consistent estimation of the
covariance matrix when two estimates are linearly com-
bined, where “consistent” means the estimated covariance
is always an “upper-bound” (in the positive-definite sense)
of the true covariance. The CI filter is more robust than
the linear combination algorithm and provides a bound on
the estimation accuracy. Therefore, the CI algorithm has
been widely applied in the area of distributed estimation.
However, the CI method has some obviously disadvan-
tages: (1) it designs the estimator to be linear form of
local sensor estimates; (2) the parameter to be optimized
is a scalar although the estimated state may be a multiple
dimensional vector.
Recently, different strategies are proposed to fuse sen-

sor estimators without complete knowledge of the cross-
covariance matrix. A formulation is proposed in [9] to
restrict the set of possible cross-covariance matrices,
then an optimal robust fusion method is presented in
the minimax sense via semi-definite programming. The
work in [1] provides a deeper insight into the subopti-
mality of the covariance intersection fusion of multiple
estimates under unknown correlations. In reference [17],
the authors generalize the covariance intersection algo-
rithm for distributed estimation and information fusion of
random vectors.
In this paper, inspired by the idea of set-membership

filtering, which seeks to compute a compact feasible set
in which the true state or parameter lies (see [4, 14]), we
consider the problem to fuse local estimates by directly
maximizing the estimation error on some set given by
the prior knowledge, then select the optimal estimation
to minimize it. Compared with the works in references
[1, 9, 17], all the methods are presented to fuse sensor

estimators with unknown cross-correlation. However, the
strategies employed to design robust fusion estimation
are different. In [1, 9, 17], the authors seek to design the
upper bound of the cross-covariance, then robust fusion
estimations are proposed based on different optimization
methods. In this paper, we suppose that the true state lies
in a compact feasible set, then wemodel it as a non-convex
optimization problemwith theminimax strategy, and pro-
pose a novel relaxation strategy to approximatively solve
the non-convex problem. The prominent merits of the
presented robust optimal fusion estimation (RFE) includes
(1) instead of optimizing the trace of the estimation error
covariance, we directly minimize the estimation error; (2)
the fused estimator is a non-linear combination of local
estimators; (3) the presented methods can be used to
fusion multiple sensors directly; (4) the average tracking
performance of the RFE is slightly better than that of the
CI filter in our simulations.
This paper is organized as follows. A brief introduction

of the CI filter are given in Section 2. Then the RFE is pro-
posed in Section 3, and some properties the RFE are also
discussed. Section 4 provided a number of simulations to
show the performances of the presented method. Finally,
Section 5 gives a conclusion.

2 The CI filter
The CI filter provides a mechanism for fusing two esti-
mates of the mean value of a random variable when the
correlation between the estimation errors is unknown.
The following notations are followed from [7]. Let c∗ ∈
Rn×1 be the mean of some random variable to be esti-
mated. Two sources of information are available: estimate
a ∈ Rn×1 and estimate b ∈ Rn×1. Define their estimation
errors as

ã = a − c∗, b̃ = b − c∗,

and suppose

E(ã) = 0,E(b̃) = 0,E
(
ããT

)
= P̃aa,E

(
b̃b̃T

)
= P̃bb.

The true values of P̃aa and P̃bb may be unknown, but some
consistent estimates Paa ∈ Rn×n and Pbb ∈ Rn×n of P̃aa
and P̃bb are obtainable respectively with properties

Paa � P̃aa, Pbb � P̃bb,

where the notation “A � B” means that the matrixA−B is
positive semi-definite. The cross-covariance between the
two estimation E

(
ãb̃T

)
= P̃ab is also unknown.

Firstly, the CI method proposes a linear unbiased
estimator

c = K1a + K2b,
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where K1,K2 ∈ Rn×n,K1 +K2 = I. Let c̃ = c− c∗, then the
covariance of c̃ is

P̃cc = E
(
c̃c̃T

)

= K1P̃aaKT
1 + K2P̃bbKT

2 + K1P̃abKT
2 + K2P̃TaaK

T
1 .

