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Abstract

The complex correntropy is a recently defined similarity measure that extends the advantages of conventional
correntropy to complex-valued data. As in the real-valued case, the maximum complex correntropy criterion (MCCC)
employs a free parameter called kernel width, which affects the convergence rate, robustness, and steady-state
performance of the method. However, determining the optimal value for such parameter is not always a trivial task.
Within this context, several works have introduced adaptive kernel width algorithms to deal with this free parameter,
but such solutions must be updated to manipulate complex-valued data. This work reviews and updates the most
recent adaptive kernel width algorithms so that they become capable of dealing with complex-valued data using the

data

complex correntropy. Besides that, a novel gradient-based solution is introduced to the Gaussian kernel and its
respective convergence analysis. Simulations compare the performance of adaptive kernel width algorithms with
different fixed kernel sizes in an impulsive noise environment. The results show that the iterative kernel adjustment
improves the performance of the gradient solution for complex-valued data.
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1 Introduction

The correntropy consists in a similarity measure based
on Rényi entropy capable of extracting high-order statis-
tical information from real-valued data [1]. This is why it
has been widely used as a cost function in optimization
problems such as adaptive filtering in an approach called
maximum correntropy criterion (MCC), thus providing
better performance than second-order methods in non-
Gaussian noise environments [2—6]. Recently, the cor-
rentropy concept has been extended to complex-valued
random variables using the maximum complex corren-
tropy criterion (MCCC)[7, 8].
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Both MCC and MCCC employ a free parameter called
kernel width or kernel size. It essentially controls the
nature of the performance surface over which the sys-
tem parameters are adapted, as it has important effects
on distinct aspects, e.g., convergence speed, presence of
local optima, and stability of weight tracks [9]. Since the
task of obtaining an optimum value for this parameter
is time consuming and not trivial, a series of adaptive
kernel width algorithms has been proposed in order to
choose a proper value for this parameter at each iteration
in optimization problems.

An algorithm called adaptive kernel width MCC
(AMCC) was proposed in [10] aiming to improve the
learning speed, especially when the initial weight vec-
tor is far from being optimal. Another method called
switch kernel width method of correntropy (SMCC) in
[11] updates the kernel width based on the instantaneous
error between the estimate and the desired signal in order
to adjust such parameter for each iteration. Recently, the
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technique developed in [12] called variable kernel width-
maximum correntropy criterion (VKW-MCC) has been
suggested as a solution capable of searching for the best
kernel width at each iteration, thus implying reduced
error. This strategy is able to provide fast convergence
rate and stable steady-state performance. All the afore-
mentioned algorithms were proposed for real-valued data.
However, literature apparently does not present any work
that evaluates the application of adaptive kernel width
algorithms involving complex-valued data.

This paper updates the most recently adaptive kernel
width algorithms in order to deal with complex-valued
data. Besides that, Wirtinger calculus is applied to pro-
pose a novel gradient-based solution to Gaussian kernels
using the complex correntropy as a cost function. A con-
vergence analysis of the gradient-based algorithm is pre-
sented, as well as simulations comprising a comparative
analysis regarding the performance of all adaptive ker-
nel width algorithms in an impulsive noise environment.
The results show that the novel adaptive kernel meth-
ods improve the performance of the gradient solution
for complex-valued data considering the channel iden-
tification scenario of a 16-QAM (quadrature amplitude
modulation) modulation signal.

The remainder of the paper is organized as follows.
Section 2 reviews the complex correntropy function con-
cepts and its use as a cost function to define a new ascen-
dant gradient solution. Section 3 provides the analysis of
each adaptive kernel width algorithm evaluated in this
study updating its strategy to deal with complex-valued
data. Section 4 presents simulations to analyze the per-
formance of the proposed methods and compared it with
classical solution from the literature. Finally, Section 5 dis-
cusses the main contributions and results regarding the
study developed in this work.

2 Methods

2.1 Complex correntropy

Recently, the correntropy function was extended to the
case of complex-valued data. This approach is called com-
plex correntropy and is defined as [7]:

V; (Q: B) = E[ Ko (Qr B)] ’ (1)

where x4 () is any positive-definite kernel with kernel
width o, and Q, B are complex random variables. EJ[ -] is
the expected value operator.

