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Abstract

In this paper, we introduce the q-ratio block constrained minimal singular values (BCMSV) as a new measure of
measurement matrix in compressive sensing of block sparse/compressive signals and present an algorithm for
computing this newmeasure. Both the mixed �2/�q and the mixed �2/�1 norms of the reconstruction errors for stable
and robust recovery using block basis pursuit (BBP), the block Dantzig selector (BDS), and the group lasso in terms of
the q-ratio BCMSV are investigated. We establish a sufficient condition based on the q-ratio block sparsity for the exact
recovery from the noise-free BBP and developed a convex-concave procedure to solve the corresponding
non-convex problem in the condition. Furthermore, we prove that for sub-Gaussian randommatrices, the q-ratio
BCMSV is bounded away from zero with high probability when the number of measurements is reasonably large.
Numerical experiments are implemented to illustrate the theoretical results. In addition, we demonstrate that the
q-ratio BCMSV-based error bounds are tighter than the block-restricted isotropic constant-based bounds.

Keywords: Compressive sensing, q-ratio block sparsity, q-ratio block constrained minimal singular value,
Convex-concave procedure

1 Introduction
Compressive sensing (CS) [1, 2] aims to recover an
unknown sparse signal x ∈ R

N from m noisy measure-
ments y ∈ R

m:

y = Ax + ε, (1)

where A ∈ R
m×N is a measurement matrix with m �

N , and ε ∈ R
m is additive noise such that ‖ε‖2 ≤ ζ

for some ζ ≥ 0. It has been proven that if A satisfies
the (stable/robust) null space property (NSP) or restricted
isometry property (RIP), (stable/robust) recovery can be
achieved [3, Chapter 4 and 6]. However, it is computa-
tionally hard to verify NSP and compute the restricted
isometry constant (RIC) for an arbitrarily chosen A [4, 5].
To overcome the drawback, a new class of measures for
the measurement matrix has been developed during the
last decade. To be specific, [6] introduced a new measure
called �1-constrained minimal singular value (CMSV):
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ρs(A) = min
z �=0,‖z‖21/‖z‖22≤s

‖Az‖2‖z‖2 and obtained the �2 recov-

ery error bounds in terms of the proposed measure for
the basis pursuit (BP) [7], the Dantzig selector (DS) [8],
and the lasso estimator [9]. Afterwards, [10] brought in
a variant of the CMSV: ω♦(A, s) = min

z �=0,‖z‖1/‖z‖∞≤s
‖Az‖♦
‖z‖∞

with ‖·‖♦ denoting a general norm and expressed the
�∞ recovery error bounds using this quantity. The lat-
est progress concerning the CMSV can be found in
[11, 12]. Zhou and Yu [11] generalized these two mea-
sures to a new measure called q-ratio CMSV: ρq,s(A) =

min
z �=0,(‖z‖1/‖z‖q)q/(q−1)≤s

‖Az‖2‖z‖q with q ∈ (1,∞] and estab-

lished both �q and �1 bounds of recovery errors. Zhou and
Yu [12] investigated geometrical property of the q-ratio
CMSV, which can be used to derive sufficient conditions
and error bounds of signal recovery.
In addition to the simple sparsity, a signal x can also

possess a structure called block sparsity where the non-
zero elements occur in clusters. It has been shown that
using block information in CS can lead to a better sig-
nal recovery [13–15]. Analogue to the simple sparsity,
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there are block NSP and block RIP to characterize the
measurement matrix in order to guarantee a successful
recovery through (1) [16]. Nevertheless, they are still com-
putationally hard to be verified for a given A. Thus, it is
desirable to develop a computable measure like the CMSV
for recovery of simple (non-block) sparse signals. Tang
andNehorai [17] proposed a newmeasure of themeasure-
ment matrix based on the CMSV for block sparse signal
recovery and derived the mixed �2/�∞ and �2 bounds of
recovery errors. In this paper, we extend the q-ratio CMSV
in [11] to q-ratio block CMSV (BCMSV) and generalize
the error bounds from the mixed �2/�∞ and �2 norms
in [17] to mixed �2/�q with q ∈ (1,∞] and mixed �2/�1
norms.
This work includes four main contributions to block

sparse signal recovery in compressive sensing: (i) we
establish a sufficient condition based on the q-ratio block
sparsity for the exact recovery from the noise-free block
BP (BBP) and develop a convex-concave procedure to
solve the corresponding non-convex problem in the con-
dition; (ii) we introduce the q-ratio BCMSV and derive
both the mixed �2/�q and the mixed �2/�1 norms of the
reconstruction errors for stable and robust recovery using
the BBP, the block DS (BDS), and the group lasso in terms
of the q-ratio BCMSV; (iii) we prove that for sub-Gaussian
random matrices, the q-ratio BCMSV is bounded away
from zero with high probability when the number of mea-
surements is reasonably large; and (iv) we present an
algorithm to compute the q-ratio BCMSV for an arbitrary
measurement matrix and investigate its properties.
The paper is organized as follows. Section 2 presents

our theoretical contributions, including properties of the
q-ratio block sparsity and the q-ratio BCMSV, the mixed
�2/�q norm and the mixed �2/�1 norm reconstruction
errors for the BBP, the BDS and the group lasso, and
the probabilistic result of the q-ratio BCMSV for sub-
Gaussian random matrices. Numerical experiments and
algorithms are described in Section 3. Section 4 is devoted
to conclusion and discussion. All the proofs are left in the
Appendix.

2 Theoretical methodology
2.1 q-ratio block sparsity and q-ratio BCMSV—definition

and property
In this section, we introduce the definitions of the q-ratio
block sparsity and the q-ratio BCMSV and present their
fundamental properties. A sufficient condition for block
sparse signal recovery via the noise-free BBP using the
q-ratio block sparsity and an inequality for the q-ratio
BCMSV are established.
Throughout the paper, we denote vectors by bold lower

case letters or bold numbers and matrices by upper case
letters. xT denotes the transpose of a column vector x.
For any vector x ∈ R

N , we partition it into p blocks,

each of length n, so we have x =
[
xT1 , x

T
2 , · · · , xTp

]T
and

xi ∈ R
n denotes the ith block of x. We define the mixed

�2/�0 norm ‖x‖2,0 = ∑p
i=1 1{xi �= 0}, the mixed �2/�∞

norm ‖x‖2,∞ = max1≤i≤p‖xi‖2, and the mixed �2/�q

norm ‖x‖2,q = (∑p
i=1‖xi‖q2

)1/q for 0 < q < ∞. A sig-
nal x is block k-sparse if ‖x‖2,0 ≤ k. [ p] denotes the set
{1, 2, · · · , p} and |S| denotes the cardinality of a set S. Fur-
thermore, we use Sc for the complement [ p] \S of a set S in
[ p]. The block support is defined by bsupp(x) := {i ∈[ p] :
‖xi‖2 �= 0}. If S ⊂[ p], then xS is the vector coincides with
x on the block indices in S and is extended to zero outside
S. For any matrix A ∈ R

m×N , kerA := {x ∈ R
N : Ax = 0},

AT is the transpose. 〈·, ·〉 is the inner product function.
We first introduce the definition of the q-ratio block

sparsity and its properties.