Secondly, it tries to find a consistent estimator Pcc of P̃cc,
such that Pcc � P̃cc. It is easy to find a kind of consistent
estimators in following form

Pcc = (1+γ )K1PaaKT
1 +

(
1 + 1

γ
K2PbbKT

2

)
, γ > 0.

Finally, the CI estimator is derived byminimizing the trace
of Pcc which is given as follows.

Theorem 1 (Theorem 2 in [7]) There exists ω ∈[ 0, 1]
such that√

Tr
(
K1PaaKT

1
) +

√
Tr

(
K2PbbKT

2
)
, K1 + K2 = I,

is minimized by

Pcc =
(
ωP−1

aa + (1 − ω)P−1
bb

)−1
,

K1 = ωPccP−1
aa ,K2 = ωPccP−1

bb .

Therefore, the CI estimator is aωPccP−1
aa + bωPccP−1

bb .

3 The robust fusion estimation
In a distributed system with l sensors, let xk ∈ Rn is a
deterministic parameter vector to be estimated. Suppose
x̂(i)
k , i = 1, . . . , l are sensor estimators of xk at time k, and
we have the prior information that the state xk lies in the
non-empty intersection of l ellipsoids S(i)

k defined by

S(i)
k =

{
xk :

(
xk − x̂(i)

k

)T
P̄(i)
k

(
xk − x̂(i)

k

)
≤ ai, i = 1, . . . , l

}
,

where P(i)
k are some known positive semi-definite matri-

ces, and ai is a positive scalar. It is easy to standardize the
ellipsoids as

S(i)
k = {xk : (xk − x̂(i)

k )TP(i)
k (xk − x̂(i)

k ) ≤ 1, i = 1, . . . , l}.
When the fusion central receives l sensor estimators and
the ellipsoids S(i)

k , i = 1, . . . , l, they should be fused to
obtain optimal fusion estimation. Therefore, we first max-
imize the estimation error over the intersection of S(i)

k ,
then choose the fusion estimate x̂k to minimize the esti-
mation error. Finally, the fusion estimation is designed to
solve the following minimax problem:

min
x̂k

max
xk∈

⋂l
i=1 S

(i)
k

‖xk − x̂k‖22. (1)

Generally speaking, problem (1) is an NP-hard problem
when l ≥ 2. In the sequel, we seek for approximation
solution of problem (1) by designing a convex relaxation
strategy.

The following lemmas are necessary for further deriva-
tion.

Lemma 1 (see [15]) Let X be an symmetric matrix
partitioned as

X =
(
X1 X2
X′
2 X3

)
.

Then X > 0 if and only if X3−X′
2X

−1
1 X2 > 0. Furthermore,

if X1 > 0, then X ≥ 0 if and only if X3 − X′
2X

−1
1 X2 ≥ 0.

Lemma 2 Let ε, γi be non-negative scalars, z and Bi
be any compatible vector and Hermitian matrices, i =
1, . . . , l. Then the following inequality holds for any vector
y and scalar t

εt2 +
l∑

i=1
γiyTBiy − (yTy − 2tyTz) ≥ 0, (2)

if and only if
⎛
⎝

ε zT

z
l∑

i=1
γiBi − I

⎞
⎠ ≥ 0. (3)

Furthermore, if (2) or (3) holds, then

max
y,t

{
yTy − 2tyTz : yTBiy ≤ 1, i = 1, . . . , l, t2 ≤ 1

}

≤ ε +
l∑

i=1
γi.

(4)

Proof Note that (3) is equivalent to

(
t
y

)T
⎛
⎝

ε zT

z
l∑

i=1
γiBi − I

⎞
⎠

(
t
y

)
≥ 0

holds for any vector y and scalar t, which implies the
equivalence between (2) and (3). At the same time, from
(2),

yTy − 2tyTz ≤ εt2 +
l∑

i=1
γiyTBiy.

Obviously,

max
y,t

⎧⎨
⎩εt2 +

l∑
i=1

γiyTBiy : yTBiy ≤ 1, i = 1, . . . , l, t2 ≤ 1

⎫⎬
⎭

≤ ε +
l∑

i=1
γi.

