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Abstract

Continuous miniaturization of circuitry has open the door for various novel application scenarios of millimeter-sized
wireless agents such as for the exploration of difficult-to-access fluid environments. In this context, agents are
envisioned to be employed, e.g., for pipeline inspection or groundwater analysis. In either case, the demand for
miniature sensors is incompatible with propulsion capabilities. Consequently, the agents are condemned to be
kinetically passive and are, thus, subject to the fluid dynamics present in the environment. In these situations, the
localization is complicated by the fact that unknown external forces (e.g., from the fluid) govern the motion of the
agents. In this work, a comprehensive framework is presented that targets the simultaneous estimation of the external
forces stemming from the fluid and the agents’ positions which are traversing the environment. More precisely, a
Bayesian hierarchical model is proposed that models’ relevant characteristics of the fluid via a spatial random field and
incorporates this as control input into the motion model. The random field model facilitates the consideration of
spatial correlation among the agents’ trajectories and, thereby, improves the localization significantly. Additionally,
this is combined with multiple particle filtering to account for the fact that within such underground fluid
environments, only a localization based on distance and/or bearing measurements is feasible. In the results provided
in this work, which are based on realistic computational fluid dynamics simulations, it is shown that—via the
proposed spatial model—significant improvements in terms of localization accuracy can be achieved.

Keywords: Wireless sensor networks, Random field, Tracking, Multiple particle filtering

1 Introduction
Technological advances played a pivotal role in leveraging
the use of miniature wireless agents for novel applica-
tion cases. Among these are for example scenarios where
millimeter-sized agents are employed for pipeline inspec-
tion [1–3] or the exploration of difficult-to-access envi-
ronments [4]. In the former case, agents are deployed
to monitor the physical state of the piping system, i.e.,
to analyze the pipes for physical damages. Moreover, the
agents facilitate the inspection for fluid residuals which
eventually could lead to reduced throughput. Additional
application cases include for example the use in under-
ground scenario such as sewage networks or groundwater
systems. In the latter scenario, agents could play a key

*Correspondence: schlupkothen@ice.rwth-aachen.de
Chair for Integrated Signal Processing Systems, RWTH Aachen University,
Templergraben 55, 52062 Aachen, Germany

role in the analysis of water pollution and, hence, in
water safety. In either of the scenarios, it is assumed that
due to energy limitations resulting from constraints on
the agents’ physical size, only very limited communica-
tion among the agents is possible. More precisely, it is
assumed that only pair-wise distance and/or bearing mea-
surements are feasible, necessitating the use of centralized
localization schemes in a fusion center (FC).
However, the use of miniature agents in these situ-

ations is complicated by the following facts. First, as
mentioned above, the agents need to be small to ensure
that they spread sufficiently and to avoid that they get
stuck in the environment. Second, these size-constraints
impose energy and processing limitations on the agents
that, among other effects, condemn the agents to be
kinetically passive. Consequently, the agents’ motion is
fully governed by the fluid. Third, the system under
investigation may be partially or fully unknown. This
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is particularly likely for underground systems. Conse-
quently, the effect of the fluid on the agents’ kinetics is
either difficult to predict or unknown. Fourth, due to the
deployment in underground or isolated environments, a
localization1, e.g., via global positioning system (GPS) is
not possible. For this reason, the agents are equipped with
ultrasonic transceivers that facilitate agent-to-agent mea-
surements (AAMs) and agent-to-beacon measurements
(ABMs). Fifth and finally, in the mentioned scenarios, the
deployment of beacons2 is costly and/or difficult, as the
environment is unknown and, thus, proper locations for
the beacons cannot be determined a priori.
In this work, attention is drawn to issues that result

from the abovementioned constraints. More precisely, a
framework is presented that addresses these challenges as
follows: A statistical model is used to describe parame-
ters of the environment that are pivotal to the tracking of
the agents. The model comprises a spatial time-invariant
random field (RF) which is approximated as a Gaussian
Markov random field (GMRF) with generally non-zero-
mean and covariance components. This model is used to
enhance the motion model of the agents by considering
the RF as artificial control input (ACI). More specifi-
cally, the classical motion models employed (cf. [5]), e.g.,
for kinetically autonomous agent i, xi,k+1 = f (xi,k , θ , ν),
where ν is the process noise, is augmented as xi,k+1 =
f (xi,k ,ui,k , θ , ν). The ACI ui,k takes the role of the con-
trol input (CI) in the case of kinetically active agents,
with the only difference that the former is unknown and,
hence, needs to be estimated. This modeling is addition-
ally complicated by the fact that the agents are operating
in spatially confined areas where boundary effects are rel-
evant, considering these effects are pivotal for improving
the localization accuracy through the abovementioned RF
model. To this end, corresponding adaptations to clas-
sical GMRF models are adopted. Moreover, to facilitate
efficient tracking of multiple agents, multiple particle fil-
tering is adopted, which employs a separate particle filter
(PF) for each agent. In summary, a comprehensive frame-
work is proposed in this work that reduces the GMRF
estimation to a parameter estimation problem via efficient
parametrization. Additionally, it utilizes novel multiple
particle filter (MPF) (cf. [6]) schemes for state estimation.
Consequently, the resulting problem tackled in this work
is a joint state and parameter estimation problem.

1.1 Related works
Several application cases have been presented where
uncertainty regarding the environment and the locations
of the agents need to be addressed. For example, in simul-
taneous localization and mapping (SLAM) context, in [7],

1In this work, we may use the words localization and tracking interchangeably.
2In this work, beacons denote stationary agents whose absolute position is
known a priori and which aid in localizing the ordinary mobile agents.

a spatial GMRF is estimated that is simplified through
the availability of direct field measurements. The objec-
tive is to simultaneously localize a robot and estimate
the RF. Compared to our scenario, a simpler scenario is
considered as noisy localization data and direct field mea-
surements are assumed to be readily available. Moreover,
no coupling between the motion of the robot and the
field needs to be considered as the robot is assumed to be
kinetically active. Similarly, in [8], a wireless sensor net-
work (WSN) with known positions is considered which
aim to estimate the parameters of a GMRF via direct field
measurements. In [9–11], a stationary WSN is considered
which estimates a RF using Gaussian process regression
and direct field measurements. Noisy positions of the
agents are assumed to be available. In [12], an underwater
robot is considered whose motion is affected by the water.
The localization is based on a PF, where direct available
flow measurements are compared to an a priori avail-
able velocity field model. Due to the fact that the robot is
kinetically active, a field model is available prior to deploy-
ment and because also field measurements are readily
available, several assumptions of our scenario are defied.
Additionally, in our previous conference work [13], a first
step towards the consideration of the fluid’s effects on the
agents’ motion has been taken. More precisely, a multi-
variate Gaussian ACI model is used to describe additional
changes regarding the agents’ speed and turn rate. The
model is fixed and chosen prior to localization. Since this
previous work targets the very same application case, also
distance and/or bearing based localization is considered.
In [14], a cooperative scheme for decentralized localiza-

tion is presented. It is assumed that the agents can com-
municate additional information besides, e.g., distance
measurements. This additional information is inevitable
because of the decentralized localization procedure. Con-
sequently, due to the decentralized localization scheme,
agents with significantly higher battery capacity are
required which are unavailable for the application sce-
nario considered in this work due to the hardware con-
straints mentioned in Section 1. Moreover, in [14], no
effects of the environment on the agents are considered
which presents the main contribution of this work.
In summary, none of the available schemes considers

all requirements set by our application case. Most impor-
tantly, in all but [12]’s scenario and our previous confer-
ence work, coupling between the field and the motion
is neglected. Moreover, most of the works assume direct
field measurements which significantly simplifies the field
inference. For a brief summary of the most related works,
see Table 1.

1.2 Contribution
Motivated by the performance achieved through abstract
and position-independent models shown in our previous
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work [13], in this work, new extensions to the input mod-
eling are proposed. More precisely, a RF model is used to
directly model the ACI density on a spatial level and under
consideration of boundary effects which are present at
the border of the environment. The RF is estimated with-
out additional measurements, i.e., is inferred indirectly
via distance and/or bearing measurements and the local-
ization which is performed using these measurements.
Consequently, no additional complexity is added to the
resource-limited agents as all processing takes place in the
FC (centralized localization).
To facilitate the inference of the RF, a computationally

efficient GMRF model with few hyper-parameters is used
to model the spatial correlation. Moreover, to account for
the fact that no direct field measurements are assumed,
the standard GMRF model is extended by a mean compo-
nent which is estimated simultaneously.
In summary, a joint framework is presented in which

the parameters of the GMRF as well as the positions of
the agents are estimated. This is achieved also through the
use sequential Monte Carlo squared (SMC2) that has been
extended to operate with novel MPF schemes. Thereby, a
spatial model is built which naturally extends the abstract
model proposed in [13] and considers spatial correlation
in the environment and, thus, the agents’ trajectories to
improve the localization. Consequently, the following list
of contributions of this work can be given.