Definition 1 ([18]) For any non-zero x ∈ R
N and non-

negative q /∈ {0, 1,∞}, the q-ratio block sparsity of x is
defined as

kq(x) =
(‖x‖2,1

‖x‖2,q
) q

q−1
. (2)

The cases of q ∈ {0, 1,∞} are evaluated by limits:

k0(x) = lim
q→0

kq(x) = ‖x‖2,0 (3)

k1(x) = lim
q→1

kq(x) = exp(H1(π(x))) (4)

k∞(x) = lim
q→∞ kq(x) = ‖x‖2,1

‖x‖2,∞ . (5)

Here, π(x) ∈ R
p with entries πi(x) = ‖xi‖2/‖x‖2,1

and H1 is the ordinary Shannon entropy H1(π(x)) =
− ∑p

i=1 πi(x) logπi(x).

This is an extension of the sparsity measures proposed
in [19, 20], where estimation and statistical inference via
α-stable random projection method were investigated. In
fact, this kind of sparsity measure is based on entropy,
which measures energy of blocks of x via πi(x). Formally,
we can express the q-ratio block sparsity by

kq(x) =
{
exp(Hq(π(x))) if x �= 0
0 if x = 0, (6)

where Hq is the Rényi entropy of order q ∈[ 0,∞] [21,
22]. When q /∈ {0, 1,∞}, the Rényi entropy is given by
Hq(π(x)) = 1

1−q log
(∑p

i=1 πi(x)q
)
, and for the cases of

q ∈ {0, 1,∞}, the Rényi entropy is evaluated by limits and
results in (3), (4), and (5), respectively.
Next, we present a sufficient condition for the exact

recovery via the noise-free BBP in terms of the q-ratio
block sparsity. Recall that when the true signal x is block k-
sparse, the sufficient and necessary condition for the exact
recovery via the noise-free BBP:
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min
z∈RN

‖z‖2,1 s.t. Az = Ax (7)

in terms of the block NSP of order k was given by [16, 23]

‖zS‖2,1 < ‖zSc‖2,1,∀z ∈ kerA \ {0}, S ⊂[ p] and |S| ≤ k.

Proposition 1 If x is block k-sparse and there exists at
least one q ∈ (1,∞] such that k is strictly less than

min
z∈kerA\{0}

2
q

1−q kq(z), (8)

then the unique solution to problem (7) is the true signal x.

Remark 1 The proof can be found in A.1 in Appendix.
This proposition is an extension of Proposition 1 in [11]
from simple sparse signals to block sparse signals. In
Section 3.1, we adopt a convex-concave procedure algo-
rithm to solve (8) approximately.

Now, we are ready to present the definition of the q-ratio
BCMSV, which is developed based on the q-ratio block
sparsity.

Definition 2 For any real number s ∈[ 1, p], q ∈ (1,∞]
and matrix A ∈ R

m×N , the q-ratio block constrained
minimal singular value (BCMSV) of A is defined as

βq,s(A) = min
z �=0,kq(z)≤s

‖Az‖2
‖z‖2,q . (9)

Remark 2 For measurement matrix A with unit norm
columns, it is obvious that βq,s(A) ≤ 1 since ‖Aei‖2 = 1,
‖ei‖2,q = 1, and kq(ei) = 1, where ei is the ith canonical
basis for RN . Moreover, when q and A are fixed, βq,s(A) is
non-increasing with respect to s. Besides, it is worth notic-
ing that the q-ratio BCMSV depends also on the block
size n, we choose to not show this parameter for the sake
of simplicity. Another interesting finding is that for any
α ∈ R, we have βq,s(αA) = |α|βq,s(A). This fact together
with Theorem 1 in Section 2.2 implies that in the case of
adopting a measurement matrix αA, increasing the mea-
surement energy through |α| will proportionally reduce the
mixed �2/�q norm of reconstruction errors. Comparing to
the block RIP [16], there are three main advantages by
using the q-ratio BCMSV:

• It is computable (see the algorithm in Section 3.2).
• The proof procedures and results of recovery error

bounds are more concise (details in Section 2.2).
• The q-ratio BCMSV-based recovery bounds are

smaller (better) than the block RIC-based bounds as
shown in Section 3.3 (see also [11, 17], for another
two specific examples).

As for different q, we have the following important
inequality, which plays a crucial role in deriving the

probabilistic behavior of βq,s(A) via the existing results
established in [17].

Proposition 2 If 1 < q2 ≤ q1 ≤ ∞, then for any real
number 1 ≤ s ≤ p1/q̃ with q̃ = q2(q1−1)

q1(q2−1) , we have

βq1,s(A) ≥ βq2,sq̃(A) ≥ s−q̃βq1,sq̃(A). (10)

Remark 3 The proof can be found in A.2 in Appendix.
Let q1 = ∞ and q2 = 2 (thus, q̃ = 2), we have β∞,s(A) ≥
β2,s2(A) ≥ 1

s2 β∞,s2(A). If q1 ≥ q2 > 1, then q̃ = q2(q1−1)
q1(q2−1) =

1+ q1−q2
q1(q2−1) ≥ 1, so βq2,sq̃(A) ≤ βq2,s(A). Similarly, we have

for any t ∈[ 1, p] βq2,t(A) ≥ 1
t βq1,t(A) by letting t = sq̃

in (10). Based on these facts, we can not obtain the mono-
tonicity with respect to q when s and A are fixed. However,
since for any z ∈ R

N with p blocks, kq(z) ≤ p, it holds
trivially that βq,p(A) is non-decreasing with respect to q by
using the non-increasing property of the mixed �2/�q norm.

