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Abstract

A robust object tracking algorithm is proposed in this paper based on an online discriminative appearance modeling
mechanism. In contrast with traditional trackers whose computations cover the whole target region and may easily be
polluted by the similar background pixels, we divided the target into a number of patches and take the most
discriminative one as the tracking basis. With the consideration of both the photometric and spatial information, we
construct a discriminative target model on it. Then, a likelihood map can be got by comparing the target model with
candidate regions, on which the mean shift procedure is employed for mode seeking. Finally, we update the target
model to adapt to the appearance variation. Experimental results on a number of challenging video sequences
confirm that the proposed method outperforms the related state-of-the-art trackers.
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1 Introduction
Visual tracking refers to the task of generating the trajec-
tories of the moving objects in a sequence of images. It is
a challenging problem in real-time computer vision due
to variations of lighting condition, pose, scale, and view-
point over time. In previous literature, a huge number of
tracking methods have been proposed [1–9]. Most object
trackers [10–12] search for the target in new frames with
several key components: the first is object representation,
such as using histogram [13, 14] or sparse representa-
tion [15] to model the appearance, using active contours
to model the shape [16]; the second is a similarity mea-
sure between the reference model and candidate targets
[17] and; the third is a local mode-seeking method for
finding the most similar location in new frames, such as
mean shift [18] or particle filter [19, 20]. Among these
three components, appearance modeling of the target is of
most importance for robust object tracking. However, it is
exceptionally difficult to construct an appearance model
with respect to all of those variations in advance.
Many tracking algorithms [16, 18, 20] are based on a

fixed target model, and so are unable to track over long
time intervals. To increase the robustness, some efforts
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have been made to employ online update algorithms to
adapt to appearance changes of the target objects. Ross in
[21] presents an adaptive tracking method which utilizes
the incremental principal component analysis and shows
robustness to large changes in pose, scale, and illumina-
tion. In [22], the authors present a method for evaluating
multiple feature spaces while tracking, and a mechanism
for online selection of discriminative features to improve
tracking performance. The work of Grabner et.al. [23]
and Parag [24] shows impressive results of using a clas-
sifier as implicit appearance model. They initially learn a
binary classifier to distinguish the object of interest from
the (neighboring) background and then apply it in each
new frame to locate the position of the object. In [25], the
authors propose a dynamic weights update mechanism
for multiple cues tracking with detection responses as
supervision. In [26], the authors consider visual tracking
in a weakly supervised learning scenario where multiple
imperfect oracles are fused to get a final accurate result.
The accuracy of each tracker as well as the most likely
object position are simultaneously evaluated by a proba-
bilistic approach. A view-based subspace model is imple-
mented in EigenTracking [27], but it requires intensive
off-line learning before tracking.
From a different point of view, parametric density

representations also have been used in many tracking
algorithms. Han in [28] presents an online appearance
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modeling technique which is based on sequential den-
sity approximation and provides accurate and compact
representations using Gaussian mixtures. McKenna in
[29] suggests Gaussian mixture models created by an
EM algorithm for histogram-based trackers, but their
method requires knowledge of the number of compo-
nents, which may not be known in advance. In [30, 31],
a pixel-wise target model based on Gaussian distribution
is proposed, and it is updated during tracking. However,
this method cannot model multi-modal density functions
accurately.
Other algorithms based on patches division have also

been proposed. The fragment-based tracker [32] divides
the target object into several regions and represents them
with multiple local histograms. A vote map is used to
combine the votes from all the regions in the target
frame. In [33], the authors use a patch-based dynamic
appearance model in junction with an adaptive Basin
Hopping Monte Carlo sampling method to successfully
track a non-rigid object. In [34], the authors propose
a coupled-layer visual model that combines the target’s
global and local appearance to address the problem of
tracking objects which undergo rapid and significant
appearance changes. The local layer in this model, simi-
lar as in [33], is a set of local patches that geometrically
constrain the changes in the target’s appearance. This
layer probabilistically adapts to the target’s geometric
deformation, while its structure is updated by remov-
ing and adding the local patches. However, all above
works do not consider the discriminative properties of the
patches.
In this paper, we propose a robust object tracking algo-

rithm based on an online discriminative appearance mod-
eling mechanism. In contrast with traditional trackers
whose computations cover the whole target region and
may easily be polluted by the background pixels with sim-
ilar feature to the foreground model, we divided the target
object into a number of patches and take the most dis-
criminative one as the tracking basis. To this patch, we
consider both the photometric and spatial information
and construct a discriminative target model on it. A likeli-
hood map can be obtained by comparing the target model
with candidate regions. Then, the mean shift procedure
is employed for mode-seeking. Finally, the target model
is updated to adapt to the appearance variation. The pre-
liminary conference version of this work was presented
in [35].
The rest of this paper is organized as follows. We review

some related works in Section 2. Then, we briefly go
over the mean shift framework in Section 3. In Section 4,
the proposed discriminative learning-based tracking algo-
rithm is described in detail. Experimental results on
challenging video sequences are presented in Section 5,
followed by conclusion in Section 6.