1) Extension of the ACI scheme presented in [13] via a
GMRF for spatial modeling. Through this, also the
spatial correlation among agents in the environment
can be exploited efficiently for improved localization
accuracy.

2) Derivation of a corresponding Bayesian hierarchical
model (BHM) that describes the coupling of the
modeled field with the motion of the agents

3) Formalization of a joint state and parameter
estimation problem that comprehensively couples
the localization with the field inference problem.

4) Adaptions to the SMC2 framework, which is used to
solve the joint state and parameter estimation
problem, to leverage MPF and through this tackles
the high-dimensional state space and alleviates the
“curse of dimensionality.”

5) Efficacy improvements for low-complexity
time-updating which is relevant for the sequential
Monte Carlo (SMC) steps.

1.3 Organization
This work is organized as follows. In Section 2, a summary
of relevant background information is given. This covers
for example multiple particle filtering which is employed
for state estimation. Moreover, methods for combined
state and parameter estimation are discussed, and special

attention is drawn to a method which is known as SMC2.
Additionally, RFs in general and GMRFs in particular
are introduced and corresponding parameterizations are
discussed. In Section 3, the modeling approach devel-
oped in this work is presented which builds upon the
GMRFs. Section 5 outlines the link between this model
and the ACI. In Section 6, the time update model for the
SMC-based estimation and inference is derived which is
followed by the final proposed algorithm in Section 7.
Sections 8 and 9 introduce the simulation setup as well as
discusses numerical results. Final conclusions are drawn
in Section 10.

2 Background
As briefly outlined in Section 1, this paper is concerned
with the localization of wireless agents that is improved
through the use of an environment model and its direct
embedding into the localization framework. This model is
used to represent relevant kinetic quantities that directly
affect each agent’s motion. Moreover, distance and/or
bearing measurement needs to be considered because of
the operation in GPS-denied areas. Since both types of
measurements are inherently nonlinear and because real-
istic motion in such environments is best described using
curvilinearmodels, particle filtering is applied in this work
for state estimation. Subsequently, a brief introduction to
particle filtering, multiple particle filtering, and combined
state and parameter estimation, to the extent required for
this work, is given.

2.1 State space models
Considered henceforth is the following state space model
(SSM)

xi,k+1 = f (xi,k ,uk,i, θ , νk), (1a)
yi,k = h(xi,k ,Z−i,k , ηk), (1b)

where xi,k ∈ R
nx represents the state of agent i at dis-

crete time k and yi,k ∈ R
ny represents the corresponding

measurements of this agent, each of which, by the nature
of AAMs, also depends on the state vectors of the other
agents involved in these measurements, Z−i,k . More pre-
cisely, Z−i,k denotes the collection of state vectors of all
agents but i. The state evolution parameters uk,i, θ denote
respectively the control input and a set of determinis-
tic parameters. Moreover, νk and ηk denote the process
noise and measurement noise, respectively. The generally
nonlinear functions f (·) and h(·) denote the state evo-
lution and measurement models, respectively, with noise
included.
Equivalently, (1) can be written as

xi,k ∼ p(xi,k|xi,k−1,uk,i, θ), (2a)
yi,k ∼ p(yi,k|xi,k ,Z−i,k). (2b)
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where we used the short-hand notation p(a|b) to denote
the probability density function (PDF) pA|B(A = a|B =
b). Under the assumption that uk,i and θ are known or
not relevant, classical particle filtering can be employed
since tracking the agents through time is a state estimation
problem, cf. Section 2.2 and Appendix A.1.

Remark 1 Note that, as mentioned in Section 1, kinet-
ically passive agents are considered, i.e., uk,i ≡ 0 strictly
speaking. However, in the course of this work, a scheme is
presented which aims to resemble external forces originat-
ing from the fluid that are modeled as ACI uk,i.

The more general case where the parameters θ are
unknown and, hence, need to be estimated is addressed in
Appendix A.2. In this work, θ describes parameters of the
GMRFwhich, in turn, is used to model the external forces.
Background information on RFs in general and GMRFs in
particular, as well as its underlying finite element method
(FEM) description is given in Appendix A.4.

2.2 Multiple particle filtering
Classical (single) PFs (cf. Appendix A.1) are known to
suffer from the “curse of dimensionality,” i.e., the fact
that an exponentially increasing number of particles is
required to accurately capture the posterior distribu-
tion as more agents need to be tracked [15]. This is
because the dimensionality of the state space grows in
proportion to the number of agents. To this end, the
concept of multiple particle filtering, in which one PF
is employed for each agent individually, has been pro-
posed. However, its application to our setup gives rise to
a problem denoted as likelihood approximation problem
(LAP). The problem is due to the fact that the utiliza-
tion of AAMs is required for accurate localization and
the fact that in MPF, the individual particles of each
agent are processed by their individual PF. This intro-
duces dependencies among the PFs since for each PF,
such as the one for agents i, the likelihood p(yi,k|xi,k)
is required (cf. (50)), while only p(yi,k|xi,k , xj,k) is avail-
able. This is due to the fact that distance and bearing
measurements are relative measurements between two
agents such as i and j and, thus, the measurements are
dependent on the state of both agents. To nevertheless
employMPF, the likelihood approximation (LA) proposed
in [16] is used. This approximation relies on intermediary
(after time update but before the measurement update)
particles from all near-by agents. Due to the fact that
also the proposed LA scheme is employed in a FC, no
additional communication cost is incurred despite the
assumed knowledge on the intermediary particles. With
this approximation, a separate PF can be employed for
each agent to reduce the computational complexity com-
pared to single particle filtering which would demand

significantly more particles for comparable localization
accuracy.

2.3 Gaussian Markov random fields
A zero-mean GMRF can also be understood as a discrete
approximation through FEMs of the continuously indexed
Gaussian RF (cf. Appendix: A.4) z(s) using a set ofNα basis
functions

{
ψnα

}

z(s) =
Nα∑

nα=1
ψnα (s)αnα , (3)

where ψnα : � →[ 0, 1] and ψnα (s) is the nαth basis
function evaluated at position s ∈ � and {αnα } is a set
of weights for the basis functions. The random vector
α =[α1 . . . αNα ]ᵀ ∈ R

Nα in conjunction with G describes a
GMRF as per Definition 7 [17], where the positions of the
vertices V of G are equal to the locations where the corre-
sponding basis function achieve their maximum value of
1 and all other basis functions are 0.
The GMRF with Matérn covariance function (cf.

Appendix A.5) is used subsequently to model the effect
of the fluid on the agents’ motion. In this context, spe-
cial attention is drawn on the modeling through basis
functions as presented above.

3 Proposed GaussianMarkov random field model
This work targets the estimation and modeling of external
(i.e., driving) forces driving the agents’ motion to improve
the localization. These forces are relevant particularly for
the localization of kinetically passive agents, where the
fluid governs the agents’ motion and where a localization
solely based on distance and/or bearing measurements
is inaccurate or only feasible with huge computational
complexity.
To some extent, the work presented herein can be

understood as a generalization of the concept proposed
in our previous conference work [13], where an abstract
statistical model for the external forces has been used in
combination with particle filtering. In [13], as well as in
this work, the objective is to describe these forces, for
example by means of additional changes in the agents’
speed or heading direction. The extension proposed
herein targets the estimation and modeling of the driving
forces by means of a RF and, thus, aims to improve the
localization accuracy through the consideration of spatial
correlation of these forces across the environment. Con-
sidering the correlation is important, not only because it is
more realistic due the common fluid of all agents, but also
because limited information in the measurement update
phase can be compensated to some extent by knowl-
edge of the underlying RF that models the driving forces.
The resulting algorithm is henceforth denoted as random
field-aided tracking (RFaT) algorithm. To account for the
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fact that in most of the considered application scenar-
ios, agents are deployed in confined areas, also boundary
effects are considered. As will be shown in more detail
later, this is achieved by introducing two spatial domains
with different correlation properties which respectively
correspond to the fluid- and the non-fluid-carrying parts
of the environment.
For the modeling, a GMRF is considered which presents

a computationally efficient FEM approximation of a Gaus-
sian RF (cf. Appendix A.4). Via the modeling as a RF,
a single position-dependent model is obtained that is of
use for all agents traversing the environment. This is in
contrast to the procedure devised in [13], where only a
fixed, position-independent statistical model is used. The
GMRF is modeled using only a few hyper-parameters
and reduces the problem of jointly localizing the agents
and estimating the field to a joint parameter and state
estimation problem.
The estimation of the field parameters is performed

only through the distance and/or bearing measurements
between agents and beacons. Consequently, no direct
inference of the field parameters is possible. To neverthe-
less infer information about the field, a complex BHM is
proposed, which is tackled through a combination of SMC
and particle Markov Monte Carlo chain (PMCMC) meth-
ods. As mentioned in Section 2.2, the scheme is combined
with the MPF framework in general and, in particular, the
Monte Carlo approximation (MCA)-based LA proposed
in [16] to ensure convergence of the high-dimensional
state estimation problem.