Therefore, (4) follows from (2).
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A positive semi-definite relaxation of problem (1) is pre-
sented in the following theorem, which can be solved by
some efficient semidefinite programming solvers such as
SeDuMi (see [16]).

Theorem 2 The positive semi-definite relaxation of the
optimal problem (1) is

min
ε≥0,γi≥0,τ≥0,x̂k ,α

(i)
k

τ (5)

s.t.

⎛
⎜⎝

ε 0
(∑l

i=1 α
(i)
k x̂(i)

k − x̂k
)T

0
∑l

i=1 γiQ(i)
k

(∑l
i=1 α

(i)
k A(i)

k

)T
∑l

i=1 α
(i)
k x̂(i)

k − x̂k
∑l

i=1 α
(i)
k A(i)

k I

⎞
⎟⎠≥0

and ε +
l∑

i=1
γi ≤ τ ,

l∑
i=1

α
(i)
k = 1,

where A(i)
k = (0, . . . , I . . . , 0)n×nl,Q(i)

k =
(
A(i)
k

)T
P(i)
k A(i)

k ,
i = 1, . . . , l . The optimal fusion estimation x̂k is given by
the solution of the SDP problem (5).

Proof Note that problem (1) is the same as

min
x̂k ,τ>0

τ

s.t. ‖xk − x̂k‖22 ≤ τ and
(
xk − x̂(i)

k

)T
P(i)
k

(
xk − x̂(i)

k

)
≤ 1, i = 1, . . . , l. (6)

Denoted by

η
(i)
k = xk − x̂(i)

k , ηk =
⎛
⎜⎝

η
(1)
k
. . .

η
(l)
k

⎞
⎟⎠ ,

A(i)
k = (0, . . . , I . . . , 0)n×nl, i = 1, . . . , l,

then η
(i)
k = A(i)

k ηk , i = 1, . . . , l. For any real scalars α
(i)
k , i =

1, . . . , l satisfy
l∑

i=1
α

(i)
k = 1, let

ζk =
l∑

i=1
α

(i)
k x̂(i)

k .

Note that the ζk is not the linear combination of local
estimator x̂(i)

k , unless the α
(i)
k is independent of local esti-

mators x̂(i)
k . In fact, the α

(i)
k is given by the optimal problem

(1), thus it is not independent of x̂(i)
k . Therefore, problem

(6) is the same as

min
x̂k ,τ>0

τ

s.t. ‖xk − ζk + ζk − x̂k‖22 ≤ τ and

ηTk

(
A(i)
k

)T
P(i)
k A(i)

k ηk ≤ 1, i = 1, . . . , l. (7)

Let βk = ζk − x̂k ,Q(i)
k = (A(i)

k )TP(i)
k A(i)

k , so xk − ζk =∑l
i=1 α

(i)
k A(i)

k ηk . DenoteAk = ∑l
i=1 α

(i)
k A(i)

k , then problem
(7) is equivalent to

min
x̂k ,τ>0

τ

s.t. ‖Akηk + βk‖22 ≤ τ and

ηTk Q
(i)
k ηk ≤ 1, i = 1, . . . , l. (8)

Considering the constrains of problem (8), it is the same
as

max
ηk

{‖Akηk + βk‖22 : ηTk Q(i)
k ηk ≤ 1, i = 1, . . . , l} ≤ τ .

Equivalently,

max
ηk ,t

{
‖Aktηk + βk‖22 : ηTk Q

(i)
k ηk ≤ 1, i = 1, . . . , l, t2 ≤ 1

}
≤ τ ,

which can be reformulated to

max
ηk ,t

{
(Akηk)

TAkηk + 2t(Akηk)
Tβk : ηTk Q

(i)
k ηk

≤ 1, i = 1, . . . , l, t2 ≤ 1
}

≤ τ − βT
k βk . (9)

From Lemma 2, for non-negative scalars γ , γi, i = 1, . . . , l,
the constrains

(
γ −βT

k Ak
−(βT

k Ak)
T ∑l

i=1 γiQ(i)
k − AT

k Ak

)
≥ 0 (10)

and

γ +
l∑

i=1
γi ≤ τ − βT

k βk

are sufficient for (9) holding. Let ε = γ + βT
k βk , then (10)

can be rewritten as
(

ε 0
0

∑l
i=1 γiQ(i)

k

)
−

(
βT
k βk βT

k Ak
(βT

k Ak)
T AT

k Ak

)
≥ 0.

