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Abstract

accuracy rate of 99.01%.

We proposed a one-dimensional convolutional neural network (CNN) model, which divides heart sound signals into
normal and abnormal directly independent of ECG. The deep features of heart sounds were extracted by the
denoising autoencoder (DAE) algorithm as the input feature of 1D CNN. The experimental results showed that the
model using deep features has stronger anti-interference ability than using mel-frequency cepstral coefficients, and
the proposed 1D CNN model has higher classification accuracy precision, higher F-score, and better classification
ability than backpropagation neural network (BP) model. In addition, the improved 1D CNN has a classification
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1 Introduction

Cardiac disorders are a high-mortality killer worldwide.
According to WHO, approximately 12 million people
die annually due to coronary heart disease. In the USA,
1.5 million people suffer from acute myocardial infarc-
tion, and one third of the deaths are due to coronary
heart disease [1, 2]. Coronary heart disease is serious and
complex. Thus, its early detection is crucial for treat-
ment [3]. Auscultation and electrocardiogram (ECG) are
two common clinical diagnostic techniques for cardiac
disorders. However, ECG is ineffective in the early diag-
nosis of coronary heart disease. The reliable informa-
tion for diagnosing coronary heart disease is provided by
high-frequency murmurs from phonocardiogram (PCG)
before ECG signals in patients with coronary heart disease
become abnormal. Some cardiovascular system lesions
first manifest as heart murmurs before causing abnormal
ECG signals. Therefore, heart auscultation is the optimal
choice for diagnosing these diseases. The correct clas-
sification of heart sound signals is the key technology
for monitoring heart sound and providing alert for car-
diovascular diseases. In addition, heart auscultation has
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the advantages of being noninvasive and reproducible [4].
However, raw PCG cannot intuitively determine intensity
characterization and frequency of heart murmurs. In most
cases, a doctor must analyze heart sounds by auscultation
combined with ECG to determine patients’ heart health.
Most conventional methods for automatically identifying
heart sound signals rely on reference ECG signals[5-7].
The development of computer technology and digital
signal processing technology has enabled recording and
automatic analysis of digital heart sound signals. Spec-
tral and time-frequency analysis methods are applied to
the processing of heart sound signals, thereby constantly
improving heart sound signal identification and analysis
technology [8, 9]. Extracting the features of heart sound
signals and performing quantitative analysis are helpful
for the early screening of heart disease. Choi [10] decom-
posed heart sound signals to improve the accuracy of
feature extraction efficiency of classification and recog-
nition of heart sound, and Gutierrez et al. [11] used
discrete wavelet transform and short-time time-frequency
transform to extract heart sounds’ feature parameters; in
addition, these researchers used a vectorization model to
classify and recognize four kinds of common heart mur-
murs. Neural network pattern recognition and heart
sound classification replicate doctors’ auscultation and
analysis mechanism. In 1975, Karpman et al. used a
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standard band-pass filter and rectification detection tech-
nology to obtain the energy envelope of heart sound sig-
nals and improve the signal-to-noise ratio [12]. The diag-
nostic accuracy of this method was 87% in 150 patients
with six types of heart disease. Gerbarg et al. [13] divided
heart sounds into 0.01 s and obtained the power curve of
heart sounds by calculating the average power. Existing
methods use systolic and diastolic phases to determine
S1 and S2 and measure parameters of mean power, peak
power, time history, and peak position of systolic and
diastolic phases. CotaNavin Gupta et al. [14] obtained
the coefficient eigenvectors of heart sounds through
Daubechies-2 wavelet decomposition and utilized them
as the input of neural networks. The correct recogni-
tion rate reached 90.29% through homomorphic filtering
and K-means classification method. These methods not
only improve the recognition accuracy of heart sound
classification but also provide a direct description of the
characteristics of heart sounds. However, the application
technology of heart sound signals is undeveloped. The
main problem related to the development of relevant tech-
niques is the various distinguishable pathological heart
sounds and the absence of a specific extraction method
for the characteristics of heart sounds. The feature extrac-
tion method has a large signal loss and does not describe
the characteristics of heart sounds well. In addition,
its accuracy of identification needs improvement.

In recent years, applying machine learning methods,
such as support vector machine [15], learning vector
quantization [16], and multivariate linear regression [17],
have improved the performance of heart sound classifica-
tion based on PCG signals.