4 Environmentmodeling via GaussianMarkov
random fields

In this work, a scalar GMRF is used to model the effects
of the fluid on the agents’ motion. The assumption of a
scalar field reduces computational complexity while, yet,
offering sufficient modeling flexibility for the considered
application case. The general concepts presented herein
are, however, extensible to multivariate fields. The RF is
used to model, for example, additional changes in the
agents’ heading direction, which has already been shown
to be effective in improving the localization accuracy in
[13]. Moreover, this is motivated by the fact that for exam-
ple in piping systems, the variation of the speed (via
tangential acceleration) is usually small, such that a major
impact on the agents’ motion is due to normal acceleration
which can be captured through changes in the heading
direction.
As detailed in Definition 7, a scalar GMRF is a spatial

random process defined on � ⊂ R
2 and is henceforth

denoted as {z(s)|s ∈ �}. The GMRF is fully described
by its mean and covariance, which promises computa-
tionally efficient modeling and estimation. As mentioned
in Section 2.3, the GMRF can be regarded as a FEM

approximation to a continuous RF. The GMRF can, conse-
quently, be described using basis functions. In the course
of this work, only linear basis functions are considered for
the sake of computational simplicity. Such basis functions
have been reported in [17] to provide reasonable results.
In the following, the GMRF is parameterized to facili-

tate joint state and parameter estimation using the SMC2

framework (cf. Appendix A.3). The SMC2 framework
leverages SMC and PMCMCmethods to sequentially esti-
mate the joint parameter and state posterior p(xk,i, θ |y1:k)
for every agent i ∈ A, where θ denotes the field parame-
ters, which are common to all agents. To account for the
field parameterization, the GMRF evaluated at s ∈ � is
henceforth denoted by zθ (s) to make the dependence on
the parameters θ explicit.
In this work, the GMRF is modeled as a non-zero-mean

field, which results in the following description, using the
basis functions ψ for covariance modeling and the basis
functions ϕ for mean modeling:

zθ (sk,i) =
Nα∑

nα=1
ψnα (sk,i)αnα +

Nβ∑

nβ=1
ϕnβ (sk,i)βnβ

= ψ(sk,i)ᵀα + ϕ(sk,i)ᵀβ , (4a)

where α ∈ R
Nα is the zero-mean random GMRF vec-

tor with precision matrix Q(θQ). Moreover, the weights
β ∈ R

Nβ for themean field are deterministic but unknown
and, consequently, need to be estimated as well. With this
description, the full set of parameters that are sought is
given by

θ ≡[ θQᵀ,βᵀ]ᵀ . (5)

Remark 2 Importantly, in contrast to most cases in
which RFs are employed for environment modeling, no
direct field measurements are available or required in this
work. In scenarios in which direct field measurements are
available, the mean of the field can be directly inferred
from the field measurements, thus avoiding the estima-
tion of the mean component ϕ(sk,i)ᵀβ and the associated
parameters β . Consequently, the case considered in this
work is more complex because the number of parameters
to be estimated is significantly increased. For example, in
the model considered above, at most three parameters are
required to model the covariance (as in the Matérn model;
cf. Appendix A.5) of the GMRF, whereas Nβ 	 3 mean
parameters β are needed to obtain reasonable results, even
for relatively small environments.

The details regarding the FEM approach, i.e., the form
of the precision matrix Q and its parameters θQ, are
detailed below. Subsequently, an approach is presented
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that is based on [18] and is used to approximate the
boundary effects that occur at the borderline between the
fluid-carrying and non-fluid-carrying domains.

4.1 Barrier/Matérn environment model
Special handling of the GMRF model is required in cases
in which physical boundaries are considered within the
field’s domain. This is because boundary effects, such
as those described by Dirichlet or Neumann conditions,
are generally incompatible with an isotropic GMRF (cf.
Definition 5) because the field is no longer solely depen-
dent on the distance between two points. To nevertheless
describe the fluid properties in a sufficiently accurate
manner using a GMRF, the original domain of the field
� is subdivided into two disjoint domains, each of which
describes different properties via the underlying covari-
ance function. More precisely, the domain is split such
that � = �n ∪ �b, where �n denotes the normal (i.e.,
fluid-carrying) domain and �b denotes the barrier (i.e.,
non-fluid-carrying) domain.
An example is given in Fig. 1b, which shows the mesh

used in the simulations. Note that the covariance grid is
present in both domains, i.e., in �n and �b, whereas the
mean grid is defined only within �n. This is because, in
the barrier domain, no fluid and thus no external forces
are present. The covariance grid on the other hand is
defined in both domains to model said boundary effects,
as detailed below.

The objective of separating the domains is to intro-
duce different covariance properties in each domain such
that the spatial correlations within and across the barrier
domain are significantly lower than those in the normal
domain, thus eventually approximating the boundary con-
ditions mentioned above. A corresponding procedure is
presented in the following. To simplify the derivation,
Bakka et al. [18] proposed the following reparameteriza-
tion of the Matérn covariance function for isotropic fields
(cf. Definition 6):

Covz[ d = ‖s1 − s2‖2]≡ σ 2
αd

√
8

r
K1

(
d
√
8

r

)

, (6)

where σα ≥ 0 is the marginal standard deviation of the
GMRF basis function weights α and r > 0 is a scaled ver-
sion of the original Matérn range ρ such that r = ρ/

√
8.

Despite the reparameterization, the general interpretation
of the range does not change: the smaller the range is, the
faster the correlation between two points in the domain,
say s1 and s2, decays. In this model, the ν parameter of
the original Matérn covariance function is set to ν = 1
because of the difficulty of inferring its value as part of the
general estimation process [19]. Thus, the parameters to
be estimated for the precision matrix are given as follows:

θQ ≡[ r, σα]ᵀ ∈ R
2≥0. (7)

Fig. 1 a shows the simulation setup and the differentiation between the two domains: the normal domain �n (blue), which is equivalent to the
fluid-carrying part, and the barrier domain �b (white), where no fluid is present. b visualizes both the mean and covariance parts of the FEM mesh.
In total, Nα = 127 grid vertices and ψ basis functions are used for the covariance field in this example, and Nβ = 19 grid vertices and ϕ basis
functions are used for the mean field
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Using the FEM description given in (4), the precision
matrix Q can be calculated as follows [18]:

Q(r, σα) = σ−2
α A(r)C̃(r)A(r), (8a)

A(r) = J − 1
8

(
r2Dn + r2

100
Db

)
, (8b)

C̃(r) = π

2

(
r2C̃n + r2

100
C̃b

)
, (8c)

where J ,Dq, C̃q ∈ R
Nα×Nα are computed as follows from

the basis functions [18]:

[ J]i,j ≡
∫

ψi(s)ψj(s)ds

∀i, j = 1, . . . ,Nα (9a)
[
Dq
]
i,j ≡

∫

�q
∇(ψi(s))∇(ψj(s))ds,

∀i, j = 1, . . . ,Nα , ∀q ∈ {n, b} (9b)
[
C̃q
]
i,i ≡

∫

�q
ψi(s)ds,

∀i, j = 1, . . . ,Nα , ∀q ∈ {n, b} (9c)

Moreover, in (8), the range in the barrier domain �b has
been set to one-tenth of the range in the normal domain
�n, i.e., rb = r/10. Although the hyper-parameter rb
could also theoretically be estimated, using a fixed factor
of one-tenth has been empirically shown to yield reason-
able results, with the additional benefit of reducing the
parameter space and, thus, reducing the computational
complexity.

Remark 3 Note that J , Dn, Db, C̃n, and C̃b are indepen-
dent of r and σα and thus can be computed offline before
the estimation process.

4.2 Finite element method
As mentioned before, effectively, two FEM approxima-
tions are used: one for the covariance field and one for
the mean field. While the covariance grid covers the com-
plete domain �, i.e., both the normal domain �n and the
barrier domain �b, the mean grid needs to cover only the
normal domain �n. In the normal domain, a high mesh
resolution is needed to enable accurate modeling of the
fluid dynamics, whereas in the barrier domain, a coarse
grid is sufficient.
During the creation of the covariance mesh, it is impor-

tant to note that irregular grid boundaries are known to
cause numerical artifacts and unrealistic behavior. For this
reason, it is advised to extend the domain and instead con-
sider, e.g., its convex hull [17, 18]. Thereby, the impact of
the outer domain boundary conditions on model fitting
is reduced. The quantity that represents the distance by
which the domain is extended is denoted by de and is set
as described below.