From Lemma 1, which is equivalent to
⎛
⎝

ε 0 βT
k

0
∑l

i=1 γiQ(i)
k AT

k
βk Ak I

⎞
⎠ ≥ 0.

Therefore, we can relax the problem (8) to be the following
SDP problem:

min
ε≥0,γi≥0,τ≥0,βk ,α

(i)
k

τ

s.t.

⎛
⎝

ε 0 βT
k

0
∑l

i=1 γiQ(i)
k AT

k
βk Ak I

⎞
⎠ ≥ 0 and

ε +
l∑

i=1
γi ≤ τ ,

l∑
i=1

α
(i)
k = 1
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which is equivalent to

min
ε≥0,γi≥0,τ≥0,x̂k ,α

(i)
k

τ

s.t.

⎛
⎝

ε 0 (
∑l

i=1 α
(i)
k x̂(i)k − x̂k)T

0
∑l

i=1 γiQ
(i)
k (

∑l
i=1 α

(i)
k A(i)

k )T
∑l

i=1 α
(i)
k x̂(i)k − x̂k

∑l
i=1 α

(i)
k A(i)

k I

⎞
⎠ ≥ 0

and ε +
l∑

i=1
γi ≤ τ ,

l∑
i=1

α
(i)
k = 1.

Then, we finish the proof from the equivalence between
the problem (8) and problem (1).

Remark 1 Theorem 2 gives a approximate solution of
problem (1), and the approximation is exactly when l = 1
(see [3]). Furthermore, the proof of the Theorem 2 does
not require the positive semi-definite of Pk, so we can only
require the Pk to be Hermitian if problem (5) is of sense.

Just like the idea of weighted least squares estimation,
we can generalize the result by introducing a positive
semi-definite weight-valued matrixWk , and replace prob-
lem (1) by

min
x̂k

max
xk∈

⋂l
i=1 S

(i)
k

‖xk − x̂k‖Wk , (11)

where ‖xk − x̂k‖Wk = (xk − x̂k)TWk(xk − x̂k).
Obviously, it is of sense to introduce weight matrixWk if

one wants to give different punishments to the estimation
error in different dimension. Then, problem (1) is a special
of problem (11) by taking Wk = I. Similar to the proof
of Theorem 2, we can derived the positive semi-definite
relaxation of problem (11).

Colloary 1 The positive semi-definite relaxation of opti-
mal problem (11) is

min
ε≥0,γi≥0,τ≥0,x̂k ,α

(i)
k

τ

s.t.

⎛
⎜⎜⎝

ε 0
(∑l

i=1 α
(i)
k x̂(i)k − x̂k

)T
W

T
2
k

0
∑l

i=1 γiQ
(i)
k

(∑l
i=1 α

(i)
k A(i)

k
)T

W
T
2
k

W
1
2
k

(∑l
i=1 α

(i)
k x̂(i)k − x̂k

)
W

1
2
k

(∑l
i=1 α

(i)
k A(i)

k
)

I

⎞
⎟⎟⎠

≥ 0 and ε +
l∑

i=1
γi ≤ τ ,

l∑
i=1

α
(i)
k = 1,

(12)

where A(i)
k ,Q(i)

k is defined as in Theorem 2. The optimal
fusion estimation x̂k is given by the solution of the SDP (12).

Theorem 2 provides a way to fusion sensor estimates
when the prior knowledge xk ∈ ⋂l

i=1 S
(i)
k is available.With

appropriate assumption, the feasible and unique of the
solution to problem (1) can be derived.