2.2 Recovery error bounds
In this section, we derive the recovery error bounds in
terms of the mixed �2/�q norm and the mixed �2/�1 norm
via the q-ratio BCMSV of the measurement matrix. We
focus on three renowned convex relaxation algorithms for
block sparse signal recovery from (1): the BBP, the BDS,
and the group lasso.

BBP: min
z∈RN

‖z‖2,1 s.t. ‖y − Az‖2 ≤ ζ .

BDS: min
z∈RN

‖z‖2,1 s.t. ‖AT (y − Az)‖2,∞ ≤ μ.

Group lasso: min
z∈RN

1
2‖y − Az‖22 + μ‖z‖2,1.

Here, ζ and μ are parameters used in the constraints to
control the noise level.We first present the followingmain
results of recovery error bounds for the case when the true
signal x is block k-sparse.

Theorem 1 Suppose x is block k-sparse. For any q ∈
(1,∞], we have
1) If ‖ε‖2 ≤ ζ , then the solution x̂ to the BBP obeys

‖x̂ − x‖2,q ≤ 2ζ
β
q,2

q
q−1 k

(A)
, (11)

‖x̂ − x‖2,1 ≤ 4k1−1/qζ

β
q,2

q
q−1 k

(A)
. (12)
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2) If the noise ε in the BDS satisfies ‖ATε‖2,∞ ≤ μ, then
the solution x̂ to the BDS obeys

‖x̂ − x‖2,q ≤ 4k1−1/q

β2
q,2

q
q−1 k

(A)
μ, (13)

‖x̂ − x‖2,1 ≤ 8k2−2/q

β2
q,2

q
q−1 k

(A)
μ. (14)

3) If the noise ε in the group lasso satisfies ‖ATε‖2,∞ ≤ κμ

for some κ ∈ (0, 1), then the solution x̂ to the group lasso
obeys

‖x̂ − x‖2,q ≤ 1 + κ

1 − κ
· 2k1−1/q

β2

q,
(

2
1−κ

) q
q−1 k

(A)
μ, (15)

‖x̂ − x‖2,1 ≤ 1 + κ

(1 − κ)2
· 4k2−2/q

β2

q,
(

2
1−κ

) q
q−1 k

(A)
μ. (16)

Remark 4 The proof can be found in A.3 in Appendix.
Obviously, if β

q,2
q

q−1 k
(A) �= 0 in (11) and (12), then the

noise free BBP (7) can uniquely recover any block k-sparse
signal by letting ζ = 0.

Remark 5 The mixed �2/�q norm error bounds are gen-
eralized from the existing results in [17] (q = 2 and ∞)
to any 1 < q ≤ ∞ and from [11] (simple sparse sig-
nal recovery) to block sparse signal recovery. The mixed
�2/�q norm error bounds depend on the q-ratio BCMSV of
the measurement matrix A, which is bounded away from
zero for sub-Gaussian random matrix and can be com-
puted approximately by using a specific algorithm, which
are discussed later.

Remark 6 As shown in literature, the block RIC-based
recovery error bounds for the BBP [16], the BDS [24], and
the group lasso [25] are complicated. In contrast, as pre-
sented in this theorem, the q-ratio BCMSV-based bounds
are much more concise and corresponding derivations are
much less complicated, which are given in the Appendix.

Next, we extend Theorem 1 to the case when the signal
is block compressible, in the sense that it can be approxi-
mated by a block k-sparse signal. Given a block compress-
ible signal x, let the mixed �2/�1 error of the best block
k-sparse approximation of x be φk(x) = inf

z∈RN ,‖z‖2,0=k
‖x −

z‖2,1, which measures how close x is to the block k-sparse
signal.

Theorem 2 Suppose that x is block compressible. For
any 1 < q ≤ ∞, we have

1) If ‖ε‖2 ≤ ζ , then the solution x̂ to the BBP obeys

‖x̂ − x‖2,q ≤ 2ζ
β
q,4

q
q−1 k

(A)
+ k1/q−1φk(x), (17)

‖x̂ − x‖2,1 ≤ 4k1−1/qζ

β
q,4

q
q−1 k

(A)
+ 4φk(x). (18)

2) If the noise ε in the BDS satisfies ‖ATε‖2,∞ ≤ μ, then
the solution x̂ to the BDS obeys

‖x̂ − x‖2,q ≤ 8k1−1/q

β2
q,4

q
q−1 k

(A)
μ + k1/q−1φk(x), (19)

‖x̂ − x‖2,1 ≤ 16k2−2/q

β2
q,4

q
q−1 k

(A)
μ + 4φk(x). (20)

3) If the noise ε in the group lasso satisfies ‖ATε‖2,∞ ≤ κμ

for some κ ∈ (0, 1), then the solution x̂ to the group lasso
obeys

‖x̂ − x‖2,q ≤ 1 + κ

1 − κ
· 4k1−1/q

β2

q,
(

4
1−κ

) q
q−1 k

(A)
μ + k1/q−1φk(x),

(21)

‖x̂ − x‖2,1 ≤ 1 + κ

(1 − κ)2
· 8k2−2/q

β2

q,
(

4
1−κ

) q
q−1 k

(A)
μ + 4

1 − κ
φk(x).

(22)

Remark 7 The proof can be found in A.4 in Appendix.
All the error bounds consist of two components, one is
caused by the measurement error, and another one is due
to the sparsity defect.

Remark 8 Comparing to Theorem 1, we need stronger
conditions to achieve the valid error bounds. Concisely,
we require β

q,4
q

q−1 k
(A) > 0, β

q,4
q

q−1 k
(A) > 0 and

β
q,

(
4

1−κ

) q
q−1 k

(A) > 0 for the BBP, BDS, and group lasso

in the block compressible case, while β
q,2

q
q−1 k

(A) > 0,

β
q,2

q
q−1 k

(A) > 0 and β
q,

(
2

1−κ

) q
q−1 k

(A) > 0 in the block

sparse case, respectively.