In the present study, a 1D convolutional neural network
(CNN) model which directly classifies heart sound sig-
nals into normal and abnormal independently of ECG is
proposed. Furthermore, a denoising autoencoder (DAE)
algorithm is used to extract deep features of heart sounds
as the input feature to the 1D CNN rather than adopt-
ing the conventional mel-frequency cepstral coefficient
(MFCC) as the input[18]. Subsequently, the 1D CNN
algorithm is used to convolve the input deep feature
extracted from the DAE and perform pooling operations.
Finally, the processed signals are classified using a softmax
classifier. We compare the deep feature extracted from the
DAE with the commonly used MFCC features, thereby
demonstrating the effectiveness of the deep feature of this
study in the heart sound classification. Furthermore, we
compare the neural network model used in this study
with the backpropagation (BP) neural network, hidden
Markov model (HMM), and 2D CNNs. High classification
accuracy and F-score for heart sound classification are
provided by the 1D CNN. The presented model is appli-
cable to any heart sound signal collected by an electronic
stethoscope and exhibits favorable robustness.
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2 Methods

In our study, we adopted a DAE to extract the deep fea-
tures of heart sound signals as the input of the 1D CNNs,
and a softmax classifier was used to classify the signals.
The system diagram is illustrated in Fig. 1.

2.1 PCG data processing

2.1.1 Database acquisition

The datasets used in this study include two parts: part
1 was collected by our research team, and part 2 was
downloaded from the PhysioNet database [19]. Part 1 con-
sists of the heart sounds we collected in the laboratory.
Each heart sound lasted from 20 s to 35 s, and all of
them were collected by placing the electronic stetho-
scope at the strongest point of the tester’s apex, which
is the fifth intercostal space on the inner side of the left
clavicular midline. The participants were 45 adults, con-
sisting of 30 males and 15 females, aged 22-38 years.
Among the participants, 43 were healthy and 2 had a con-
firmed cardiac diagnosis. Part 2 was downloaded from
the PhysioNet database, which includes 4430 recordings
taken from 1072 subjects, totaling 233,512 heart sounds
collected from healthy subjects and patients various con-
ditions, such as heart valve disease and coronary artery
disease. These recordings were collected using heteroge-
neous equipment in clinical and nonclinical settings (such
as in-home visits). The length of recording varied from
5 s to 120 s. The recordings were collected from differ-
ent locations on the body. A total of 2532 recordings were
collected from healthy subjects, and 664 were collected
from patients with confirmed cardiac diagnoses. Healthy
subjects and pathological patients included children and
adults.Each subject/patient possibly contributed between
one and six heart sound recordings. Combining the two
parts, we obtained the datasets used in this study.The
dataset can be divided into two types, namely, normal and
abnormal. All recordings were resampled to 2000 Hz, and
each recording contained only one PCG lead. Figure 2
depicts a schematic of the hardware composition of the
heart sound signal detection system.

To acquire the heart sound of the subject, the heart
sound acquisition tool is Yuwell electronic stethoscope, as
shown in Fig. 3. The heart sound were captured with the
Labview software (as shown in Fig. 4a) via the sound card
of the computer with a sampling rate of 2 kHz and 16 bits.
A Core i5 3.0 GHz Intel (R) personal computer with 8.00
GB ram running Microsoft Windows 7 operating system
is used.

Taking into account the performance of the sound card,
the sampling frequency of the system is set to 2000 Hz,
the number of samples is set to 16 bits, and the sampling
mode is single channel, so that the sampling waveform is
stable and the interference is small. The waveforms can be
observed through the functions provided by the Labview
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waveform monitor when heartbeat acquisition is paused
and terminated. The collected data (the part 1 mentioned
in “Database acquisition” section) is also saved in the .wav
format and performs the same operations as the data in
the PhysioNet Database. Figure 4 shows the block diagram
of heart sound signal acquisition.

2.1.2 Sample expansion

The structure of the CNNs was simplified as a basic struc-
ture of a convolution layer, a sampling layer, and a full
network layer to compare the influence of two CNNs on
heart sounds. We trained the 2D CNN models with the
same number of layers. The convolution layer had 20 fea-
ture maps, and the transfer function was sigmoid(). The
pooling layer used max-pooling, and the stride was 2. The
softmax classifier was used to output the posterior prob-
ability of each class. The extraction of an autoencoder
feature was used to verify the description of the sound
signal well. The heart sound window was pretreated. The

extracted MFCC coefficient of the traditional 1D CNNs
was used as the input of the networks, and the deep
features are compared.