The work presented in [8] demonstrated that the com-
plex correntropy generalizes the regular correntropy con-
cept to complex-valued data while keeping important
properties such as symmetry, bounded, high-order statis-
tical measure, and a probabilistic meaning, specially when
the complex Gaussian kernel, defined in (2) is used.
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where (-)* is the complex conjugate operator.

Let q(negrito) and b(negrito) columns vectors with N
complex-valued samples of the random variables Q and
B. Then, using the complex Gaussian Kernel, one can
estimates the complex correntropy between Q and B as

N
. 11 (qi — bi)(qi — b)*
4
,B) = - . .
Vo (QB) 2ro2 N ;exl)( 202

(3)

2.2 Maximum complex correntropy criterion (MCCC)

The use of the complex correntropy as a cost function was
first proposed in [7] to solve a linear system identification
problem. The goal is to maximize the complex corren-
tropy between a desired complex signal d € CV and the
estimated system output y = w/’x, where w € CN is a
complex column vector representing the system weights
and X € CN*M js the system input. [ -] = ([-]7)* is the
Hermitian operator. Summarizing, let Ja;ccc be the cost
function

Jmccc = V;(dd’) = E[G; (dd’)]
N

11 (di —y)(di — y)*
T 2702l ;exp (_ 202
11 iex _di— whx;) (d; — wix;)*
T 2mo?lL P 202 ’

i=1
(4)

which needs to be maximized. x; is the ith column of the
input matrix X. This would lead to maximization of the
similarity between y and d, causing the errore = d —y
to zero. This approach is called maximum complex cor-
rentropy criterion (MCCC). Figure 1 summarizes a system
identification problem in which the MCCC was success-
ful applied in [7]. The MCCC has been also applied to a
channel equalization problem [8], but always employing
a fixed-point solution algorithm. This approach depends
on a matrix inversion, and this operation is sometimes
unavailable or the increase in the computational cost is
not ideal [13]. Furthermore, the gradient solution will
always provide the solution with the least norm, which
may be useful in some scenarios [14]. Besides that, all
the adaptive kernel size algorithms mentioned in this
work employ the gradient solution, which still needs to be
introduced in the MCCC (Additional file 1).

So, in order to obtain the update rule, it is possible to
write:

Wytl =Wy + 1V Jus (5)

where p is the step size.
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Fig. 1 Block diagram of the system identification problem

To obtain v/, the most obvious choice would be dif-
ferentiating Eq. 4 with respect to w*. However, Eq. 4
depends on complex-valued parameter (d,y), although
it is always a real-valued function when the complex
Gaussian kernel from Eq. (2) is applied [15]. This violates
the Cauchy-Riemann conditions, thus making the gradi-
ent function not analytical in the complex domain [16].
Hence, standard differentiation cannot be applied. One
possible alternative to overcome this problem is to con-
sider the cost function defined in the Euclidean domain
with double dimensionality (R?), although this approach
leads to onerous computations [17]. The Wirtinger calcu-
lus, which will be briefly presented in this section later on,
provides an elegant way to obtain a gradient of real-valued
cost function that is defined in complex domains.

2.3 Wirtinger calculus
Based on the duality between spaces C and R2?, the
Wirtinger calculus was firstly introduced in [18]. Let f :
C — Cbea complex function defined in C. Such function
can also be defined in R? (i.e., f(x + jy) = f(x,9)).