2.3 Randommatrices
In this section, we study the properties of the q-ratio
BCMSV of sub-Gaussian random matrix. A random vec-
tor x ∈ R

N is called isotropic and sub-Gaussian with
constant L if it holds for all u ∈ R

N that E|〈x,u〉|2 = ‖u‖22
and P(|〈x,u〉| ≥ t) ≤ 2 exp

(
− t2

L‖u‖2
)
. Then, as shown in

Theorem 2 of [17], we have the following lemma.
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Lemma 1 ([17]) Suppose the rows of the scaled measure-
ment matrix

√
mA to be i.i.d isotropic and sub-Gaussian

random vectors with constant L. Then, there exists con-
stants c1 and c2 such that for any η > 0 and m ≥ 1
satisfying

m ≥ c1
L2s(n + log p)

η2
,

we have

E|1 − β2,s(A)| ≤ η

and

P(β2,s(A) ≥ 1 − η) ≥ 1 − exp
(
−c2η2

m
L4

)
.

Then, as a direct consequence of Proposition 2 (i.e.,
if 1 < q < 2, βq,s(A) ≥ s−1β2,s(A); if 2 ≤ q ≤
∞, βq,s(A) ≥ β

2,s
2(q−1)

q
(A).) and Lemma 1, we have the

following probabilistic statements for βq,s(A).

Theorem 3 Under the assumptions and notations of
Lemma 1, it holds that
1) When 1 < q < 2, there exist constants c1 and c2 such
that for any η > 0 and m ≥ 1 satisfying

m ≥ c1
L2s(n + log p)

η2
,

we have

E[βq,s(A)] ≥ s−1(1 − η), (23)

P
(
βq,s(A) ≥ s−1(1 − η)

) ≥ 1 − exp
(
−c2η2

m
L4

)
.
(24)

2) When 2 ≤ q ≤ ∞, there exist constants c1 and c2 such
that for any η > 0 and m ≥ 1 satisfying

m ≥ c1
L2s

2(q−1)
q (n + log p)

η2
,

we have

E[βq,s(A)] ≥ 1 − η, (25)

P
(
βq,s(A) ≥ 1 − η

) ≥ 1 − exp
(
−c2η2

m
L4

)
. (26)

Remark 9 Theorem 3 shows that for sub-Gaussian ran-
dom matrix, the q-ratio BCMSV is bounded away from
zero as long as the number of measurements is large
enough. Sub-Gaussian random matrices include Gaussian
and Bernoulli ensembles.

3 Numerical experiments and results
In this section, we introduce a convex-concave method
to solve the sufficient condition (8) so as to achieve
the maximal block sparsity k and present an algorithm

to compute the q-ratio BCMSV. We also conduct com-
parisons between the q-ratio BCMSV-based bounds and
block RIC-based bounds through the BBP.

3.1 Solving the optimization problem (8)
According to Proposition 1, given a q ∈ (1,∞], we need to
solve the optimization problem (8) to obtain the maximal
block sparsity k which guaranties that all block k-sparse
signals can be uniquely recovered by (7). Solving (8) is
equivalent to solve the problem:

max
z∈RN

‖z‖2,q s.t. Az = 0 and ‖z‖2,1 ≤ 1. (27)

However, maximizing mixed �2/�q norm over a polyhe-
dron is non-convex. Here, we adopt the convex-concave
procedure (CCP) (see [26] for details) to solve the prob-
lem (27) for any q ∈ (1,∞]. The algorithm is presented as
follows:

Algorithm: CCP to solve (27).
Give an initial point to zl with l = 0.
Iterate
1. Linearity. Approximate ‖z‖2,q using the first order
Taylor expansion

‖z‖2,q = ‖zl‖2,q + ∇(‖z‖2,q)Tz=zl (z − zl)

= ‖zl‖2,q+[ ‖zl‖1−q
2,q ‖zlb‖q−2

2 zl]T (z − zl),

where zlb =[ ‖zl1‖2, · · · , ‖zl1‖2︸ ︷︷ ︸
n

, ‖zl2‖2, · · · , ‖zl2‖2︸ ︷︷ ︸
n

,

· · · , ‖zlp‖2, · · · , ‖zlp‖2︸ ︷︷ ︸
n

] with ‖zli‖2 denoting the �2

norm of the i-th block of zl for i in [ p].
2. Maximization. Set zl+1 to be the result of

max
z∈RN

‖zl‖2,q+[ ‖zl‖1−q
2,q ‖zlb‖q−2

2 zl]T (z − zl)

s.t. Az = 0, ‖z‖2,1 ≤ 1. (28)

3. Updating iteration. Let l = l + 1.
until stopping criterion is satisfied and k is the largest
integer smaller than zl.

We implement the algorithm to solve (27) under the
following settings. Let A be either Bernoulli or Gaussian
randommatrix withN = 256, varyingm, block size n, and
q. Specifically, m = 64, 128, 192, n = 1, 2, 4, 8, and q =
2, 4, 16, 128, respectively. The results are summarized in
Table 1. Note that when n = 1, the algorithm (28) is iden-
tical to the one in [11]. Themain findings are as follows: (i)
by comparing the results between Bernoulli and Gaussian
randommatrices under the same settings, there is no sub-
stantial difference. Thus, we can now merely focus on the
left part of the table, i.e., Bernoulli random matrix part;
(ii) it can be seen that the results are not monotone with
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Table 1 Maximal sparsity levels from the CCP algorithm for both
Bernoulli and Gaussian randommatrices with N = 256 and
different combinations of n,m, and q

n m
Bernoulli randommatrix Gaussian randommatrix

q = 2 q = 4 q = 16 q = 128 q = 2 q = 4 q = 16 q = 128

1 64 4 4 3 2 4 4 3 3

128 12 9 6 5 13 12 7 6

192 23 22 12 10 23 20 11 10

2 64 3 3 2 2 3 3 2 2

128 9 7 5 4 9 7 5 4

192 16 16 10 8 14 14 9 8

4 64 2 2 1 1 2 2 2 2

128 5 5 4 3 5 5 3 3

192 9 10 6 5 9 10 7 6

8 64 1 1 1 1 1 1 1 1

128 3 3 2 2 2 3 3 2

192 5 6 4 4 5 6 4 4

respect to q (see the row with n = 4,m = 192), which ver-
ifies the conclusion in Remark 3; (iii) when m is the only
variable, it is easy to notice that the maximal block spar-
sity increases asm increases; and (iv) conversely, when n is
the only variable, the maximal block sparsity decreases as
n increases, which is in line with the main result in ([27],
Theorem 3.1).