To ensure accurate generation of the mesh, a resolu-
tion formula is defined that controls the target distance
between two vertices of the mesh (i.e., the desired edge
length). For the covariance grid, the following formula is
used:

lψ (s) ≡
{
lψ , if s ∈ �n
lψ
(
1 + s�b · d�n(s)

)
, if s ∈ �b

, (10)

d�n(s) ≡ min
s′∈�n

‖s − s′‖2, (11)

where d�n(s) is the smallest distance between s ∈ �b and
the domain �n. In this work, the value of the increase fac-
tor s�b is fixed to two. For the mean grid, which is present
only in �n, the desired edge length is lϕ(s) ≡ lϕ . In this
work, the parameters de, lψ , and lϕ are defined relative to
the typical length3 Ltyp as follows:

de = 0.075 Ltyp, lψ = 0.05 Ltyp, lϕ = 0.35 Ltyp. (12)

4.3 Contributions of this section
The key contributions of this section are as follows: first,
modeling the RF by a computational efficient GMRF with
piece-wise linear basis functions; second, modeling of
pipe systems as barrier-RF to address boundary effects;
third, enabling inference even when no direct field mea-
surements are available via modeling the mean of the
RF by β parameters and via piece-wise linear basis func-
tions; and fourth and finally, modeling of the GMRF by
means of parameters to obtain a joint state and parameter
estimation problem.

5 GaussianMarkov random field as control input
The objective of the GMRF model is to improve the local-
ization performance by embedding the external forces
directly into the motion model. To this end, the GMRF is
used as an ACI for, e.g., the autonomous motion models
discussed in [5]. Note that neither the ACI nor the field is
directly observable.
Subsequently, the following dynamics are considered,

which are obtained via the field parameterization given in
Sections 4 and 4.1.

p(xk+1,i|xk,i,uk,i, θ) = p(xk+1,i|xk,i,uk,i(xk,i, θ)), (13)

where uk,i is the ACI modeled by means of zθ (sk,i) in
combination with the zero-mean Gaussian noise ε:

uk,i = zθ (sk,i) + ε, (14)
p(uk,i|z, sk,i, θ) = N

(
zθ (sk,i), σ 2

ε

)
. (15)

Henceforth, we may refer to uk,i and ε as virtual mea-
surements and measurement noise, respectively, because,
in fact, no field measurements are collected and the model
above is merely used in the proposed BHM. Moreover,

3In the literature, the typical length is not a properly defined quantity. In this
work, it is interpreted as the width of the pipe system.
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ε plays an important role in modeling local variations of
the field.

Remark 4 Although the field depends only on the posi-
tions encoded in the state vector xk,i, zθ (xk,i) may be used
instead of zθ (sk,i) henceforth to simplify the notation and
avoid confusion.

The field’s conditional density is given by

zθ (xk,i) ∼ p(z|xk,i, θ) =
N (ϕ(xk,i)ᵀβ ,ψ(xk,i)ᵀQ−1(r, σα)ψ(xk,i)). (16)

Hence, given the state and the parameters, the input
distribution of uk,i can be written as

p(uk,i|xk,i, θ) =
∫

p(uk,i|z, xk,i, θ)p(z|xk,i, θ)dz, (17)

where the closed form can be easily deduced due to the
linearity of (15). To this end, through the use of (15) and
(16), a Gaussian distribution is obtained for the sought
density:

p(uk,i|xk,i, θ) =
N
(
ϕ(xk,i)ᵀβ ,ψ(xk,i)ᵀQ−1(r, σα)ψ(xk,i) + σ 2

ε

)
.
(18)

Remark 5 Note that in comparison to the scheme
devised in our previous conference work [13], for which the
particular choice of p(uk,i) = N (μ,�) is made in the
simulations, the GMRF input model defined in (18) facil-
itates the consideration of spatial dependencies through
position-dependent mean and covariance terms.

In summary, the contribution of this section is the for-
malization of the closed form, i.e., non-integral, descrip-
tion of the ACI’s conditional distribution. As will be
shown in the subsequent section, this presents a major
advantage for effective and efficient time-updating.

6 Time updatemodel
Because the agents’ motion is now modeled by means of
an unobservable process, the new effective transition PDF,
which is needed for the state and parameter inference
process, needs to be derived. This derivation is achieved
through marginalization and with the use of (13) and (18).
More precisely, using (13) under the assumption of zero-
mean process noise with a covariance of �ν , the new
state evolution model is obtained by averaging over the
unobservable field such that

p(xk+1,i|xk,i, θ) =
∫

p(xk+1,i|xk,i,uk,i)
· p(uk,i|xk,i, θ)duk,i.

(19)

Note that this integral does not have an analytical solu-
tion in general. Therefore, approximations are needed

when considering, for example, nonlinear motion mod-
els. For this purpose, two different procedures are pre-
sented in the following. The first approximation method
uses a standard procedure based on linearization to solve
the integral, while the second method exploits the fact
that a PF-based approach is taken to solve the joint
state and parameter inference problem, in which samples
from the sought density (in the subsequently proposed
Algorithm 1, see Line 9) are required for the time update.

6.1 Approximation by linearization
A standard approach to approximating (19) for a nonlin-
ear transition function f with additive Gaussian process
noise is based on the linearization thereof around a devel-
opment point of the integration variable, which is hence-
forth denoted by u0k,i. The approximated state evolution
function f̃ (·) is obtained as

f (xk,i,uk,i) ≈ f̃ u0k,i(xk,i,uk,i) (20)

≡ f
(
xk,i,u0k,i

)

+ ∇(f (xk,i,uk,i))
∣∣
u0k,i

(
uk,i − u0k,i

)
,
(21)

which can be divided into a constant term and a slope
term as follows:

f̃ u0k,i(xk,i,uk,i) = cu0k,i(xk,i) + su0k,i(xk,i)uk,i (22)

with

cu0k,i(xk,i) ≡ f
(
xk,i,u0k,i

)− ∇uk,i
(
f
(
xk,i,uk,i

))∣∣
u0k,i

u0k,i

su0k,i(xk,i) ≡ ∇uk,i
(
f
(
xk,i,uk,i

))∣∣
u0k,i

.

With this linearization, the following holds for the
nonmarginalized (i.e., input-conditioned) transition PDF
under the assumption of additive Gaussian process noise:

p̂(xk+1,i|xk,i,uk,i) = N
(
f̃ u0k,i(xk,i,uk,i),�ν

)
. (23)

Using this affine Gaussian transition PDF, (19) can be
approximated as follows using (18):

p̂(xk+1,i|xk,i, θ) =
∫

N
(
f̃ u0k,i(xk,i,uk,i),�ν

)

· N (
ϕ(xk,i)ᵀβ , ψ(xk,i)Q−1(r, σα)

· ψ(xk,i) + σ 2
ε

)
duk,i

(24)

which is multivariate Gaussian with mean and covariance
matrix

E[ xk+1,i|xk,i, θ ] = cu0k,i(ck,i) + su0k,i(xk,i)(ϕ(xk,i)ᵀβ)

(25a)
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Cov[ xk+1,i|xk,i, θ ] = su0k,i(xk,i)

· (ψ(xk,i)ᵀQ−1(r, σα)ψ(xk,i) + σ 2
ε

)

· su0k,i(xk,i)
ᵀ + �ν . (25b)

This approximation, in turn, facilitates efficient sam-
pling for the state evolution within a PF.
To obtain reasonably accurate approximations, the

development point u0k,i must be properly chosen, i.e., suffi-
ciently close to the actual evaluation points for the density.
To this end, the conditional mean is used, which can be
obtained as follows:

u0k,i ≡ E[uk,i|xk,i, θ ]= ϕ(xk,i)ᵀβ . (26)

6.2 Sequential sampling
In this subsection, a procedure is presented that aims not
to approximate the integral in (19), per se, but rather to
address the higher-level goal of sampling p(xk+1,i|xk,i, θ),
which is needed due to the adopted PF approach.
First, the rationale for the procedure is illustrated. Let

p(x) denote the density that is sought, which is given by

px(x) =
∫

px|y(x|y)py(y) dy. (27)

Then, samples
{
y(
)

}


are drawn from py(y), followed by

samples x(
) ∼ px|y(x|y = y(
))∀
 = 1, . . . , L, which are
obtained through conditioning on the previous samples of
y. From the obtained set of samples

{〈
x(
), y(
)

〉}


,
{
x(
)

}



can be regarded as samples from px(x) because averaging
over y can be interpreted as ignoring the samples

{
y(
)

}



from the tuple.
Applying this principle to the problem at hand, i.e., to

sampling from the transition density (19), yields the fol-
lowing procedure. First, sample from the control input
distribution (18):

u(
)

k,i ∼ p
(
uk,i|x(
)

k,i , θ
)
. (28)

Second, obtain a sample from the process noise density

ν
(
)

k,i ∼ p(ν). (29)

Finally, obtain the sought sample as

x(
)

k+1,i = f
(
x(
)

k,i ,u
(
)

k,i

)
+ ν

(
)

k,i . (30)

This procedure is repeated until the required quantity
of particles is obtained, i.e., for 
 = 1, . . . , L. Note that this
procedure does not introduce function approximation
errors but does incur a slight increase in computational
complexity due to the additional sampling step.