The Wirtinger’s derivative of f at a point ¢ is defined as
follows [17]

af 1 /9f of
—_— = - —_— _ 6
Py () 5 <8x (©) ]ay (C)) (6)
On the other hand, the conjugate Wirtinger’s derivative

of f at c is given by:

of ~ 1[0of Of
87z*(c) =3 (ax(c) +]8y(c)>

In other words, in order to compute the Wirtinger
derivative of a given function f; it can be expressed in
terms of z and z*. Then, the usual differentiation rules can

(7)
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be applied after considering z* as a constant. The same
concept can be used to compute the conjugate Wirtinger
derivative of a function f, also expressed in terms of z
and z*. In this case, usual differentiation rules must be
employed considering z as a constant [17], i.e., considering
f as f(z) = zz*, which leads to:
o =z* and o =z

z
0z 9z*

8)

2.4 Gradient ascent solution
Using the Wirtinger calculus to obtain the gradient v/,;:

N
.11 (di —y)(di —y)*\ (=1) d(eie)
Vin = aw*  2mo2 N ;exp< 202 202 aw+

)

wheree; = d; — wf{xi.
Thus, it leads to the follow update rule:

m N eier
- § : i ) otx,
Wyl = Wy + m Z exp (- 20_2) €; X;. (10)
Finally, applying the stochastic gradient gives:

_ p enh\ .
Wyl = Wy + Nirmo3 exp (— 202) €,Xy

A complete step-by-step derivation can be seen in (5).

(11)

2.5 Convergence analysis

In this section, the convergence of the proposed weight
update method is investigated based on stochastic gra-
dient for complex valued-data. It can be considered as
an extension of the convergence analysis realized in [19].
Initially, the algorithm described by Eq. 11 can be written
in a simplified form:

Wil =W +1f [ex] X, 120, (12)

where 7 is the step size, and f [e,] is a nonlinear function
of the estimation error e(i), being expressed as:

N1 e”e:; *

fle@] =exp|— 2 €,
Let us assume that the desired system output signal d,
can be expressed as:
d, = on Xu + Vi,

where w, is the optimum weight vector that must be esti-
mated, and v, represents the disturbance noise. Then, the
estimation error at instant time # is given by:

en = dy —w:,'[xn =wfxn—wfx,,+vn.

Considering that the weight-error vector is defined as
w, = w° — wy, the a priori and a posteriori errors are
denoted by:

eq(n) = Wix,,

(13)

(14)

(15)

ep(n) = \Tffﬂxn. (16)
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The update rule in Eq. 12 can be rewritten in terms of
the weight-error vector as:

W1 = Wy + 1f [en] Xy 17)

Post-multiplying both sides of the conjugate transpose
version of Eq. 17 by x,,, as well as replacing some terms in
Eq. 16 for expressions, it is possible to determine a rela-
tionship between estimation errors e, (n), e,(n), and e, in
the form:

ep(”) =ey(n) — Qf*[en] ”xn”2 .

In order to eliminate the non linearity f [e,] in Eq. 17,
it is possible to combine such expression with Eq. 18 to
obtain the following representation:

(18)

X (19)

1>

With the objective of following an energy-based
approach, both sides of Eq. 19 are squared,

Wit = Wy — (ea(n) — ep(m))”

”‘rx’n—o—l”2 = <V~Vn - (ea(”l) - ep(”))*

Xy, )H
”xn”2 (20)
~ x* Xp
X (wn — (ea(n) — ep(n)) ||X||2) .

After some algebraic manipulation of Eq. 20, it is possi-
ble to obtain an energy relation as:

el _ o o, el

1 .

~ 2
[ 2+
1l

Since the mean-square behavior of the algorithm is of
interest for the proposed study, expectations of both sides
of Eq. 21 are obtained, which are then substituted in
Eq. 18, representing the a posteriori error e, (n).

E [I89n+111”] = E [I¥11*] = 2nE [Re {ea(m)f [en] }]
+ 0 E[f*[en] lxul*]

The convergence of the proposed algorithm depends
on the choice of the learning rate. Therefore, a Lyapunov
approach is adopted to obtain convergence in an upper
bound for which E [||v~vn||2] remains uniformly bounded.
Analyzing Eq. 22, it is possible to write:

E[IWn+117] < E[I1Wull?]
< —2nE [Re {ea(n)f [en}]]
+n’E[f*[ea] lIxal*] < 0

From Eq. 23, it can be stated that the learning rate can
be chosen for all # in the form:

- E[Re{eq(i)f[en] }]
T xl]

Then, the sequence E [||\7\'r,, I 2] of weight error power will
be decreasing and bounded from below, which ensures the

(22)

(23)

, (24)
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convergence. Thus, a sufficient condition for convergence
can be alternatively expressed by:

) E|Re e, (n)f| eyl
n =2 inf 4[ {1/2 }4]1/2'
"= E[f [en]] E[||Xn|| ]

(25)

Assuming that the filter is long enough so that e, (n) is a
zero-mean Gaussian and the noise process vy, is i.i.d,, it is
possible to define the following statements [19, 20]:

s E[Re {ea(n)f[en] }]
E[ezm)]

he [E[e2(m)]] . (26)

e [E[2m]] £ E[*Le]].