3.2 Computing the q-ratio BCMSVs
Computing the q-ratio BCMSV (9) is equivalent to solve

min
z∈RN

‖Az‖2 s.t. ‖z‖2,1 ≤ s
q−1
q , ‖z‖2,q = 1. (29)

Since the constraint set is not convex, this is a non-
convex optimization problem. In order to solve (29), we
use Matlab function fmincon as in [11] and define z =
z+ − z− with z+ = max(z, 0) and z− = max(−z, 0).
Consequently, (29) can be reformulated to:

min
z+,z−∈RN

(z+ − z−)TATA(z+ − z−)

s.t. ‖z+ − z−‖2,1 − s
q−1
q ≤ 0,

‖z+ − z−‖2,q = 1,
z+ ≥ 0, z− ≥ 0. (30)

Due to the existence of local minima, we perform an
experiment to decide a reasonable number of iterations
needed to achieve the “global” minima shown in Fig. 1.
In the experiment, we calculate the q-ratio BCMSV of a
fixed unit norm columns Bernoulli random matrix of size
40 × 64, n = s = 4, and varying q = 2, 4, 8, respec-
tively. Fifty iterations are carried out for each q. The figure
shows that after about 30 experiments, the estimate of βq,s,

β̂q,s, becomes convergent, so in the following experiments,
we repeat the algorithm 40 times and choose the smallest
value β̂q,s as the “global” minima. We test indeed to vary
m, s, n, respectively, all indicate 40 is a reasonable number
to be chosen (not shown).
Next, we illustrate the properties of βq,s, which have

been pointed out in Remarks 2 and 3, through experi-
ments. We set N = 64 with three different block sizes
n = 1, 4, 8 (i.e., number of blocks p = 64, 16, 8), three dif-
ferentm = 40, 50, 60, three different q = 2, 4, 8, and three
different s = 2, 4, 8. Unit norm columns Bernoulli random
matrices are used. Results are listed in Table 2. They are
inline with the theoretical results:

(i) βq,s increases as m increases for all cases given that
other parameters are fixed.

(ii) βq,s decreases as s increases for most of cases given
that other parameters are fixed. There are exceptions
whenm = 40, n = 8 with s = 4, and s = 8 under
q = 4, 8, respectively. However, the difference is
about 0.0002, which is possibly caused by numerical
approximation.

(iii) Monotonicity of βq,s does not hold with respect to q
even given that other parameters are fixed.

3.3 Comparing error bounds
Here, we compare the q-ratio BCMSV-based bounds
against the block RIC-based bounds from the BBP under
different settings. The block RIC-based bound is

‖x̂ − x‖2 ≤ 4
√
1 + δ2k(A)

1 − (1 + √
2)δ2k(A)

ζ , (31)

if A satisfies the block RIP of order 2k, i.e., the block RIC
δ2k(A) <

√
2−1 [14, 17]. By using the Hölder’s inequality,

one can obtain the mixed �2/�q norm

‖x̂ − x‖2,q ≤ 4
√
1 + δ2k(A)

1 − (1 + √
2)δ2k(A)

k1/q−1/2ζ , (32)

for 0 < q ≤ 2.
We compare the two bounds (32) and (12). With-

out loss of generality, let ζ = 1. δ2k(A) is approxi-
mated using Monte Carlo simulations. Specifically, we
randomly choose 1000 sub-matrices of A ∈ R

m×N

of size m × 2nk to compute δ2k(A) using the maxi-
mum of max

(
σ 2
max − 1, 1 − σ 2

min
)
among all sampled sub-

matrices. It turns out that this approximated block RIC
is always smaller than or equal to the exact block RIC;
thus, the error bounds based on the exact block RIC
are always larger than those based on the approximated
block RIC. Therefore, it would be enough to show that
the q-ratio BCMSV gives a sharper error bound than the
approximated block RIC.
We use unit norm columns sub-matrices of a row-

randomly-permuted Hadamard matrix (an orthogonal
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Fig. 1 q-ratio BCMSVs calculated for a Bernoulli randommatrix of size 40 × 64 with n = 4, s = 4, and q = 2, 4, 8 as a function of number of
experiments

Bernoulli matrix) with N = 64, k = 1, 2, 4, n = 1, 2,
q = 1.8, and a variety of m ≤ 64 to approximate the q-
ratio BCMSV and the block RIC. Besides the Hadamard
matrix, we also test Bernoulli randommatrices and Gaus-
sian randommatrices with different configurations, which
only return very fewer qualified block RICs. In the sim-
ulation results of [17], the authors showed that under all
considered cases for Gaussian randommatrices, δ2k(A) >√
2 − 1, which is coincident with our finding. Figure 2

shows that the q-ratio BCMSV-based bounds are smaller
than those based on the approximated block RIC. Note
that when m approaches N, βq,s(A) → 1 and δ2k(A) → 0,
as a result, the q-ratio BCMSV-based bounds are smaller
than 2.2, while the block RIC-based bounds are larger than
or equal to 4.

4 Conclusion and discussion
In this study, we introduced the q-ratio block sparsity
measure and the q-ratio BCMSV. Theoretically, through
the q-ratio block sparsitymeasure and the q-ratio BCMSV,
we (i) established the sufficient condition for the unique
noise-free BBP recovery; (ii) derived both the mixed �2/�q
norm and the mixed �2/�1 norm bounds of recovery
errors for the BBP, the BDS, and the group lasso estima-
tor; and (iii) proved the q-ratio BCMSV is bounded away
from zero if the number of measurements is relatively
large for sub-Gaussian random matrix. Afterwards, we
used numerical experiments via two algorithms to illus-
trate theoretical results. In addition, we demonstrated that
the q-ratio BCMSV-based error bounds are much tighter
than those based on block RIP through simulations.