2 Related works
Given the dynamic nature of object tracking, having an
online learning mechanism to update the target’s model
is vital to tracking. A large body of work in the litera-
ture is dedicated to addressing this issue. In this part, we
will review the significant steps that have been taken to
achieve a robust target’s model.
Some early attempts (e.g., [36, 37] ) updated the

model by combining the old target model and the
detected current appearance with a proper weight func-
tion. The weight function was foreseen to adjust the
effect of the current appearance on the model. In
[38], authors proposed a probabilistic target model and
devised an updating scheme based on the EM algo-
rithm. The probabilistic model took into account the
stable part of the appearance (slowly varying image obser-
vations) and the possibility of losing the target due
to occlusion, or noise in a unified framework for its
decisions.
The concept of feature selection has been widely used

for designing robust target models. A pioneer study along
this school of thought is the work of Collins et al. where
an online and discriminative feature selection scheme
was introduced [39]. The idea of online learning for sub-
spaces was developed by Ross et al. [40], where a low-
dimensional subspace capturing the target appearance
was incrementally updated using the past and current
tracking results.
Inspired by the success of sparse coding in computer

vision [41, 42], several sparse coding-based trackers have
also been proposed [2–4, 43]. For the sparse trackers, the
most popular approach for updating the target model is
to learn the dictionary in an online fashion. For exam-
ple, the differences between the current and previous
target samples was used in [44] for adapting the dic-
tionary. In [45], an online learning method for creating
non-negative dictionaries was proposed. Since solving the
optimization problems involving �1 norms is computa-
tionally expensive, authors in [45] suggest to update the
dictionary by gradient descent methods. In [46], a sim-
ilar idea (gradient descent for updating the dictionary)
was utilized albeit authors argued that a discrimina-
tive dictionary could be attained by utilizing two dis-
joint dictionaries to model foreground and background of
the target.

3 The basic mean shift
The mean shift method iteratively computes the closest
mode of a sample distribution starting from a hypothe-
sized mode. In specifically, considering a probability den-
sity function f (x), given n sample points xi, i = 1, · · · , n,
in d-dimensional space, the kernel density estimation
(also known as Parzen window estimate) of f (x) can be
written as
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f̂ (x) =

n∑

i=1
K( xi−x

h )w(xi)

hd
n∑

i=1
w(xi)

(1)

where w(xi) ≥ 0 is the weight of the sample xi, and K(x)
is a radially symmetric kernel satisfying

∫
k(x)dx = 1. The

bandwidth h defines the scale in which the samples are
considered for the probability density estimation.
Then, the point with the highest probability density in

scale h can be calculated by mean shift method as follows:

mh(x) =

n∑

i=1
G( xi−x

h )w(xi)xi
n∑

i=1
G( xi−x

h )w(xi)
(2)

where the kernel profile k(x) and g(x) have the relation-
ship of g(x) = −k′(x).
The kernel is recursively moved from the current loca-

tion x to the new location mh(x) according to mean shift
vector, and finally converges to the nearest mode.
The mean shift hill climbing method is one of the most

common methods that has been popular for years. After
its introduction in the literature [47], it has been adopted
to solve various computer vision problems, such as seg-
mentation [48] and object tracking [18]. The popularity of
the mean shift method is due its ease of implementation,
real time response and robust tracking performance.
In the context of tracking, a sample corresponds to a

pixel x and has an associated sample weight w(x), which
defines how likely the pixel x belongs to an object. Given
the initial object position, the traditional mean shift track-
ing method evaluates the new object position by comput-
ing the mean shift vector iteratively according to the Eq.
(2). The bandwidth h defines the scale of the target candi-
date, i.e., the number of pixels considered in the localiza-
tion process. In [18], the original mean shift tracker uses
color histograms as an object representation and Bhat-
tacharya coefficient as a similarity measure. An isotropic
kernel is used as a spatial mask to smooth a histogram-
based appearance similarity function between model and
target candidate regions. The mean shift tracker climbs to
a local mode of this smooth similarity surface to compute
the translational offset of the target blob in each frame.