The minimum duration of heart sound acquisition was
5 s. In this study, we divided the signals into pieces of 5 s,
and the most common smoothing windows were selected.
First, we trained the classifier for each segment extracted
from the records to classify normal and abnormal heart
sound signals, rather than extract from the entire record
[20]. The classifier not only extended the sample size of
the entire dataset but also reduced the overfitting in net-
work training by expanding the sample size of the dataset
and then the merging the lengths of all the samples.

2.1.3 Training and test data

We obtained 13,015 samples after expanding the data.
Deep learning requires numerous samples to train for
improved generalization. In comparison with the amount
of image data processed by CNNs [21, 22], the datasets
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Fig. 2 Schematic of the hardware composition of the heart sound signal detection system
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Fig. 3 Yuwell electronic stethoscope

used in our experiment were minimal. To obtain as much
effective information as possible from limited data, we
adopted K-fold cross-validation to process the data and
obtain the training and the test sets. The training set
contained 9761 samples, and the test set contained 3245
samples.
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2.2 Feature extraction based on the dAE

Feature extraction aims to extract the identifiable com-
ponents of the original signal. The MFCC is widely used
in automatic speech and speaker recognition[23, 24]. It
was proposed by Davis and Mermelstein in the 1980s
and had constantly played an important role in speech
recognition. The mel-frequency analysis is based on
human auditory perception. The experimental results
show that the human ear acts like a filter bank, thereby
focusing only on certain frequency components. That is, it
only transmits signals of certain frequencies and directly
ignores undesired signals. Thus, information loss remains
large when these feature parameters are applied to the
time and the frequency domains. In the MFCC algorithm
[25], the signal is first framed and the Hamming window
is used to reshape the audio signal into small windows.
Using the fast Fourier transform, the spectrum is calcu-
lated for each frame, and each spectrum is weighted using
a filter bank. Finally, the MFCC vector is calculated using
logarithmic and discrete cosine transforms. During fea-
ture extraction, we re-sampled each signal frequency to 16
kHz and set the number of filter to 40 and the filter order
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Fig. 4 The block diagram of heart sound signal acquisition and corresponding block diagram. a Block diagram of heart sound signal acquisition. b
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to 24. Each sample had a time frame of 25 ms, and stride
was 10 ms (15 ms overlap). The MFCC of the heart sound
is depicted in Fig. 5a. No intuitive signal frequency char-
acteristic was observed in the time domain. Moreover, the
heart sound exhibited a diverse acquisition environment
and the signal itself was relatively weak in comparison
with the noise. Therefore, the MFCC as a speech fea-
ture parameter cannot fully represent the characteristic
parameters of heart sounds. In this study, we adopted the
DAE network to obtain the feature parameters of heart
sound signals. Figure 5b shows a spectrogram of a heart
sound, which is a visual representation of the spectrum of
frequencies of a signal while it varies with time. A time-
varying spectrogram is typically obtained by processing
the received time domain signal, thereby enabling us to
observe the formants and the attributes of the phonemes
in the signal intuitively. In 2011, Deng et al. [26] demon-
strated that when a speech feature is encoded using a
autoencoder using unsupervised learning, speech coding
can be extracted directly from the spectrogram data of
the original speech signal for feature recognition. As men-
tioned previously, we used the DAE network which inputs
a spectrogram to extract the feature of the heart sound
signal.

The main principle of the autoencoder is that the orig-
inal input (set as x) obtains y after weighting (W, b) and
mapping (sigmoid function or tanh function), and then
maps back to y in inverse weighting as z. Perfect recon-
struction is performed by iteratively training (W, b) to
minimize the error of the function, that is, to ensure that
z is as close to x as possible. The process of mapping x to
y can be expressed as follows:
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where sigmoid() is transfer function. This process is called
the encoder. y is mapped back to the reconstruction vector
z, which is called process decoder.

z =sigmoid(W'y + b'), (2)

where W is the weight, and b is the bias.The weight matrix
W’ may be left as a transpose of the encoder weight matrix
w=wT.