Table 2 The q-ratio BCMSVs with varyingm, n, p, q, and s

m n p
q = 2 q = 4 q = 8

s = 2 s = 4 s = 8 s = 2 s = 4 s = 8 s = 2 s = 4 s = 8

40 1 64 0.7025 0.5058 0.2732 0.7579 0.5495 0.1863 0.7223 0.3954 0.0726

4 16 0.4953 0.2614 3.5e−04 0.5084 0.1741 5.1e−04 0.4592 0.0662 5.2e−04

8 8 0.3240 0.0256 5.1e−04 0.2987 4.1e−04 6.1e−04 0.2492 3.9e−04 6.6e−04

50 1 64 0.7199 0.5169 0.3547 0.7753 0.5766 0.2676 0.7366 0.5250 0.1573

4 16 0.5389 0.3137 0.0767 0.5235 0.2975 0.0015 0.4870 0.1816 9.5e−04

8 8 0.4324 0.1274 9.9e−04 0.3783 0.0398 0.0010 0.3190 8.5e−04 9.3e−04

60 1 64 0.7345 0.5835 0.4316 0.7948 0.6256 0.3797 0.7620 0.5757 0.2877

4 16 0.5626 0.3675 0.1502 0.5275 0.3249 0.1126 0.4926 0.2753 0.0361

8 8 0.4554 0.2147 0.0023 0.4046 0.1809 0.0021 0.3695 0.1063 0.0017
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Fig. 2 The q-ratio BCMSV-based bounds and the block RIC-based bounds for Hadamard sub-matrices with N = 64, k = 1, 2, 4, n = 1, 2, and q = 1.8

There are still some issues left for future work. For
example, analogue to the case for the q-ratio CMSV, the
geometrical property of the q-ratio BCMSV can be inves-
tigated to derive sufficient conditions and error bounds
for block sparse signal recovery.

Appendix - Proofs
Basically, the main processes of proofs follow from those
in [11] with extensions to block sparse signals. We list all
the details here for the sake of completeness.

A.1

Proof Suppose there exists z ∈ kerA \ {0} and |S| ≤ k
such that ‖zS‖2,1 ≥ ‖zSc‖2,1, then we have

‖z‖2,1 = ‖zS‖2,1 + ‖zSc‖2,1 ≤ 2‖zS‖2,1
≤ 2k1−1/q‖zS‖2,q ≤ 2k1−1/q‖z‖2,q, ∀q ∈ (1,∞] ,

which is identical to k ≥ 2
q

1−q kq(z), ∀q ∈ (1,∞].
In contrast, suppose ∃ q ∈ (1,∞] such that k <

min
z∈kerA\{0}

2
q

1−q kq(z), then ‖zS‖2,1 < ‖zSc‖2,1 holds for all

z ∈ kerA \ {0} and |S| ≤ k, which implies that the block
null space property of order k is fulfilled; thus, any block
k-sparse signal x can be obtained via (7).

A.2

Proof (i) Prove the left hand side of (10):
For any z ∈ R

N \ {0} and 1 < q2 ≤ q1 ≤ ∞, sup-

pose kq1(z) ≤ s, then we can get
( ‖z‖2,1

‖z‖2,q1
) q1

q1−1 ≤ s ⇒
‖z‖2,1 ≤ s

q1−1
q1 ‖z‖2,q1 ≤ s

q1−1
q1 ‖z‖2,q2 . Since q̃ = q2(q1−1)

q1(q2−1)

and ‖z‖2,1
‖z‖2,q2 ≤ s

q1−1
q1 , we have

kq2(z) =
( ‖z‖2,1

‖z‖2,q2

) q2
q2−1 ≤ s

q2(q1−1)
q1(q2−1) = sq̃,

from which we can infer

{z : kq1(z) ≤ s} ⊆ {z : kq2(z) ≤ sq̃}.

Therefore, we can get the left hand side of (10) through

βq1,s(A) = min
z �=0,kq1 (z)≤s

‖Az‖2
‖z‖2,q1

≥ min
z �=0,kq2 (z)≤sq̃

‖Az‖2
‖z‖2,q1

= min
z �=0,kq2 (z)≤sq̃

‖Az‖2
‖z‖2,q2

· ‖z‖2,q2
‖z‖2,q1

≥ min
z �=0,kq2 (z)≤sq̃

‖Az‖2
‖z‖2,q2

= βq2,sq̃(A).

(ii) Verify the right hand side of (10):
Suppose kq2(z) ≤ sq̃, for any z ∈ R

N \ {0}, by using the
non-increasing property of the q-ratio block sparsity with
respect to q and q2 ≤ q1 ≤ ∞, we have the following two
inequalities: ‖z‖2,1

‖z‖2,∞ = k∞(z) ≤ kq2(z) ≤ sq̃ and kq1(z) ≤
kq2(z) ≤ sq̃. Since 1 < q2 ≤ q1 ≤ ∞, the former inequality
implies that ‖z‖2,q2‖z‖2,q1 ≤ ‖z‖2,1

‖z‖2,∞ ≤ sq̃ ⇒ ‖z‖2,q1‖z‖2,q2 ≥ s−q̃. The
latter inequality implies that

{z : kq2(z) ≤ sq̃} ⊆ {z : kq1(z) ≤ sq̃}.
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Therefore, we can obtain the right hand side of (10)
through

βq2,sq̃(A) = min
z �=0,kq2 (z)≤sq̃

‖Az‖2
‖z‖2,q2

≥ min
z �=0,kq1 (z)≤sq̃

‖Az‖2
‖z‖2,q2

= min
z �=0,kq1 (z)≤sq̃

‖Az‖2
‖z‖2,q1

· ‖z‖2,q1
‖z‖2,q2

≥ βq1,sq̃(A) · s−q̃.

A.3

Proof The proof procedure follows from the similar
arguments in [6, 10], and the procedure can be divided
into two main steps.

Step 1: We first derive upper bounds of the q-ratio block
sparsity of residual h = x̂ − x for all algorithms. As x is
block k-sparse, we assume that bsupp(x) = S and |S| ≤ k.

For the BBP and the BDS, since ‖x̂‖2,1 = ‖x + h‖2,1 is
theminimum among all z satisfying the constraints of BBP
and BDS (including the true signal x), we have

‖x‖2,1≥‖x̂‖2,1=‖x+h‖2,1=‖xS+hS‖2,1+‖xSc+hSc‖2,1
≥ ‖xS‖2,1 − ‖hS‖2,1 + ‖hSc‖2,1
= ‖x‖2,1 − ‖hS‖2,1 + ‖hSc‖2,1,

which can be simplified to ‖hSc‖2,1 ≤ ‖hS‖2,1. Thereby,
we can obtain the following inequality:

‖h‖2,1 = ‖hS‖2,1 + ‖hSc‖2,1 ≤ 2‖hS‖2,1
≤ 2k1−1/q‖hS‖2,q ≤ 2k1−1/q‖h‖2,q, ∀q ∈ (1,∞] ,

which is equivalent to

kq(h) =
(‖h‖2,1

‖h‖2,q
) q

q−1 ≤ 2
q

q−1 k.