4 Method
Our goal in this section is to develop an efficient method
that continually constructs and updates the discriminative
target appearance model for tracking. The assumption we
depend on is that the most informative object region for
tracking is the same region that best discriminate between
object and background classes. Due to the updatingmech-
anism, local discrimination is sufficient for our work. The

whole proposed tracking algorithm is described in detail
as follows.

4.1 Discriminative target appearance modeling
Given a target region learned from previous views, we
divide it into a number of patches from which we select
the most discriminative one as the tracking basis. A larger
ring of neighboring pixels surrounding the target region
is chosen to represent the background. Let X̂0 denote the
current location of the object and Y i

0 represent the ith
patch, Ri

0 indicate the relative position between the patch
Y i
0 and the object X̂0, and I : x → Rm be the image that

maps a pixel x = [ x y]T ∈ R2 to a value, where the value is
a scalar in the case of a grayscale image (m = 1) or a three
element vector for an RGB image (m = 3).
We use the augmented variance ratio (AVR), the ratio

of the between class variance to the within class variance,
to measure the discriminative power of a patch as in [22].
For each patch, we compute the histogram on it as well as
the background. By normalizing their histograms, we can
get a discrete probability density p(j) for the patch, and
density q(j) for the background, where index j ranges from
1 to b, the number of histogram buckets.
The log likelihood of an image value j can be given by

L(j) = log
max{p(j), δ}
max{q(j), δ} (3)

where δ is a small value (set to 0.001) that prevents divid-
ing by zero or taking the log of zero. It is obvious that
the log likelihood maps the object and background region
into positive values for colors distinctive to the object, and
negative for colors associated with the background. Col-
ors that are shared by both object and background tend
towards zero.
Then the variance ratio of L(j) can be computed to

quantify the separability of the patch and background
classes:

VR(L; p, q)=
var(L; (p + q)/2)

[ var(L; p) + var(L; q)]
(4)

where

var(L; a) =
∑

j
a(j)L2(j) − [

∑

j
a(j)L(j)]

2
(5)

defines the variance of L(j) with respect to a discrete
probability density function a(j).
Since we would like the log likelihood values of pixels

on the object and background to both be tightly clustered
while the two clusters should ideally be spread apart as
much as possible, the denominator of the variance ratio
enforces that the within class variances should be small
for both object and background classes, while the numera-
tor rewards cases where values associated with object and
background are widely separated.
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After we got the most discriminative patch Ŷ0 with
the largest variance ratio and its respective R̂0, a target
appearance model can be construct base on it as follows:

T0 = (X̂0, Ŷ0, R̂0) (6)

Figure 1 shows an example of the target model on man
sequence.

4.2 Likelihoodmap for tracking
For each candidate location Xl, we can get the candi-
date model Tl = (Xl,Yl, R̂0) where Yl is the respective
patch with Ŷ0 in Xl, determined according to R̂0. Then,
we compute the likelihood of the location Xl. Let S =
{(x, y, I(x, y))|(x, y) ∈ Y }, S ∈ Rm+2, denote the super
patch of Y, whose pixel is a vector containing the pixel
coordinates coupled with their image measurements. This
super form of patch enables us to both consider the pho-
tometric and the spatial information simultaneously. By
warping patch Ŷ0 to Ŝ0 whereas Yl to Sl, the likelihood of
the location Xl can be measured by

p(Tl) = exp(−λDIS(Sl, Ŝ0)) (7)

where DIS function returns the normalized sum of
squared differences between the patch in the candidate
region and that in the target model, and λ denotes the
weighting parameter that is set to 25.
Then, a new image composed of likelihood values of all

candidate locations becomes the “likelihoodmap” used for
tracking.