The entire process can be considered a reconstruction
process. The loss function is expressed as follows:

e Squared difference:
Lixz) = |2 —z|® (3)

e Cross entropy:

Lu(xz) = = ) [xmdogzx + (1 — x)log(1 — 2]
k=1

(4)

In this study, we adopted a DAE algorithm for feature
extraction of original heart sound data from each person
in the database. The DAE is an extension of the autoen-
coder and was introduced in the deep network Vincent 08
[27]. To prevent overfitting, noise is added to the input
data (the input layer of the network), thereby making the
learned encoder robust and enhancing the generalization
capability of the model. The raw data in the DAE are
reconstructed by training the samples with noise. One way
to add noise is to zero some elements of the input signal
randomly using a binomial distribution with parameters n
and p (in this study, # and p correspond to the number of
pixels of the spectrogram and 40%). The DAE is trained

y =sigmoid(Wx + b), (1)  to reconstruct a clean “repaired” input from a corrupted
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Fig. 5 The mfcc and spectrogram of the heart sound. a The mfcc of the heart sound. b The spectrogram of the heart sound
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version of which the elements is randomly set to 0 [28].
With this missing data, x’ to calculate y, z is calculated,
and error iterations are conducted with z and original x.
Thus, the corrupted data are learned by the network. The
advantage of this method is that, in comparison with the
non-destructive data training, the weight noise trained by
the damage data is relatively small, and the damage data
reduce the difference between the training and the test
data. The robustness is improved, as displayed in Fig. 6.

2.3 1D cNNs for the proposed system

In 2012, Abdel-Hamid [29] introduced CNNss into speech
recognition and preliminarily identified the basic struc-
ture of the networks, in which the convolution and
pooling layers alternately appeared. The scale of the con-
volution kernel is large, and the number of CNN layers is
minimal. The CNNs used in the speech recognition task
is a 2D model, although language is a typical 1D signal.
A typical CNN structure is presented in Fig. 7. The convo-
lution kernel, feature map, and other network structures
are 2D. At present, when processing a 1D signal with
CNN:s, the 1D signal is usually mapped to a 2D space (for
example, a 1D speech signal can be converted into 2D fea-
ture maps [30], static feature maps [31], or frequency-time
feature [32]). Then, these 2D features are input into the
conventional 2D CNN:ss for further processing. To observe
local characteristics and capability construction of the
long band signal, the traditional approach is to divide the
speech into frames, extract the feature parameters, and
arrange them by column to constitute long-term features.
However, the meanings of the two dimensions are dif-
ferent, that is, one is the time domain features and the
other is frequency characteristics. The 2D CNNs cannot
adapt well to the 1D characteristics of speech because
two dimensions have completely different physical
meanings.

The characteristics of the 1D audio signal, that is, the
1D vector as the input to the CNNs, were used in this
study. Thus, the convolution kernel and characteristic
map inside the networks were also 1D, and the values of
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m;, Cj, me, S, and mg in the graph were all 1. Y} represents
the value of location y on layer i in feature graph j and can
be convoluted through the 1D vector of the upper layer
and 1D convolution kernel, as follows:

li
y 1yt
V;; = tanh(b;; + Z Z i V= 1)m) ®)
m [=0

where tanh() is a transfer function, b;; is the bias of the
feature map, m is the ordinal number of the set of char-
acteristic graphs connected to the characteristic graph in
the (i — 1) level, and represents the value of position [
in the convolution kernel of the characteristic graph con-
nected to serial number 1, and /; represents the length of
the convolution kernel in layer i.

Figure 8 exhibits the structure of the convolution and
sampling layers when the 1D CNNs were used for mod-
eling heart sound recognition. In the CNN input, we only
used the features of the 5 s signal extracted from the auto-
matic encoder to form the first dimension of the CNNs.
The physical meaning of the convolution layer is to extract
certain useful information from a convolution, which is
similar to a filter. It directly determines the overall per-
formance of the networks through the shape and size of
the convolution kernel. The correlation information of the
input signal will be lost in the extracted feature when the
convolution kernel is small. A 1D convolution kernel that
typically corresponds to the long signal frames is used to
extract additional features. The sampling layer (pooling)
will sample the feature graph that is extracted from the
coiling layer. In this study, the maximum value of the pool
area is used as the point after pooling. All features were
1D vectors and could be connected directly one by one.
We applied the full connection layer to generate an output
that is equal to the number of classes to generate the final
output.