6.3 Control input-driven motionmodel
The motion model used in this work shows some similar-
ities to the model used in our previous conference work
[13] because it also assumes that the input represents an

additional change in the agent’s heading direction, i.e., the
input is similar to a turn rate. However, unlike in [13], in
this work, the turn rate itself is not part of the state vec-
tor; thus, the computational complexity is reduced, and
numerical issues are avoided in the case that the turn rate
is close to zero. This modification is motivated by the fact
that the joint parameter and state estimation is signifi-
cantly more complex, and reducing the number of state
dimensions is one way to reduce the computational load.
Consequently, the state vector used in this work is given

by xk,i = [
xk,i yk,i υk,i φk,i

]
which leads with the def-

inition of the input uk,i as the turn rate to the following
transition density:

xk+1,i ∼ N (f (xk,i,uk,i),�ν), (31)

f (xk,i,uk,i) =

⎡

⎢⎢
⎣

xk,i + T · υk,i cos(φk,i + T · uk,i)
yk,i + T · υk,i sin(φk,i + T · uk,i)

υk,i
φk,i + T · uk,i

⎤

⎥⎥
⎦ ,

(32)

where the process noise covariance �ν is defined as

�ν ≡ diag
[
σx

2 σy
2 T2συ̇

2 T2σφ̇
2
]
. (33)

The function f (·) as well as the lower-right part of the
covariance matrix, which belongs to the linear part of the
motion model, is derived based on the method outlined
in [20]. For the upper-left part of the covariance matrix,
which belongs to the nonlinear part of the motion model,
no suchmethod exists. For this reason, a diagonal part has
been assumed that is parameterized through σx and σy.
The covariance matrix parameters used in the simulation
of this work are provided in Table 3.

6.4 Contributions of this section
The contributions of this section are twofold: First, two
approximations of the transition distribution to incorpo-
rate uncertainties of the control input were deduced, of
which the second is later shown to be computationally
efficient and effective. Second, a well-performing motion
model for the agents that incorporates the ACI through
modeling the field as incremental change of the heading
was obtained. As will be shown in the simulations pre-
sented in Section 9, this model is shown to be effective for
the pipe-based application scenarios.

7 Proposed random field-aided tracking
algorithm

This section introduces to the framework used to facil-
itate joint parameter and state estimation as well as to
the required prerequisites thereof. Finally, a pseudo code
description of the procedure is presented.
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7.1 Estimation framework
Although several parameter estimation methods have
been presented in the literature, this work builds upon the
SMC2 framework (cf. Appendix A.5). The SMC2 frame-
work efficiently combines SMC methods for the state
space with PMCMC methods for the parameters. Infor-
mally, the SMC2 framework operates one PF for every
parameter particle.
The main motivation for adopting the SMC2 framework

is provided by its online capabilities, i.e., the fact that the
sought posteriors p(θ |y1:k) and p(xk,1:|A||y1:k) are sequen-
tially estimated using all previous measurements y1:k4.
This is in contrast to pure PMCMCmethods and expecta-
tion maximization (ExpMax) methods such as those pre-
sented in [21, 22]. Both types of methods can be regarded
as offline methods because the inference over the param-
eters is not performed sequentially, i.e., the parameter
candidates are updated only after all measurements y1:K
have already been processed. The consequence of this is
that poor parameter candidates are not discarded in each
iteration but rather are discarded only at the end of one
round of inference over all measurements.
Conversely, the SMC2 framework facilitates online eval-

uation of the performance of the parameter particles and
includes a rejuvenation step that is performed on an on-
demand basis. Moreover, based on the acceptance ratio
(AR) for the PMCMC step of SMC2, the number of state
particles L is adapted accordingly. This adaptation process
simultaneously targets the reduction of the high computa-
tional complexity of the scheme, which generally increases
over time, and the efficient exploration of the parameter
space. Regarding the latter, the notion is to allow several
PMCMC steps (if needed) in the early time steps to dis-
card uninteresting parts of the parameter search space to
avoid costly PMCMC steps later on. Recall that PMCMC
steps require a complete reevaluation of the past history,
denoted by 1:k. Costly PMCMC steps can be avoided in
later steps because an increased number of particles is
generally associated with a higher AR [23]. Moreover, the
ability to discard parameter candidates early on is par-
ticularly advantageous if the a priori information is less
informative in the sense that the prior particles provide an
insufficient description of the posterior [24].

7.1.1 Alternative online estimationmethods
In [25], a procedure is presented that is similar to SMC2

in the sense that two layers of Monte Carlo (MC) meth-
ods are adopted, where the inner layer also includes a PF
technique. However, unlike SMC2, a fixed parameter par-
ticle set is used; because the particle set is not updated

4The term online is not to imply any real-time capabilities of the procedure.
In fact, it will later become obvious that real-time processing might be
infeasible. More precisely, an algorithm is denoted as an online method if it
estimates the state and/or parameters of a system when new data becomes
available during the operation of the physical system.

over time, this method does not take advantage of infor-
mation gathered from later measurements [26]. Hence,
SMC2 is a more flexible framework because it considers
this information.
More alternative schemes for combined state and

parameter estimation exist. Most importantly, this is [27],
in which the state vector is augmented by the param-
eters and in which a kernel density is used to update
the parameter particles. In this way, the time-invariant
parameters are treated as time-varying parameters. Sim-
ilar to the PMCMC kernel used in SMC2, the kernel
density is assumed to be Gaussian [28]. The important
differences relative to SMC2 are that the joint state and
parameter posterior is approximated as a Gaussian mix-
ture and that this approach facilitates neither adaptation
of the number of state particles nor a recovery procedure
(particle rejuvenation) in the case that the current param-
eter particles do not aid in estimating the sought posterior
(parameter particle degeneracy).

Remark 6 Although the estimation framework proposed
herein is based on SMC2, our modeling contributions are
not specific to SMC2. Therefore, the work presented herein
can be easily adapted to other frameworks.

7.2 Parameter priors
Because a Bayesian approach to parameter inference is
taken, prior models for the individual components of θ are
required. To this end, recall that three types of parameters
are to be estimated:

θ =[ r, σα ,β]ᵀ ∈ R
2≥0 × R

Nβ . (34)

Regarding the first two parameters, i.e., the range and
the marginal standard deviation of the random vector α

of the GMRF, a reasoning similar to that of [18] is applied:
the randomness of the parameters should be independent
of how much randomness has already been considered
through other components in the models. This character-
istic is modeled through the memoryless property of the
exponential distribution, which means that for X ∼ E(λ),
it holds that p(X > s + t|X > s) = p(X > t),∀s, t ≥ 0. A
similar reasoning for this choice can be found in [29, 30],
where the authors argue with a “constant rate penaliza-
tion” property that is achieved through the choice of
exponential priors and which is considered paramount to
avoid overfitting.
Moreover, it is not known a priori whether the inde-

pendent and identically distributed (i.i.d.) effect modeled
through ε (i.e., virtual measurement noise), with a stan-
dard deviation of σε (cf. (15)), or the spatial effects mod-
eled through α, with a marginal standard deviation of σα ,
should be dominant. In other words, the local effects from
the virtual measurement noise should not, a priori, be
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favored over the spatial correlation effects. For this reason,
the prior for σα is set to

σα ∼ E(λσα ), λ−1
σα

≡ E[ σα]⇔ λσα = 1/σε . (35)

On the other hand, for the range parameter r, which is
coupled through the factor of one-tenth to the range of
the barrier domain �b (cf. Section 4.1), there is an a priori
preference for large values. The reason is that the range
parameter, which controls the spatial correlations in the
sense that larger values ensure that farther apart locations
in the domain are correlated, is used to model the field
that is designed to capture the nonlocal variability of the
environment. For this reason, the prior for the range is
set to

1
r

∼ E(λr), λr = ln 2
2

Ltyp, (36)

where Ltyp is the typical length of the domain.
An important factor determining the estimation per-

formance is modeled through the mean basis function
weights β . Although the spatial correlation is modeled
through the basis functions ψ with random weights α, the
a priori mean components should also be subject to spa-
tial correlations. To this end, the following procedure is
adopted to obtain a priori for β : First, the median of the
range r and the inverse mean of σα priors are obtained,
i.e., λr and λσα . Second, these values, which are originally
associated with the covariance field, are used for the mean
field to obtain Qβ(r = λr , σβ = λσα ) via (8), with the basis
functions ϕ. Finally, the prior is set to

p(β) = N
(
0, (Qβ)−1) . (37)

Note that the choice of a Gaussian prior is motivated
by the fact that the turn rate, which is modeled through
the field (cf. Section 6.3), has a prevalence of zero in many
scenarios. This is because almost straight-ahead motion is
more common than strong left or right turns5.