4.3 Mode-seeking
For the likelihood map got above, we employ the mean
shift procedure for mode-seeking, thereby yielding a new
estimate of object location, X̂1. Specifically, given the sam-
ples being weighted by w(Xl), we can evaluate the trans-
lation of the object centroid by computing the mean shift
vector �X, such that X̂1 = X̂0 + �X, using the following:

�X =

nh∑

l=1
g
(∥

∥
∥
Xl−X̂0

h

∥
∥
∥
2)

w(Xl)(Xl − X̂0)

nh∑

l=1
g
(∥

∥
∥
Xl−X̂0

h

∥
∥
∥
2)

w(Xl)

(8)

where the weight of candidate location Xl is specified by:

w(Xl) = p(Tl) (9)

4.4 Online update
The algorithm iterates through each subsequent frame of
the video, extracting new discriminative patch of object,
and constructing new target appearance model. How-
ever, adaptively updating target model in this manner may
promote the occurrence ofmodel drift. To avoid this prob-
lem, we take both the current observation and original
reference model into account.
After we build the new target appearance model at loca-

tion X̂1, as T1 = (X̂1, Ŷ1, R̂1), the super patch of it can
be established to be a combination of current observation
and the original reference model. And the definition of the
super patch for target model (not for candidate model) in

Fig. 1 Example of a target model onman sequence. a The selection result of the most discriminative patch, where the red square denote the patch
and the blue rectangle indicates the target region whereas the yellow indicates local background. b The target model constructed base on the
selected patch
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part 3.2 can be actually rewritten as

S = {(x, y,ωI(x, y)+(1−ω)I(ref)(x, y))|(x, y) ∈ Y } (10)

where I(x, y) denotes the current image while I(ref)(x, y)
represents the reference image of initial frame, and the
proportional coefficientω decide howmuch one trusts the
reference template versus the current observation. Based

on the description above, the complete proposed algo-
rithm can be summarized as Algorithm 1. Given an input
image and the initial target position in the image, the pro-
posed algorithm first divides the target region into several
patches. For each patch, compute the distribution of the
target and background and then compute the variance
ratio. The patch with the largest variance ration is selected

Algorithm 1 The proposed algorithm.
Input:

Image I(ref )(x, y);
The initial target/background region and location X̂0;

Output:
The new region of the target and its corresponding location X̂1 in the subsequent frames;
% Target modeling
Divide the target region into patches.
For each patch Y i

0• Compute the density p(j) and q(j) for the patch and background to get the log likelihood of an image value j

L(j) = log
max{p(j), δ}
max{q(j), δ}

• Compute the variance ratio of L(j):

VR(L; p, q)=
var(L; (p + q)/2)

[ var(L; p) + var(L; q)]
where

var(L; a) =
∑

j
a(j)L2(j) − [

∑

j
a(j)L(j)]

2

End For
Select patch Ŷ0 with the largest variance ratio to construct the target appearance by model

T0 = (X̂0, Ŷ0, R̂0)

% Tracking
In new arriving frame I(t):
Initialize the location of the target in the current frame with X̂0.
Construct the candidate model Tl = (Xl,Yl, R̂0) for each candidate location Xl.
Warp Ŷ0 to Ŝ0 = {(x, y, I(t)(x, y))|(x, y) ∈ Ŷ0}, Yl to Sl = {(x, y, I(t)(x, y))|(x, y) ∈ Yl}, and get the likelihood of location
Xl

p(Tl) = exp (−λ DIS(Sl, Ŝ0))

Yield a new estimate of object location X̂1 = X̂0 + �X according to

�X =

nh∑

l=1
g
(∥

∥
∥
Xl−X̂0

h

∥
∥
∥
2)

w(Xl)(Xl − X̂0)

nh∑

l=1
g
(∥

∥
∥
Xl−X̂0

h

∥
∥
∥
2)

w(Xl)

where

w(Xl) = p(Tl)

Set X̂0 ← X̂1.
Update target model and go to Step 7.
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to reconstruct the target. At the next frame, we repeat this
process and estimate the target position based on a target
moving step.

5 Results and discussions
In this section, we use several challenging video sequences
taken from moving cameras to illustrate the advantage of
our proposed method. We use HSV color space, kernel
with Epanechnikov profile and 15 × 15 patch size. We
set the values of all parameters of the proposed method
by manually adjusting their values to achieve a desired
tracking performance.
Firstly, we compare the proposed discriminative learn-

ing algorithm with the standard mean shift, which builds
the target appearance model by considering the whole
object region, on a ridding sequence. To give a convinc-
ing comparison, experiments of these two algorithms are
carried out under the same conditions. This sequence
contains a man ridding bicycle on a busy road. Most of
the target region has similar color feature to the back-
ground, the gray road surface, expect a small piece of red
on his back. The camera keeps moving fast to follow the
riding man, with the background made up of cars chang-
ing dramatically. Figure 2 shows the tracking results of
these two algorithms. As we can see, it is a challenge
for traditional mean shift to accurately follow the target
since it takes the whole target region into account and is
easily confused by the similar background. Draft occurs
when the background pollution passes down to the fol-
lowing frames. In comparison, our proposed method can
perform well by discriminative appearance modeling for
the target.
Further, we compare the proposed method with other