Proposition 1 Suppose the set
⋂l

i=1 S
(i)
k has non-empty

inner point, then the optimal fusion estimation given by
problem (1) is feasible and unique.

Proof Note that problem (1) can be rewritten as

min
x̂k

{
‖x̂k‖22 + max

x∈⋂l
i=1 S

(i)
k

(
−2xTk x̂k + ‖xk‖22

)}
,

thus maxxk∈
⋂l

i=1 S
(i)
k

(−2xTk x̂k + ‖xk‖22
)
is convex in x̂k .

Therefore, ‖x̂k‖22 + maxxk∈
⋂l

i=1 S
(i)
k

(−2xTk x̂k + ‖xk‖22
)
is

strictly convex in x̂k , which implies the solution of prob-
lem (1) is feasible and unique.
In the sequel, some properties of RFE are considered.

Theorem 3 Suppose that there is one P(i)
k > 0, then the

feasible solution set of problem (5) is always non-empty,
thus the solution of problem (5) always exists.

Proof Without loss of generality, suppose P(l)
k > 0, note

that problem (5) is the same as

min
ε≥0,γi≥0,τ≥0,x̂k ,α

(i)
k

τ

⎛
⎝

ε 0 (
∑l−1

i=1 α
(i)
k (x̂(i)

k − x̂(l)
k ) + x̂(l)

k − x̂k )T

0
∑l

i=1 γiQ(i)
k (

∑l−1
i=1 α

(i)
k (A(i)

k − A(l)
k ) + A(l)

k )T

∑l−1
i=1 α

(i)
k (x̂(i)

k − x̂(l)
k ) + x̂(l)

k − x̂k
∑l−1

i=1 α
(i)
k (A(i)

k − A(l)
k ) + A(l)

k I

⎞
⎠≥0

and ε +
l∑

i=1
γi ≤ τ .

Let α(i)
k = 0, i = 1, . . . , l−1, and x̂k = x̂(l)

k , then the matrix
constrain is

⎛
⎜⎝

ε 0 0
0

∑l
i=1 γiQ(i)

k (A(l)
k )T

0 A(l)
k I

⎞
⎟⎠ ≥ 0,

equivalently,
⎛
⎜⎜⎜⎜⎝

ε 0 . . . 0 0
0 γ1P(1)

k . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . γlP(l)
k I

0 0 . . . I I

⎞
⎟⎟⎟⎟⎠

≥ 0 (13)

Note thatP(i)
k ≥ 0, i = 1, . . . , l−1, and P(l)

k > 0, then (13) al-
ways holds by taking large enough γl. In other words, the
feasible solution set of problem (5) is always non-empty, thus
the positive semi-definite relaxation solution exists.
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Proposition 2 Suppose P(i)
k > 0, i = 1, · · · , l, then each

local estimate x̂(i)
k is a feasible fusion estimations of prob-

lem (5). In other words, the fusion estimation x̂k always has
better tracking performance than that of local estimates
x̂(i)
k .

Proof Suppose P(l)
k > 0, from the proof of Theorem 3,

there exist appropriate ε, α(i)
k , γi, i = 1, · · · , l and τ , such

that (ε, γi, τ , x̂(l)
k ,α(i)

k ) is a feasible solution of problem (5).
Therefore, the local estimate x̂(l)

k is a feasible fusion esti-
mation. The proofs of local estimates x̂(i)

k , i = 1, · · · , l − 1
are similar.

4 Simulations
Considering that both RFE and CI method seek for fus-
ing local estimates with unknown cross-covariance, and
the knowledge of state and sensor observation equations
is not unavailable in the design of the fusion estimation.
Therefore, some comparisons between the RFE and CI
method are provided to analyze the tracking performance
of the proposed method. Furthermore, the centralized
fusion is also employed to show the performance degra-
dation of the proposed method.
Simulation 1: The simulations were done for a dynamic

systemmodeled as an object moving in a helical trajectory
at constant speed with process and measurement noises.
Let the system equation be

xk+1 = Fkxk + vk ,

where vk is the Gaussian noise with zero mean and covari-
ance matrix

Rvk =
(
5 1
1 5

)
,

and xk is a deterministic parameter vector with initial state
x0 = (1, 0), and

Fk =
(

cos(π/150) 3sin(π/150)
−3sin(π/150) cos(π/150)

)
.