7.3 The algorithm
With the abovementioned models and the MCA-based
LA for the MPF framework as proposed in [16], the
procedure summarized in Algorithm 1 is obtained. Note
that in Lines 8 and 9, the sequential sampling approach
(cf. Section 6.2) is used, which can alternatively be
replaced with linearization (cf. Section 6.1). Figure 2
visualizes the RFaT algorithm, including the hierarchi-
cal models and the two resampling stages. Whereas the
state particles are resampled in every time step in the
first stage, the parameter particles are resampled only
if the effective sample size (ESS) drops below the set
threshold.

5By the same reasoning, a Gaussian distribution has been used for the input in
[13].

The algorithm obtains the sought posterior via

p̂(xk,i, θ |y1:k)

=
Lθ∑


θ=1
w(
θ )

θ ,k ·
L∑


=1
w(
,
θ )

k,i δ
(
[ xk , θ ]−

[
x(
,
θ )

k,i , θ (
θ )

k,i

])
.

(38)

Based on the particle description, the state and parame-
ter estimates are obtained as follows:

x̂k,i =
Lθ∑


θ=1
w(
θ )

θ ,k

L∑


=1
w(
,
θ )

k,i x(
,
θ )

k,i , ∀i ∈ A (39)

θ̂k =
Lθ∑


θ=1
w(
θ )

θ ,k θ
(
θ )

k . (40)

These estimates build the basis for the results presented
in Section 8.
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Fig. 2 Illustration of the proposed RFaT scheme

7.4 Contributions of this section
The key contributions of this chapter are as follows: first,
applying SMC2 for the resulting joint state and parame-
ter estimation problem; second, adapting SMC2 to handle
high-dimensional state estimation problems by incorpo-
rating MPF; third, obtaining reasonable GMRF parameter
priors, particularly for the beta parameters; and fourth
and finally, obtaining optimal SMC2 hyper-parameters for
the specific application scenario.

8 Simulation setup andmethod
The presented simulations are based on the environment
depicted in Fig. 3, for which the typical length is defined
as Ltyp = 10m. In conjunction with σε = 0.2rad s−1,
all prior parameters are defined (cf. Section 7.2). For the
ESS threshold in the parameter domain, a value of Lθ th =
0.3Lθ is chosen.
The computational fluid dynamics (CFD) simulations

were performed to provide realistic trajectories and spa-
tial coupling between the trajectories of different agents.
The CFD results were obtained by simulating the pipe

Fig. 3 Simulation environment used in this work. A color scale
ranging from blue to yellow is used to show the normalized velocity.
Additionally, the locations of the four beacons and their
communication range are indicated as red diamonds and dashed
circles, respectively
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model shown in Fig. 3 using a D2Q9 Lattice Boltzmann
method (LBM). The pipe in this model is filled with water
at 25 ◦C and has a length of 10m and a diameter of 0.50 m.
The LBM parameters used for the CFD simulation are
listed in Table 2. Details such as the boundary method
implemented for the D2Q9 LBM are given in [31], where
this method is reported to be accurate to approximately
second order.
In the simulation, bearing and distance measurements

between agents or beacons i and j of the form

yi,j,k =
[√

(xi,k − xj,k)2 + (yi,k − yj,k)2 · (1+ηd,k)

atan2(yi,k − yj,k , xi,k − xj,k) + ηb,k

]

(41)

are considered, where ηk =[ ηd,k , ηb,k]ᵀ ∼ N (0,	), with
	 = diag

(
σ 2
d , σ

2
b
)
, where σd and σb are the standard

deviations of the noise in the distance and the bearing
measurements, respectively. The multiplicative model for
the distance measurements accommodates the observa-
tion that distance measurements made with respect to
farther agents are less accurate.
The full measurement vector for agent i is then obtained

as follows:

yi,k = [
. . . yi,j,k

ᵀ . . .
]ᵀ . (42)

The simulation results presented below were obtained
using the following procedure and settings: During the
first 20 time steps of the simulation, one agent was
inserted per time step, such that after 20 time steps, 20
spatially distributed agents were present. The location at
which the agents were inserted along the cross-section
of the pipe was chosen randomly for each simulation.
In total, 45 time steps were simulated, and the sam-
pling period was set to T = 1 s. In total four beacons
were present in the environment as illustrated in Fig. 3.
Distance and bearing measurements are obtained with
near-by agents and beacons only. For simplicity, a circular
communication range is assumed that is described though
the sensing range that is set to Rs = 1.5m. The following
two measurement noise scenarios (MNSs) are considered:

Table 2 D2Q9 LBM simulation parameters

Parameter Value

LBM relaxation time 0.515

LBM speed 0.05

Max. LBM iterations 1x104

LBM convergence threshold 1x10−7

Viscosity [m2/s] 0.89 × 10−6

Density [ kg/m3] 997.05

• MNS 1: Multiplicative distance measurement noise
with a standard deviation of σd = 0.04 and bearing
measurement noise with a standard deviation of
σb = 5◦

• MNS 2: Multiplicative distance measurement noise
with a standard deviation of σd = 0.06 and bearing
measurement noise with a standard deviation of
σb = 10◦

8.1 Environment uncertainty
In contrast to the other tracking algorithms (cf. Table 3),
which make no assumptions regarding the environment
to be explored, RFaT requires some environmental infor-
mation. Theoretically, RFaT uses a priori knowledge of
the environment solely to reduce the computational com-
plexity of the estimation and FEM meshing procedures.
In other words, a priori knowledge of the environment is
exploited to provide fine-grained FEMmeshes only where
needed. To evaluate the performance and run-time effects
of this in case of limited a priori knowledge, an artificial
environment uncertainty (EU) is used.
To simulate EU, the procedure presented in

Algorithm 2, where a polyline representation of the
borderline is deformed, is employed. The reason is that
the actual environment is also stored as a polyline, and
precise control over the intensity of the deformation is
required while ensuring that a similar pipe course as
that of the original environment is still present in the
deformed environment. The parameter that controls the
intensity is denoted by σEU.
Figure 4 illustrates the effects of the EU on the FEM

mesh as well as on the general shape of the assumed envi-
ronment. The effects of the EU are twofold: First, the
dynamics are changed, mostly at the turning points in the
S-shaped environment. Second, the grid vertex distribu-
tion, which is computed in this work using the method
of [32], also changes. For the mean grid ϕ, in particular,
this change in the vertex distribution results in more ver-
tices being placed closer to the turning points due to the
irregular deformation there. In turn, fewer vertices, and
thus lower accuracy, are available for the other parts of the
environment (e.g., the outlet portion of the pipe). Conse-
quently, the mean estimation will be less accurate in these
other locations unless the grid resolution is increased.

8.2 Performance metric: random field error
In addition to the root-mean-squared error (RMSE), an
average field estimate is evaluated. To this end, the ran-
dom field error (RFE) is defined as

RFE = 1
|�n|

∫

�n
‖z(s) − ẑ(s)‖ds. (43)

Because the field models the turn rate in this work, the
field z(s) visualized in Fig. 5b serves as the ground truth.
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Table 3 Algorithm overview

Abbreviation Proposed in MPF LA Time update (TUD) Extra TUD parameters/ RF variable Motion model State variables

MPF [16] MCA [16] f (xi,k ,uk,i = 0) + νMPF
† — (31) [ x, y, υ ,φ]

IPF,
∑

MPF [13] MCA [16]
f (xi,k ,uk,i) + νMPF

†

uk,i = ωk,i (31) [ x, y, υ ,φ]
IPF,

∑
RF f (xi,k ,uk,i) + νRF

‡

RFaT This work MCA [16] f (xi,k ,uk,i) + νRF
† uk,i = zθ (xk,i) (31) [ x, y, υ ,φ]

†∑
MPF = diag[ 0.05 m, 0.05 m, T20.01 m/s2, T20.7 rad/s2] has been found to be the optimal covariance matrix of the zero-mean process noise for the MPF algorithm in

results not reported in this work
‡∑

RF = diag[ 0.02 m, 0.02 m, T20.002 m/s2, T20.01 rad/s2] has been found to be the optimal covariance matrix of the zero-mean process noise for the RFaT algorithm in
results not reported in this work

8.3 Boxplots
Some of the results presented in the next section are
illustrated using boxplots. Boxplots (cf. Fig. 5c) visual-
ize statistical properties using four components: First, a
box is drawn that spans the interquartile range (IQR), i.e.,
extends from the 25th to the 75th percentile. Second, the
median is visualized as a red line within the IQR box.
Third, whiskers (black) extend to the most extreme points
that are not classified as outliers. Fourth and finally, red
crosses indicate the outliers, which are those samples that
do not lie within [ q1−w(q3−q1), q3+w(q3−q1)], where
q1 and q3 are the 25th and 75th percentiles, respectively,
and w denotes the whisker length, which is set to w = 1.5
in this work. The span of the whiskers corresponds to the
± 2.7σ range and, thus, to 99.3% coverage in the case of
Gaussian data.