For the group lasso, since the noise ε satisfies
‖ATε‖2,∞ ≤ κμ for κ ∈ (0, 1) and x̂ is a solution of the
group lasso, we have

1
2
‖Ax̂ − y‖22 + μ‖x̂‖2,1 ≤ 1

2
‖Ax − y‖22 + μ‖x‖2,1.

Substituting y by Ax + ε leads to

μ‖x̂‖2,1 ≤ 1
2
‖ε‖22 − 1

2
‖A(x̂ − x) − ε‖22 + μ‖x‖2,1

= 1
2
‖ε‖22 − 1

2
‖A(x̂ − x)‖22 + 〈A(x̂ − x), ε〉

− 1
2
‖ε‖22 + μ‖x‖2,1

≤ 〈A(x̂ − x), ε〉 + μ‖x‖2,1
= 〈x̂ − x,ATε〉 + μ‖x‖2,1
≤ ‖x̂ − x‖2,1‖ATε‖2,∞ + μ‖x‖2,1
≤ κμ‖h‖2,1 + μ‖x‖2,1.

The last second inequality follows by applying Cauchy-
Schwarz inequality block wise and the last inequality can
be written as

‖x̂‖2,1 ≤ κ‖h‖2,1 + ‖x‖2,1. (33)

Therefore, it holds that

‖x‖2,1 ≥ ‖x̂‖2,1 − κ‖h‖2,1
= ‖x + hSc + hS‖2,1 − κ‖hSc + hS‖2,1
≥ ‖x + hSc‖2,1−‖hS‖2,1−κ(‖hSc‖2,1 + ‖hS‖2,1)
= ‖x‖2,1 + (1 − κ)‖hSc‖2,1 − (1 + κ)‖hS‖2,1,

which can be simplified to

‖hSc‖2,1 ≤ 1 + κ

1 − κ
‖hS‖2,1.

Thus, we can obtain

‖h‖2,1 = ‖hSc‖2,1 + ‖hS‖2,1
≤ 2

1 − κ
‖hS‖2,1

≤ 2
1 − κ

k1−1/q‖hS‖2,q

≤ 2
1 − κ

k1−1/q‖h‖2,q,

which can be reformulated by

kq(h) =
(‖h‖2,1

‖h‖2,q
) q

q−1 ≤
(

2
1 − κ

) q
q−1

k.

Step 2: Obtain upper bound of ‖Ah‖2 and then con-
struct the mixed �2/�q norm and the mixed �2/�1 norm
of the recovery error vector h via the q-ratio BCMSV for
each algorithm.
(i) For the BBP, since both x and x̂ satisfy the constraint

‖y−Az‖2 ≤ ζ , by using the triangle inequality, we can get

‖Ah‖2=‖A(x̂ − x)‖2≤‖Ax̂ − y‖2 + ‖y − Ax‖2 ≤ 2ζ .
(34)
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Following from the definition of the q-ratio BCMSV and
kq(h) ≤ 2

q
q−1 k, we have

β
q,2

q
q−1 k

(A)‖h‖2,q≤‖Ah‖2≤2ζ ⇒ ‖h‖2,q ≤ 2ζ
β
q,2

q
q−1 k

(A)
.

Furthermore, we can obtain ‖h‖2,1 ≤ 4k1−1/qζ
β
q,2

q
q−1 k

(A)
by

using the property ‖h‖2,1 ≤ 2k1−1/q‖h‖2,q.

(ii) Similarly for the BDS, since both x and x̂ satisfy the
constraint ‖AT (y − Az)‖2,∞ ≤ μ, we have

‖ATAh‖2,∞ ≤‖AT (y − Ax̂)‖2,∞+‖AT (y− Ax)‖2,∞ ≤ 2μ.

By applying the Cauchy-Schwarz inequality again as in
Step 1, we obtain

‖Ah‖22 = 〈Ah,Ah〉 = 〈h,ATAh〉
≤ ‖h‖2,1‖ATAh‖2,∞ ≤ 2μ‖h‖2,1. (35)

At last, with the definition of the q-ratio BCMSV, kq(h) ≤
2

q
q−1 k and ‖h‖2,1 ≤ 2k1−1/q‖h‖2,q, we get the upper

bounds of the mixed �2/�q norm and the mixed �2/�1
norm for h :

β2
q,2

q
q−1 k

(A)‖h‖22,q≤‖Ah‖22≤2μ‖h‖2,1≤4μk1−1/q‖h‖2,q

⇒ ‖h‖2,q ≤ 4k1−1/q

β2
q,2

q
q−1 k

(A)
μ

and ‖h‖2,1 ≤ 2k1−1/q‖h‖2,q ≤ 8k2−2/q

β2

q,2
q

q−1 k
(A)

μ.

(iii) For the group lasso, with ‖ATε‖2,∞ ≤ κμ, we have

‖ATAh‖2,∞ ≤ ‖AT (y − Ax)‖2,∞ + ‖AT (y − Ax̂)‖2,∞
≤ ‖ATε‖2,∞ + ‖AT (y − Ax̂)‖2,∞
≤ κμ + ‖AT (y − Ax̂)‖2,∞.

Moreover, since x̂ is the solution of the group lasso, the
optimality condition yields that

AT (y − Ax̂) ∈ μ∂‖x̂‖2,1,
where the sub-gradients in ∂‖x̂‖2,1 for the ith block are
x̂i/‖x̂i‖2 if x̂i �= 0 and is some vector g satisfying ‖g‖2 ≤
1 if x̂i = 0 (which follows from the definition of sub-
gradient). Thus, we have ‖AT (y − Ax̂)‖2,∞ ≤ μ, which
leads to

‖ATAh‖2,∞ ≤ (κ + 1)μ.

Following the inequality (35), we get

‖Ah‖22 ≤ (κ + 1)μ‖h‖2,1. (36)

As a result, since kq(h) ≤
(

2
1−κ

) q
q−1 k and ‖h‖2,1 ≤

2
1−κ

k1−1/q‖h‖2,q, we can obtain

β2
q,( 2

1−κ
)

q
q−1 k

(A)‖h‖22,q ≤ ‖Ah‖22 ≤ (κ + 1)μ‖h‖2,1

≤ μ
2(κ + 1)
1 − κ

k1−1/q‖h‖2,q, (37)

which is equivalent to

‖h‖2,q ≤ k1−1/q

β2

q,
(

2
1−κ

) q
q−1 k

(A)
· 2(κ + 1)

1 − κ
μ

and ‖h‖2,1 ≤ 1+κ
(1−κ)2

· 4k2−2/q

β2

q,( 2
1−κ

)

q
q−1 k

(A)
μ.