At time k, two sensors estimate xk in the plane from obser-
vations y(i)

k respectively, which are related through the
linear model

y(i)
k = Hixk + w(i)

k , i = 1, 2,

where w(i)
k is Gaussian noise with zero mean and covari-

ance matric Rw(i)
k
is

Rw(i)
k

=
(
5 1
1 5

)
, i = 1, 2,

and the measurement matrices Hi (i = 1, 2) are also
constant and given by

H1 =
(

2 1
−1 2

)
, H2 =

(
2 1.5

−1.5 2

)

To obtain the local estimation x̂(i)
k and their covariance

matrices C(i)
k (i = 1, 2) of xk at every step, Kalman filter is

employed to each sensor.
Then, the CI and RFE methods are applied to fuse the

local estimations by taking ai = 8 and P̄(i)
k = (C(i)

k )−1 for
i = 1, 2. Using Monte Carlo method of 50 runs, the abso-
lute track errors in x-axis and y-axis are given in Figs. 1, 2,
3, and 4.
From Figs. 1 and 2, the average tracking performance

of FRE is comparable to that of CI method. The average
absolute tracking errors of RFE and CI method in x-axis
are 0.080 and 0.094, respectively. For the average track-
ing performance in y-axis, the case is similar. As shown
in Figs. 3 and 4, the average absolute tracking errors are
0.083 and 0.072 respectively.

Fig. 1 The absolute tracking errors of CI method in x-axis with ai = 8
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Fig. 2 The absolute tracking errors of RFE in x-axis with ai = 8

Fig. 3 The absolute tracking errors of CI method in y-axis with ai = 8

Fig. 4 The absolute tracking errors of RFE in y-axis with ai = 8
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Fig. 5 The comparison of the second moments of the tracking errors with ai = 8

In order to derive a clearer comparison of average track-
ing performance, we evaluate the tracking performance
of an algorithm by estimating the second moments of the
tracking errors E2k , which is presented in [19], and given by

E2k = 1
k

k∑
i=1

‖x̂i − xi‖2.

using Monte Carlo method of 50 runs, the second
moments of the tracking errors of CI and RFE are given in
Fig. 5.
It can be observed from Fig. 5, the RFE has smaller

second moments of the tracking errors.
Therefore, compared with the CI method, the average

tracking performance of RFE is slightly better than that of
CI method.

More comparisons are present in the following with
different ai.
From Figs. 6, 7, 8, and 9, for ai = 10, i = 1, 2, the average

absolute tracking errors of CI method and RFE in x-axis
are 0.092 and 0.078, and the average absolute tracking
errors in y-axis are 0.077 and 0.067, respectively.
Let ai = 12, i = 1, 2, as shown in Figs. 10, 11, 12,

and 13, the average absolute tracking errors of CI method
and RFE in x-axis are 0.089 and 0.072, and the average
absolute tracking errors in y-axis are 0.079 and 0.067,
respectively.
It can be observed from Figs. 14, 15, 16, and 17, as

ai = 14, i = 1, 2, the average absolute tracking errors of
CI method and RFE in x-axis are 0.097 and 0.083, and the
average absolute tracking errors in y-axis are 0.078 and
0.068, respectively.