8.4 Algorithms
Based on the results presented in the following section,
the algorithms and configurations listed in Table 3 are
evaluated. In total, two process noise configurations are
evaluated which are denoted with �MPF and �RF. These
configurations have been found optimal for MPF and
RFaT, respectively, in the used environment based on a
parameter sweep whose results are not provided in this
work. Since the input-aided particle filter (IPF) algorithm
can be understood as a middle ground between the MPF
and RFaT algorithms, the IPF algorithm is evaluated using

both configurations to assess the precise performance
differences with respect to (w.r.t.) both.

9 Numerical results and discussion
All results presented herein were obtained using a
Bullx Blade B500 system with an Intel Westmere X5675
CPU running CentOS 7. The simulations are performed
using MATLAB. The simulations show averages over 50
simulations.

9.1 MCA-based multiple particle filtering vs. input-aided
particle filtering

The first set of results is presented in Fig. 6 and compares
the MPF and IPF algorithms for different ACI density
variances. This comparison serves two purposes. First, its
findings in terms of adequate parameters are used in sub-
sequent simulations. Second, it motivates the need for
ACI embeddings, e.g., as per IPF or the proposed RFaT.
The MPF results are shown as dotted lines and do

not vary along the x-axis because no input is considered
by this method. In the left and right panels, the perfor-
mance gains due to the use of the IPF algorithm for MNS
1 and MNS 2, respectively, are annotated. Specifically,
improvements of up to 69% are achieved with respect
to MPF. Notably, different optimal ACI density variances
are found depending on the measurement noise inten-
sity, as illustrated by the different MNSs. Because σu,ω =
1rad s−1 is found to be optimal forMNS 2 and because the
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Fig. 4Meshing examples (grids): a shows the actual environment (no EU) and b shows the case of σEU = 0.5

difference in performance seen when employing σu,ω =
1rad s−1 for MNS 1 is only −6%, σu,ω = 1rad s−1 is used
for the subsequent IPF simulations.
The second set of results is presented in Fig. 7 and com-

pares both methods as a function of the number of state
particles per agent (PPA) used, where σu,ω = 1rad s−1

is used for the IPF algorithm. With an increasing PPA
value, the MPF algorithm achieves the same performance
as the IPF algorithm. However, the IPF algorithm achieves
this performance with a significantly lower PPA value and,
thus, lower computational complexity. The performance
gains when the IPF algorithm is employed are 64% and
57% for MNS 1 and MNS 2, respectively.

A direct run-time comparison between the methods for
a fixed computational complexity is presented in Fig. 8,
which shows that the IPF algorithm can achieve the same
localization error of RMSE = 2m within approximately
1
16 th and 1

9 th of the time required by the MPF algorithm
for MNS 1 and within approximately 1

5 th and 1
3 rd of the

time for MNS 2.
In summary, the results presented above motivate the

use of ACI as insufficient localization accuracy is reported
for MPF. It has been found that already the simplistic
ACI scheme used in IPF achieves significant performance
gains which are henceforth compared to the scheme pro-
posed in this work.

Fig. 5 a True example trajectories. b Actual turn rates in the environment used in the simulations presented in the following section. At the top
turning point of the environment, the turn rate is negative, while it is positive at the bottom turning point. In between, i.e., in the nearly straight
section, the turn rate is almost zero. c Illustrative boxplot of the exponential distribution E(2)
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Fig. 6 Comparison between the MPF and IPF algorithms for L = 100 and varying input variances. The left panel shows the results for MNS 1, and the
right panel shows the results for MNS 2

9.2 Input-aided particle filtering vs. random field-aided
tracking

In this subsection, the IPF algorithm, which has been
found to yield the better performance in the results
presented above, is compared to the RFaT algorithm. For
this purpose, the two methods proposed for the time
update derivation are first compared (cf. Section 6), of
which the better performing is then considered hence-
forth. The results of the former comparison for MNS 1
are presented in Fig. 9, which shows that in addition to
run-time improvements, the sequential sampling method
also achieves RMSE reductions of − 46% (Lθ = 250) and
− 34% (Lθ = 750) in terms of median performance. Con-
sequently, all subsequently reported results for RFaT are
based on sequential sampling.
Recall that RFaT is equipped with a state PPA adapta-

tion scheme (cf. Algorithm 1), thus making a comparison
with an algorithmwith a fixed state PPA value with a com-
plicated prospect. To overcome this problem, the average
PPA value for RFaT is plotted instead. A consequence of

the adaption scheme when the initial state PPA value is
small can be observed in Fig. 10, which shows that for
MNS 2, the state PPA value of RFaT increases such that
this value is no smaller than 100 on average.
Of particular interest in all subsequently presented

results is the performance of the RFaT algorithm with
Lθ = 1. In this case, no PMCMC rejuvenation steps are
performed, and thus, only the prior parameters are used.
Consequently, this case can be used to assess whether
even despite rather inaccurate a priori information, the
spatial coupling of the field is able to offer an improve-
ment on the position-independent statistical model used
in the IPF algorithm. To this end, it can be noted in Fig. 10
that even without optimization of the sought parameters
(Lθ = 1), the RFaT algorithm is able to achieve RMSE val-
ues that are 32% and 21% lower for MNS 1 and MNS 2,
respectively, compared to those of the IPF algorithm for
an average state PPA value of L = 100.
Additional improvements through actual optimiza-

tion of the θ parameter are possible, as indicated by

Fig. 7 Comparison between the MPF and IPF algorithms for σu,ω = 1rad s−1 and varying state PPA values. The left panel shows the results for MNS
1, and the right panel shows the results for MNS 2
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Fig. 8 Run-time comparison between the MPF and IPF algorithms for varying state PPA values. The left panel shows the results for MNS 1, and the
right panel shows the results for MNS 2

considering larger Lθ values. The corresponding results
are presented in Fig. 11, which compares the best-
performing IPF configuration with a series of RFaT
configurations. Both panels show that RFaT offers sig-
nificantly improved localization accuracy at the cost of
a higher computational complexity. For example, for
MNS 2 (right panel), the RMSE can be reduced by
33% and 50% by employing Lθ = 10 and Lθ = 100
parameter particles, respectively. However, this would
require an additional 1100 s and 8100 s, respectively, of
computing time.

9.3 RFaT: parameter particle set size and environment
uncertainty analysis

In this subsection, the performance of RFaT is analyzed
w.r.t. its dependence on the state and parameter particle
set sizes. Moreover, the effects of the EU are investigated.
In Fig. 12, a statistical analysis of the impact of the

EU on the estimation performance is presented for two
main configurations: Lθ = 100 (left half ) and Lθ = 750
(right half ). The boxplots on white backgrounds repre-
sent Lθ configurations without any EU. The boxplots on
light gray backgrounds show the results for σEU = 0.5

Fig. 9 Run-time and performance comparison between sequential sampling (cf. Section 6.2) and linearization (cf. Section 6.1) for L = 316 and MNS
1 as bagplots. Bagplots, as proposed in [33], are a generalization of boxplots for two objectives and consist of the following parts. The bag that
contains at most 50% of the points in the dataset. The fence that is an inflated bag by a factor of three. All points outside the fence are considered
outliers. The depth median (DM), which is a generalization of median, is the point with the largest Tukey depth. Here, only those data points (DPs)
within the bag are visualized for clearness
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Fig. 10 Comparison between the RFaT and IPF algorithms for varying state PPA values. The left panel shows the results for MNS 1, and the right
panel shows the results for MNS 2

but an otherwise identical configuration. The boxplots on
darker gray backgrounds are based on a reduced target
edge length lϕ for the mean mesh, where a smaller value
of lϕ indicates that the number of mean-modeling vertices
used, Nβ , is larger. In this case, the number of vertices is
increased from Nβ = 19 (lϕ = 3.5) to Nβ = 29 (lϕ = 2.5).
In Fig. 12a, the RMSE performance is depicted whereas
Fig. 12b shows the RFE performance.
The results support the notion that the RFaT’s demand

for a priori information on the environment arises solely
from the demand for computational efficiency, which can
be achieved through the use of a coarser grid. For lϕ = 2.5
and σEU = 0.5, the median performance losses (RMSE
increases) due to the EU are 0.010 m (Lθ = 100) and
0.014 m (Lθ = 750). The performance loss could likely

be further reduced by means of an even finer mesh.
Similar observation can be made for the RFE performance
which generally increases through EU which, however,
approaches the non-EU (σEU = 0) performance through
increased mesh resolution. In this regard, the perfor-
mance loss (RFE increase) through EU (σEU = 0.5) is
0.004 rad s−1 (Lθ = 100) and 0.006 rad s−1 (Lθ = 750).
Figures 13 and 14 show respectively averaged estimated

trajectories and non-averaged RF estimates for in total
three different EU and lϕ configurations: In the left panel,
the results without EU are given. In the right panel, results
for EU with intensity σEU = 0.5 and the same mesh
resolution as for the left panel is given. In the center
panel, the mesh resolution is increased to compensate for
the EU.