Therefore, a sufficient convergence condition can be
established substituting Eqs. 26 and 27 in Eq. 25, resulting
in:

(27)

2 . 2
)< 2 - infE[ea(n)] he [E[e2(m)]]
E[[|lxt[]7 | =0 he [E[e2m]]

(28)

Since all terms in Eq. 28 are functions of E [eg (i)], it is
possible to emphasize this aspect in Eq. 29 in order to indi-
cate that the minimization takes place over the values of
E [efl (n)].

2 ()] - 2
1E e [ Elean] ke [E[ean]]
E[[l ] \ £l he [E[e2m]]

(29)

Then, if the step size follow the condition described in
Eq. 29, one can say that the algorithm will converge.

3 Adaptive kernel size algorithms

Analogously to the real-valued case, the complex corren-
tropy is directly related to the estimation of how similar
two random variables are when the Parzen estimator
is applied to the joint probability [7]. Thus, the kernel
size, also called kernel width, is a free parameter that is
inherent to the kernel used to estimate the complex cor-
rentropy. It works as a scale parameter that controls the
steady-state performance, convergence rate, and impul-
sive noise rejection [15]. Since it is a free parameter, the
kernel width must be chosen by the user, whose value
changes according to data and application nature. Then,
the definition of an optimal value for the kernel width is
not a trivial task [21].

In this context, many works have been proposed in
order to help determining the optimal kernel width, e.g.,
[11, 12, 22, 23]. However, the aforementioned studies only
deal with real-valued data. In this section, the algorithms
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are then updated using the complex correntropy defini-
tion and the Wirtinger calculus in order to make them
applicable to complex-valued data.

3.1 Adaptive kernel width MCCC (AMCCC)

According to [23], AMCC consists in selecting the kernel
as a combination of a fixed-kernel bandwidth, which could
be defined using Silverman rule [24] and the squared pre-
diction error e2. The authors also state that this approach
causes the algorithm to converge faster, especially when
the initial weight vector is far away from the optimal one.
Besides the fast convergence rate, prominent advantages
of the method lie in simplicity, as well as no extra com-
putational burden, as no additional free parameters are
required. Since the kernel size must be always a positive
and real value, it is possible to define a new update rule
called AMCCC, which can be expressed by:

02 = enel + o (30)
where o is the predefined kernel width and e, is the error
at the iteration n.

3.2 Switch kernel width MCCC (SMCCC)

In order to improve the convergence rate of the method,
the SMCC algorithm was introduced in [11]. This work
defines the new kernel update rule to MCCC based on
[11] and defined as:

o2 :max(e”;; ) 02) (31)
This is another example of a simple update rule for

the kernel that does not add new free parameters to the

MCCC algorithm, although robustness is maintained.
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3.3 Complex variable kernel width—CVKW

The VKW-MCC algorithm calculates the kernel size at
each iteration by maximizing exp (—62 / 202) with respect
to the kernel width [12]. For this purpose, the authors
employ a modified cost function to reduce the interfer-
ence of the kernel size. Instead of making J, = E[ G5 (¢)], a
new cost function is defined as Jy = E [azG,, (e)]. Apply-
ing the same methodology to the complex-valued case
gives:

Ju =E[0%*Gs(e)] = E[0*Go(D - V)] (32)
Then, the updated stochastic gradient would be:
M e
Wit =W, + mexp(— o ) ¢ X, (33)

At each iteration, after calculating the error e, at the nth
iteration, the kernel size is updated regarding the direction
to minimize the error, resulting in:

*
max/(e,) = exp (_enen) .
On

2
20}

(34)

Differentiating (34) using Wirtinger calculus with
respect to e, leads to:

_ enels\ €hou(o, — 2e,07,)
Vn(en) = —exp (‘M) T2t (35)
Then, making j'(e,) = 0 gives:
o = 2e,0, = 2ky |ey] (36)

4 Results and discussion

In this section, the system identification problem from
[7] is revisited to evaluate the performance from the pro-
posed ascendant gradient MCCC using a fixed kernel size
and compare it with the variable kernel size strategies,

40
35
30 F
m o5t
QZ: ——CVKW
g —— AMCCC
SMCCC
CLMS
— MCCC o =2
MCCC ¢ =10
- MCCC ¢ =100
1000 1500 2000 2500
Iterations

Fig. 2 Performance comparison among several methods in terms of WSNR as a function of the number of iterations for «=1.5 and GSNR = 20 dB
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Fig. 3 Typical evolution of the Kernel size o used by AMCCC, SMCCC, and CVKW in the scenario of Fig. 2

1500 2000 2500

i.e.,, SMCCC, AMCCC, and CVKW. For reference, the
complex least mean square (CLMS) [16], which is a clas-
sical solution from the literature, is also considered in the
simulations.

The performance of the adaptive filters is evaluated
by the weight signal-to-noise ratio (WSNR), which is
defined as

wiw 37)
(W —w)H(w— w») ’

WSNRy;, = 10log;, (

where w is the correct weights, which are randomly
select at each Monte Carlo trial from a Gaussian dis-
tribution with mean 0 and variance 1. w; is the com-
plex weights computed by the aforementioned methods
in the ith iteration. The WSNR is used to quantify
both convergence and misadjustment rates properly in
decibels [25].

The desired signal is formed by the product of the
proper weights w and the input signal X € C2*2%, which
elements follow a Gaussian distribution with mean 0.5 and
variance 1 for the real part and mean 1.5 and variance 4
for the imaginary part. Then, an additive noise signal is
added.

Table 1 Kernel size o and step size u used in the simulations for
each tested algorithm

Algorithm Kernel width Step size
CVKW 6.16 0.088
SMCCC 0.21 0.088
AMCCC 0.13 0.088
MCCC 0.2 0.25

The symmetric stable distribution [26] was used to
model an impulsive noise environment to the simulations.
Since its symmetric, the shift and skewness parameters are
always set to 0. The index of stability 0 < o < 2 controls
the tail of the distribution, while the scale y parameter is
obtained from a given generalized signal-to-noise ratio in
dB (GSNR) [27], which is given by:

p
GSNR = 10log >, (38)
y

where Pg is the power of the noiseless signal.

Figure 2 shows the performance of the proposed MCCC
algorithm with three different fixed kernel sizes 0 = 2, 10,
and 100. Besides that, the adaptive kernel strategies and
the CLMS are also included. All plots in this section are
made by the average of 10> Monte Carlo trials, and the
initial values adopted for the weights are always zero. One
can notice that the best result with a fixed kernel size was
o = 2. In the simulations, a value smaller than 2 made
the algorithm not converge. As in the real-valued case,
the MCCC with a large value of kernel size 0 = 100
made the results almost identical to the CLMS. For large
kernel sizes, the complex correntropy-based algorithms
tend to the perform as a second order one [7, 15]. The
MCCC gradient ascendant with kernel size ¢ = 10 had
the WSNR levels between the 6 = 2 and o = 100. Also,
it can be notice that the convergence speed is affected
by the kernel size choice. In summary, the smaller that
still makes the algorithm converge, the higher the WSNR
level. In the other hand, increasing the kernel size makes
the WSNR level drop and increases the convergence
speed.
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Fig. 4 Performance comparison among several methods in terms of WSNR as a function of the characteristic exponent and GSNR = 20

Analyzing Fig. 2, it is possible to see that the adap-
tive kernel size strategies could overcame the perfor-
mance of a fixed kernel size selection after 2500 iterations.
The CVKW was the algorithm that achieved the high-
est WSNR levels. The AMCCC had a better WSNR than
the SMCCC but the SMCCC had a better convergence
rate. It is important to highlight that, although the adap-
tive kernel size strategies have better WSNR levels, the

fixed kernel size methods, and the CLMS have a fast
convergence rate.