prevalent tracker on two video sequences which corre-
spond to different challenges for visual tracking. The first
video sequence describes a man in black clothes, which
is not outstanding or discriminative, walking outside with

cluttered background behind. The branches and the lit-
tered stuff result in a lot of interference as well as occur-
rence of occlusion. The three algorithms we compare are
(a) standard mean shift, which builds the target appear-
ance model by considering the whole object region and
using RGB histogram; (b) the DF tracker [17] where a
distribution field is proposed as the image descriptor. A
DF is an array of probability distributions that defines the
probability of a pixel of taking each feature value; (c) the
proposed discriminative learning method. Figure 3 gives
the tracking results of these three algorithms. As we can
see, it is difficult for the traditional trackers to follow
the target over long time because of the indiscriminate
color feature on the most part of the target as well as the
similar background pixel pollution. In contrast, the pro-
posed method can seize the most discriminative region
of target as the tracking basis, and can achieve pleased
performance by both considering its photometric and spa-
tial information. The second video sequence describes a
man riding a motorcycle on the hill. The target looks
small and shows indiscriminate color appearance on most
of the region, expect a small piece of white on his back.
Figure 4 shows the tracking results of the compared algo-
rithms on this sequence.We can see the proposedmethod
outperforms the others due to its strong discrimination
power between object and its local background.
Next, we use another three video sequences with differ-

ent environment and tracking challenges to further eval-
uate the performance of the proposed algorithm. In the
first video sequence, a tiger table lamp is held and swayed
behind a bunch of plant. As the table lamp moves and
opens its mouth to reveal the bulb, dramatic appearance
change as well as severe occlusion occurs. The second
video sequence describes a woman walking in the street,
with many other stuff and sheltering cases in the back-
ground. The third video sequence is a high jump match,
which contains a player with fast and drastic motion.

Fig. 2 Tracking results on riding video sequence for frames of 0, 99, 213, 251, 319. a The standard mean shift method [18]. b The proposed method
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Fig. 3 Tracking results onman video sequence for frames of 2, 85, 145, 197, and 240. a The standard mean shift method [18]. b The DF method [17].
c The proposed method

Tracking results of the first test are shown in Fig. 5a,
where we can see that the tiger has been successfully
tracked despite of its similar color feature to the back-
ground plants. Figure 5b shows the tracking results of the
second video sequence, demonstrating that our method

provides an effective solution to capture the occluded
woman by the updating scheme of the target model.
Tracking result of the high jump sequence shown in Fig. 5c
indicates the validation of our method in tracking tar-
get with dramatic appearance changes. As seen from the

Fig. 4 Tracking results onmotocross video sequence for frames of 2, 7, 10, 17, and 27. a The standard mean shift method [18]. b The DF method [17].
c The proposed method
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Fig. 5 Further evaluation. a Similar color feature to the background. b Severe sheltering cases. c Fast motion and dramitic appearance changes

tracking results, the key reason why our proposed method
outperforms is the online discriminative appearancemod-
eling mechanism. In contrast with other compared track-
ers whose computations cover the whole target region and
may easily be polluted by the background pixels with sim-
ilar feature to the foreground model, our method divided
the target object into a number of patches and take the
most discriminative one as the tracking basis. To this
patch, we consider both the photometric and spatial infor-
mation, and construct a discriminative target model on it.
A likelihood map can be obtained by comparing the target
model with candidate regions. Then, the mean shift pro-
cedure is employed for mode-seeking. Finally, the target
model is updated to adapt to the appearance variation.

6 Conclusion
A robust object-tracking algorithm is proposed in this
paper based on an online discriminative appearance mod-
eling mechanism. By dividing the target into a number of
patches, we extract the most discriminative piece of the
target as the tracking basis.With the consideration of both
the photometric and spatial information, a discriminative
target model is constructed base on it. Then, a likeli-
hood map can be obtained by comparing the target model
with candidate regions, on which the mean shift proce-
dure is employed for mode seeking. Experiment results
have confirmed the effectiveness and robustness of our
method.
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