The output layer has a loss function similar to the clas-
sification cross entropy, which is used to calculate the

ROKOOr{OO0O00) (OO0 O)

Fig. 6 DAE used in this study
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prediction error. After forward propagation, the BP is con-
ducted to update the weights and deviations. Thus, the
error and loss are reduced.

3 Experiments and results

In this section, we perform three comparative experi-
ments. The first one compares different convolution ker-
nel shapes, the second one compares various features, and
the third one compares of the different numbers of the
network layer. In the statistical analysis of binary classi-
fication, the F- score indicates a test’s accuracy [33].The
F-score is the harmonic mean of the precision and recall,
where an F-score reaches its optimal value at 1 and worst
at 0. In this study, we use the F-score and recognition
accuracy rate to quantify the performance of the method,
F-score can be calculated using the following equation.

where TP denotes true positive, FP signifies false positive,
FN indicates false negative, and TN implies true negative.

3.1 Comparison of different convolution kernel shapes
A vector of 1 x 132 dimension is utilized as the 1D CNN
feature input. We train 2D CNN models with the same
construction as the 1D CNNs we proposed. Each model
has a convolution layer with 20 feature maps, and the
transfer function is sigmoid. The pooling layer uses max-
pooling, and the stride is 2. The softmax classifier is used
to make the output result a posterior probability of each
class. Taking the five-layer 1D CNN with a convolution
kernel size of 1 x 13 as an example, the network structure
is depicted in Fig. 9.

We extend the 2D convolution kernel to the correspond-
ing 1D convolution kernel based on column expansion. To
compare the effects of different convolution kernel shapes

TP TP
F—score — 2 x IP+EP ” TP+FN (6) ©n the performance of two CNNs, maintain the convolu-
IP 5+ mp tion kernels at the same size in both networks, but change
TP+EP ' TP+EN )
the shape to the corresponding 1D and 2D forms. In
A _ TP+ TN ” Table 1, 1 x 26 represents the length of convolution kernel
ceuracy = TP + TN + FP + FN ) 26, and the corresponding 2D convolution kernel is 2 x 13.
Pooling layer ol ps| eee [ ]
Convolutional layer cee
Input layer ces
Fig. 8 Sample diagram of coiling and maximum sampling layers in CNNs
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The experimental results displayed in Table 1 indicate
that, under the same convolution kernel size, when the
convolution kernel is increased from 1D to 2D, the recog-
nition accuracy is reduced, and the maximum amplitude
is approximately 3% (when the convolution kernel size
is 39). When changing the convolution kernel shape, the
recognition accuracy is constantly kept at approximately
1 ~ 3% higher in the 1D CNNs than in the 2D CNNs.
Figure 10 shows that, in comparison with other classifi-
cation methods, such as BP neural network, the recogni-
tion accuracy is 89.75%, and the final recognition rate of
the method used in this paper is increased by nearly 7%.
The BP neural network uses the same number of weight
parameters as the 1D CNNs. The number of states in the
HMM is 6, and the probability distribution of the observed
signal is approximated by three Gaussian distributions.

3.2 Comparison of different features

We have conducted several sets of contrast experiments
to verify that the feature extraction method used in this

Table 1 Comparison results of different convolution kernels

120 :
-Accuracy rate
[___JF-score
100 - 964894 95
89758&3 86.25
80 77.63
X
8
S 60
173
()
4
40
20 -
0 |
BP HMM 1D CNN
Algorithms
Fig. 10 Comparison of recognition results of different algorithms

study is superior to the traditional MFCC features. The
experimental results are summarized in Table 2.

Table 2 shows that the deep features extracted in this
study exhibit favorable recognition rates, thereby indicat-
ing that the extracted features can filter out noise and
interference sound well and adapt to the characteristics of
the networks favorably.