A typical evolution of the kernel size by each adaptive
algorithms compared in Fig. 2 is shown in Fig. 3. The
initial values are initially based on Table 1. It is possi-
ble to see how much more aggressive the AMCCC and
the SMCCC are when compared with the CVKW, due to
the updates rules shown in Section 3. This is due to the

50

—6—CVKW —e—MCCC o =2
—e— AMCCC MCCC ¢ =20

SMCCC - o--MCCC o =200
CLMS

16 18 20 22 24

GSNR (dB)

26 28

Fig. 5 Performance comparison among several methods in terms of WSNR as a function of GSNR for & = 1.5

30
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Fig. 6 WSNR performance of the AMCCC algorithm as a function of the kernel size parameter o and the gradient step size . The noise environment

is model by a stable distribution with @ = 1.5 and GSNR = 20 dB

smoothing factor presented in the VKW-MCC algorithm
[12] which was preserved by this paper for the complex-
valued case. The algorithms were tested in different noise
parameters. Figure 4 compares the performance of the
algorithms as a function of index of stability o with a
fixed GSNR = 20dB. When « = 2, the stable distri-
bution behaves as a Gaussian and the smaller the value
of «, the more impulsive is the noise. As expected, the
CLMS performances deteriorate faster than the com-
plex correntropy-based methods, except for the one with
large kernel size, 0 = 100. Also, regarding the noise

environment, Fig. 5 shows the behavior of each algorithm
as a function of the GSNR and a fixed index of stability
a = 1.5. As expected, as the noise power decreases the
WSNR levels increase to all algorithms.

Although the simulations showed that MCCC could
deal well under impulsive noise, using the complex cor-
rentropy as a cost function includes a new free parameter
that is the kernel size. This is what motivated the devel-
opment of the adaptive kernel size strategies showed in
this paper. However, each adaptive kernel size strategy still
needs a kernel parameter as the updates Eq. (30) for the
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Fig. 8 WSNR performance of the CVKW algorithm as a function of the kernel size parameter o and the gradient step size i. The noise environment

AMCCC, (31) for the SMCCC, and (36) for the CVKW.
The choice of this value had showed also important in the
methods performance. Also, since all methods presented
in this paper are based in the optimization using a gradient
ascendant, the analysis of the step size choice in the algo-
rithm performance is relevant. Figures 6, 7, and 8 shows
the WSNR performance of each proposed adaptive kernel
size strategies with the MCCC as a function of the kernel
size o and step size u. As one can notice, the performance
is strict related to the choice of both the free parameters:
the step 1 and the kernel size o.

In summary, the use of the complex correntropy as a
cost function in a gradient ascendant strategy has shown
a valid approach to deal with system identification prob-
lems in non-Gaussian noise environments, achieving bet-
ter results than the classical CLMS solution. Even that
the adaptive kernel size strategies could overcome the
performance of the MCCC with a fixed kernel size, the
dependence of free parameters is still present.

5 Conclusion

This paper has proposed a novel gradient method employ-
ing the complex correntropy as a cost function based on
the Wirtinger calculus. Moreover, a convergence analy-
sis has been provided for this gradient solution. This new
solution was used in order to update the most recently
adaptive kernel size algorithms reported in literature to
deal with complex-valued data.

Simulations shown that, as in the real-valued case,
adjusting the kernel size makes the gradient MCCC solu-
tion an effective mechanism to deal with non-Gaussian
noise. Moreover, the performances of the proposed

adaptive methods, e.g,, CVKW, SMCCC, and AMCCC,
improve significantly the performance of the MCCC
when compared with the CLMS and MCCC with fixed
kernel size in a system identification problem. Future
work includes investigating the application of the intro-
duced methods to other problems such as complex-valued
nonlinear adaptive filters and telecommunication with
baseband signal.
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