Fig. 6 The absolute tracking errors of CI method in x-axis with ai = 10
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Fig. 7 The absolute tracking errors of RFE in x-axis with ai = 10

Fig. 8 The absolute tracking errors in of CI method in y-axis with ai = 10

Fig. 9 The absolute tracking errors of RFE in y-axis with ai = 10
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Fig. 10 The absolute tracking errors of CI method in x-axis with ai = 12

Fig. 11 The absolute tracking errors of RFE in x-axis with ai = 12

Fig. 12 The absolute tracking errors in of CI method in y-axis with ai = 12
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Fig. 13 The absolute tracking errors of RFE in y-axis with ai = 12

Fig. 14 The absolute tracking errors of CI method in x-axis with ai = 14

Fig. 15 The absolute tracking errors of RFE in x-axis with ai = 14
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Fig. 16 The absolute tracking errors in of CI method in y-axis with ai = 14

As shown in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, and 17, when ai varied from 8 to 14, both
the tracking performance of RFE and CI method are
degraded. However, the average absolute tracking errors
of RFE are always slightly better than that of CI
method.
In the sequel, the performance of the proposed method

is verified under different cross-correlation levels. To
assure that the levels of cross-correlation varies in steady
state for the above tracking problem, let

Rw(i)
k

=
(

5 u(i)
k

u(i)
k 5

)
, i = 1, 2,

where u(i)
k , i = 1, 2 are sampled from the sets {0.5, 1, 1.5}

and {1.5, 2, 2.5} in equal probability respectively. The
parameters ai, i = 1, 2 are taken as a1 = 8 and a2 = 10.
After 50 Monte Carlo runs, the comparisons of the abso-
lute track errors in x-axis and y-axis are given in Figs. 18,
19, 20 , and 21.
As shown in Figs. 18, 19, 20, and 21, the average absolute

tracking errors of CI method and RFE in x-axis are 0.4337
and 0.4175, and the average absolute tracking errors in y-
axis are 0.6360 and 0.5362, respectively.
Simulation 2: In the following, the RFE is employed

to fuse three sensor estimators, and the centralized
fusion is used to show the performance degradation
of RFE.

Fig. 17 The absolute tracking errors of RFE in y-axis with ai = 14
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Fig. 18 The absolute tracking errors of CI method in x-axis with varied cross-correlation

Fig. 19 The absolute tracking errors of RFE in x-axis with varied cross-correlation

Fig. 20 The absolute tracking errors of CI method in y-axis with varied cross-correlation
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Fig. 21 The absolute tracking errors of RFE in y-axis with varied cross-correlation

The object dynamics equation and the first two sensor
measurement equations are the same as given in simula-
tion 1. The third sensor measurement equation is y(3)

k =
H3xk + w(3)

k , where w(3)
k is Gaussian noise with zero mean

and covariance matric Rw(3)
k

is

Rw(3)
k

=
(

4 1.5
1.5 4

)
,

and the measurement matrices

H3 =
(
3 −2
1 2

)
.

With 50 Monte Carlo simulations, the average absolute
tracking errors of the RFE and centralized fusion are
presented in Figs. 22, 23, 24, and 25.

It can be observed from Figs. 22, 23, 24, and 25, the
absolute tracking errors of RFE are larger than that of the
centralized fusion. The average absolute tracking errors
of the RFE and centralized fusion in x-axis are 0.071
and 0.054, and the average absolute tracking errors in y-
axis are 0.056 and 0.049. Considering that the centralized
fusion utilizes complete information of system and obser-
vation equations, the performance degradation of RFE is
acceptable.
The second moments of the tracking errors of RFE and

the centralized fusion are given in Fig. 26.
As shown in Fig. 26, after 30 steps, the tracking per-

formance of both method become stable, and the second
moments of the tracking errors of RFE is about 0.005
larger than that of the centralized fusion.

Fig. 22 The absolute tracking errors of the centralized fusion in x-axis with ai = 10
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Fig. 23 The absolute tracking errors of RFE in x-axis with ai = 10

Fig. 24 The absolute tracking errors of the centralized fusion in y-axis with ai = 10

Fig. 25 The absolute tracking errors of RFE in y-axis with ai = 10
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Fig. 26 The comparison of the second moments of the tracking errors

5 Conclusion
A robust fusion estimation in distributed systems are
derived in this paper which minimizes the worst-case esti-
mation errors on some given parameter set. Compared
with the BLUE fusion, the RFE tracks well without the
information of the cross-covariance between sensor esti-
mates. At the same time, simulation example shows that
the tracking performance of RFE is comparable to that of
the CI filter.
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