3.3 Comparison of different numbers of network layer

To obtain enhanced results, we use the proposed 1D
CNNs and then add a layer of neural networks to form
a two-layer CNNs. In the CNN structure, the convolu-
tion and pool layers alternately appear. The convolution
and pool layers are added. Finally, the layers are fully con-
nected to obtain the output. We compare the performance
of the network under different layers. We find that the
performance of the network remains the same when the
number of layers exceeds 5. The experimental results are
presented in Table 3. The results indicate that the increase

Table 2 Comparison results of different features in 1D CNNs

Convolutional  Convolutional Convolutional Accuracy F-score (%) Categories of features  Convolutional Accuracy rate (%) F-score (%)
kernel size kernel type kernel shape  rate (%) kernel shape
3 1D CNNs 1x13 95.68 97.67 MFCC 13 85.64 86.23
X
2D CNNs 1x13 94.15 96.30 Deep feature 95.68 96.30
1D CNNs 1 x 26 97.83 98.55 MFCC 90.23 91.01
26 1 x 26
2D CNNs 2x13 95.89 97.33 Deep feature 97.63 98.65
1D CNNs 1% 39 97.85 98.55 MFCC 91.02 92.78
39 1% 39
2D CNNs 3x 13 94.53 96.01 Deep feature 97.85 98.67
1D CNNs 1 x52 95.12 96.64 MFCC 89.36 89.88
52 1 x 52
2D CNNs 4 x13 94.55 96.01 Deep feature 95.21 96.73
1D CNNs 1 x 65 93.01 95.23 MFCC 93.21 94.01
65 1 x 65
2D CNNs 5x13 92.20 93.10 Deep feature 93.87 95.23




Li et al. EURASIP Journal on Advances in Signal Processing

in the convolution layer has improved the recognition
accuracy of the signal for the samples in this study.

4 Discussion

The experimental results denote that the deep features
used in the proposed system retain additional details
of heart sound signals, thus improving the classification
performance.The results in Table 1 show that the classi-
fication accuracy is higher in the 1D CNN than in the
2D CNN for the heart sound signals used in this study
when the convolution kernel is less than 52 because a
large convolution kernel can lead to computational com-
plexity and is increasingly time- consuming. By comparing
the traditional speech feature MFCC and the deep feature
extracted in this study, the latter is nearly 7% higher than
that of the former in the correct rate of the final classifi-
cation recognition. Therefore, the deep feature extracted
in this study is more suitable for representing heart sound
signals than that of the MFCC. Moreover, the recognition
accuracy is high when the number of layers is also high.
However, with the increase in the number of layers, the
amount of calculation slightly increases, and the duration
of classification recognition is prolonged.

In comparison with the traditional input for any length
of heart sound, the extraction of the deep features does
not require preprocessing. Thus, the heart sound can be
directly inputted into the networks for classification. In
this study, applying the 1D CNN model rather than 2D
CNN:s significantly improves the capability of the entire
network model to recognize heart sound signals. The
proposed method can achieve reliable recognition per-
formance based on acoustic characteristics without using
reference ECG .

The model proposed in this study can be used for rou-
tine testing in daily life or clinical setting for the general
population. If an abnormality occurs, then visiting the
hospital for further examination is necessary. Limited by

Table 3 Results of the different numbers of convolution layers in
1D CNNs

Different layers

Convolutional
kernel shape

Accuracy rate (%) F-score (%)

3 layers 94.32 96.02
1% 13

5 layers 95.21 97.31

3 layers 95.12 96.87
1 x 26

5 layers 96.33 98.65

3 layers 96.01 96.54
1% 39

5 layers 99.01 99.10

3 layers 93.31 94.26
1 x 52

5 layers 94.24 94.89

3 layers 92.03 94.01
1 x 65

5 layers 94.32 95.23
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the number of the samples we collected, this method can
only classify normal/abnormal heart sounds at present.
Thus, it has not been applied in clinical practice but can
be used for early warning of heart disease. In the future,we
can further improve the algorithms and sample collection
for application in clinical practice.

5 Conclusion

In this study, we propose a method based on DAE and
depth 1D CNNs to characterize and classify the PCG.
Through the experimental analysis, the following conclu-
sions can be obtained:

(1) The classification performance of the feature
parameters extracted by autoencoder is better than
those extracted by the extensively used MFCC.

(2) 1D CNNs improve the classification accuracy by 1%.
These algorithms are improved on the basis of 2D
CNNs.

(3) The system proposed in this study can classify heart
sounds based on the acoustic features independently
of the ECG and does not need to preprocess the
signal ,which has certain universality.

In summary, the model proposed in this study can effec-
tively improve the classification accuracy of heart sounds.
This result is crucial for the further realization of auto-
matic diagnosis of heart disease.
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