A.4

Proof Since the infimum of φk(x) is achieved by an
block k-sparse signal zwhose non-zero blocks equal to the
largest k blocks, indexed by S, of x, so φk(x) = ‖xSc‖2,1 and
let h = x̂− x. Similar as the proof procedure for Theorem
1, the derivations also have two steps.
Step 1: For all algorithms, bound ‖h‖2,1 via ‖h‖2,q and

φk(x).
First for the BBP and the BDS, since ‖x̂‖2,1 = ‖x+ h‖2,1

is the minimum among all z satisfying the constraints of
the BBP and the BDS, we have

‖xS‖2,1 + ‖xSc‖2,1 = ‖x‖2,1 ≥ ‖x̂‖2,1 = ‖x + h‖2,1
= ‖xS + hS‖2,1 + ‖xSc + hSc‖2,1
≥ ‖xS‖2,1−‖hS‖2,1+‖hSc‖−‖xSc‖2,1,

which is equivalent to

‖hSc‖2,1 ≤ ‖hS‖2,1 + 2‖xSc‖2,1 = ‖hS‖2,1 + 2φk(x).
(38)

In consequence, we can get

‖h‖2,1 = ‖hS‖2,1 + ‖hSc‖2,1 (39)
≤ 2‖hS‖2,1 + 2φk(x)
≤ 2k1−1/q‖hS‖2,q + 2φk(x)
≤ 2k1−1/q‖h‖2,q + 2φk(x). (40)

As for the group lasso, by using (33), we can obtain

‖xS‖2,1 + ‖xSc‖2,1 = ‖x‖2,1 ≥ ‖x̂‖2,1 − κ‖h‖2,1
≥ ‖xS + xSc + hS + hSc‖2,1
− κ‖hS + hSc‖2,1
≥ ‖xS + hSc‖2,1 − ‖xSc‖2,1
− ‖hS‖2,1 − κ‖hS‖2,1 − κ‖hSc‖2,1
= ‖xS‖2,1 + (1 − κ)‖hSc‖2,1
− ‖xSc‖2,1 − (1 + κ)‖hS‖2,1,
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which points to that

‖hSc‖2,1 ≤ 1 + κ

1 − κ
‖hS‖2,1 + 2

1 − κ
‖xSc‖2,1. (41)

Therefore, we have

‖h‖2,1 ≤ ‖hS‖2,1 + ‖hSc‖2,1
≤ 2

1 − κ
‖hS‖2,1 + 2

1 − κ
‖xSc‖2,1

≤ 2
1 − κ

k1−1/q‖h‖2,q + 2
1 − κ

φk(x). (42)

Step 2: Verify that the q-ratio block sparsity of h has
lower bound in the form of ‖h‖2,q for each algorithm,
when ‖h‖2,q is larger than the part of recovery bounds
caused by the measurement error.
(i) For the BBP, we assume that h �= 0 and ‖h‖2,q >

2ζ
β
q,4

q
q−1 k

(A)
; otherwise, (17) holds trivially. Since ‖Ah‖2 ≤

2ζ (see (34)), we have ‖h‖2,q >
‖Ah‖2

β
q,4

q
q−1 k

(A)
. Then, it holds

that
‖Ah‖2
‖h‖2,q < β

q,4
q

q−1 k
(A) = min

h �=0,kq(h)≤4
q

q−1 k

‖Ah‖2
‖h‖2,q ,

which implies that

kq(h) > 4
q

q−1 k ⇒ ‖h‖2,1 > 4k1−1/q‖h‖2,q. (43)

Combining (40), we have ‖h‖2,q < k1/q−1φk(x), which
completes the proof for (17). The error bound of the
mixed �2/�1 norm (18) follows immediately from (17) and
(40).
(ii) As for the BDS, similarly we assume h �= 0 and

‖h‖2,q > 8k1−1/q

β2

q,4
q

q−1 k
(A)

μ; otherwise, (19) holds trivially.

As ‖Ah‖22 ≤ 2μ‖h‖2,1 (see (35)), we have ‖h‖2,q >

4k1−1/q

β2

q,4
q

q−1 k
(A)

· ‖Ah‖22‖h‖2,1 . Then, we can get

β2

q,4
q

q−1 k
(A)= min

h�=0,kq(h)≤4
q

q−1 k

‖Ah‖22
‖h‖22,q

>
‖Ah‖22
‖h‖22,q

⎛
⎝ 4

q
q−1 k
kq(h)

⎞
⎠
1−1/q

,

which implies that

kq(h) > 4
q

q−1 k ⇒ ‖h‖2,1 > 4k1−1/q‖h‖2,q. (44)

Combining (40), we have ‖h‖2,q < k1/q−1φk(x), which
completes the proof for (19). (20) holds as a result of (19)
and (40).
(iii) For the group lasso, we assume that h �= 0 and

‖h‖2,q > 1+κ
1−κ

· 4k1−1/q

β2

q,( 4
1−κ

)

q
q−1 k

(A)
μ; otherwise, (21) holds triv-

ially. Since in this case ‖Ah‖22 ≤ (1+ κ)μ‖h‖2,1 (see (36)),

we have ‖h‖2,q > 4k1−1/q

(1−κ)β2

q,( 4
1−κ

)

q
q−1 k

(A)
· ‖Ah‖22‖h‖2,1 , which leads

to

β2
q,( 4

1−κ
)

q
q−1 k

(A) = min
h �=0,kq(h)≤( 4

1−κ
)

q
q−1 k

‖Ah‖22
‖h‖22,q

>
‖Ah‖22
‖h‖22,q

⎛
⎝ ( 4

1−κ
)

q
q−1 k

kq(h)

⎞
⎠

1− 1
q

⇒ kq(h) > (
4

1 − κ
)

q
q−1 k

⇒ ‖h‖2,1 >
4

1 − κ
k1−1/q‖h‖2,q. (45)

Combining (42), we have ‖h‖2,q < k1/q−1φk(x), which
completes the proof for (21). Consequently, (22) is
obtained via (21) and (42).
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