Fig. 11 Run-time comparison between the RFaT and IPF algorithms for various Lθ configurations. The left panel shows the results for MNS 1, and the
right panel shows the results for MNS 2
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Fig. 12 a, b Statistical performance analysis with EU effects for RFaT, MNS 2, and L = 316

Underlaid to the estimated trajectories given in
Fig. 13 is the assumed environment and the bound-
ary of the actual environment. These results have been
selected as they show exemplary the characteristics
of RFaT.

It can be noted that several agents are (temporarily)
located in the barrier domain according to the estimates,
cf. e.g., the bottom turning point Fig. 13 a and b as well
as c. This is possible due to the fact that the RF does
not impose constraints upon the motion of the agents.

Fig. 13 Averaged trajectories (dashed lines) with different levels of EU and the assumed (meshed) environment in blue for Lθ = 750, L = 316. a No
EU (σEU = 0), b, c with EU and assumed environment boundary visualized by black lines
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Fig. 14 Estimated RF values for Lθ = 750, L = 316. Individual (i.e., non-averaged) results that have been selected for illustrative purposes are shown.
The actual turn rate profile is given in Fig. 5b. a RFE = 6.70× 10−3 rad s−1, σEU = 0, lϕ = 3.50 m. b RFE = 7.50× 10−3 rad s−1, σEU = 0.5, lϕ = 2.50 m.
c RFE = 9.21 × 10−3 rad s−1, σEU = 0.5, lϕ = 3.50 m

Instead, it is used to steer the agents’ direction of motion.
Moreover, recall that the covariance grid extents beyond
the environment boundary between �n and �b, whereas
the mean grid does not cover the barrier domain. More
specifically, the agents passing the barrier domain in
Fig. 13c are the very first agents inserted into the envi-
ronment. For these, the RF estimation is still inaccurate
due to the online estimation framework, leading to a
wrongly estimated turn rate which allows the estimated
position to be placed in the barrier domain. The agents
inserted afterwards, benefit from more accurate field
estimates.
From the trajectories, it can be noticed that RFaT is

generally able to infer information about the turning
behavior induced by the environment. However, as also
visible from the estimated RF given in Fig. 14c, if inaccu-
rate a priori environment information is provided, which
is simulated here using EU σEU = 0.5 and no corre-
sponding compensation via increases mesh resolution is
adopted (cf. center panels), the turn rate may be under-
estimated. In Fig. 13c, this leads to increased localization
errors.
In summary, Figs. 13 and 14 have shown that EU affects

the accuracy of the localization and RF estimation. How-
ever, as shown before, increased mesh resolution can
effectively limit these effects.

10 Conclusion
In this work, a novel localization framework is pre-
sented that extends previous methods (cf. Table 1) in
multiple respects. For the first time, the estimation of
spatial properties modeled by means of an RF is com-
bined with distance- and/or bearing-measurement-based

localization. The objective of the RF model is to cap-
ture relevant properties of the underlying environment
to improve the localization performance. One such rele-
vant property is the turn rate, which affects the heading
direction of the agents. Such models are of particular
importance in scenarios with limited beacon coverage,
in which the tracking process therefore relies mainly on
AAMs rather than ABMs. Correspondingly, more accu-
rate motion modeling is achieved through the RF rep-
resentation of the turn rate, which compensates for the
relative lack of informative measurement information.
Compared to IPF, the method presented here (RFaT)

employs a spatial model that has proven to facilitate
more accurate modeling of the kinetics imposed on the
agents and, thus, more precise localization. This is, among
other reasons, achieved through the RF model that con-
siders spatial correlation among the agents’ trajectories.
The resulting problem addressed in this work is a high-
dimensional state and parameter estimation problem that
is solved using two layers of SMC methods that comprise
of particle filtering and PMCMC methods. Unlike many
related works, the scheme presented in this work does not
rely on direct field measurements and, thus, is applicable
to a wide range of scenarios. This lack of field measure-
ments leads to increased computational complexity of
the devised method because it requires the considera-
tion of non-zero-mean fields, which, in turn, significantly
increases the parameter space (in the simulations pre-
sented in this work, the number of parameters to be
estimated is increased by almost tenfold). The proposed
algorithm is equipped with an adaptation scheme that
allows the number of state particles to be automatically
increased on an on-demand basis. This approach not only
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reduces the configuration complexity but also enables effi-
cient use of computational resources. In the presented
results, it has also been shown that the prior informa-
tion needed within RFaT’s FEM approximation is used to
reduce the computational complexity. In other words, the-
oretically, RFaT does not rely on spatial prior information
but it is used to reduce the computational complexity.
The presented results have shown that RFaT achieves

significant reductions in the localization error of up to
50% compared to IPF. Notably, also IPF achieves sig-
nificant performance gains compared to related works
(RMSE reductions up to 69% compared to MPF). How-
ever, these performance gains are achieved at the cost
of increased computational complexity. Because the pro-
cessing is performed by a FC, parallelizing the individual
filtering steps for each parameter particle 
θ can play piv-
otal in reducing the computing time. Since for each 
θ , a
separate PF is operated, a corresponding implementation
is straightforward.
In future works, we are looking to investigating theoret-

ical convergence criteria and conditions.

Appendix
A Additional background
A.1 Particle filtering
The objective of SMC methods, i.e., of particle filtering is
to recursively estimate the posterior distribution

p(xi,k|yi,1:k) = p(yi,k|xi,k)p(xi,k|yi,1:k−1)

p(yi,k|yi,1:k−1)
, (44)

where yi,1:k denotes all measurements of agent i up to time
k. Moreover, with the Chapman-Kolmogorov equation
(CKE)

p(xi,k|yi,1:k−1) =
∫

p(xi,k|xi,k−1)

· p(xi,k−1|yi,1:k−1) dxi,k−1

(45)

and

p(yk|yi,1:k−1) =
∫

p(yk|xi,k)p(xi,k|yi,1:k−1) dxi,k ,

(46)

individual components of the posterior can be given.
However, for general nonlinear state space models, these
integrals cannot be computed analytically.
In particle filtering, the sought posterior distribution

p(xi,k|yi,1:k) is approximated using L weighted particles,

denoted by
{〈
w(
)

i,k , x
(
)

i,k

〉}L


=1
, such that

p(xi,k|yi,1:k) ≈
L∑


=1
w(
)

i,k δ
(
xi,k − x(
)

i,k

)
, (47)

where δ(·) is the Dirac delta function. The weights are
defined as follows

w(
)

i,k ∝ p
(
x(
)

i,0:k

∣∣∣ yi,1:k
)/

π
(
x(
)

i,0:k

∣∣∣ yi,1:k
)
, (48)

where π
(
xi,0:k

∣∣ yi,1:k
)
denotes a proposal distribution

(PD). A PD is used because in most cases, directly sam-
pling from p(xi,0:k|yi,1:k) is impossible because it would
require solving complex and high-dimensional integrals
for which no general analytical solution is known [34].
If the PD is chosen to be factorized such that [35]

π(x0:k|y1:k) = π(x0)
k∏

t=1
π(xt|x0:t−1, y1:t), (49)

then the following recursive expression for the weights
can be obtained [34]:

w(
)

i,k ∝ w(
)

i,k−1

p
(
yi,k

∣∣∣x(
)

i,k

)
p
(
x(
)

i,k

∣∣∣ x(
)

i,k−1

)

π
(
x(
)

i,k

∣∣∣ x(
)

i,0:k−1, yi,1:k
) . (50)

The performance of a PF scheme depends on the choice
of the PD π(·) and on the number of particles L. Regarding
the former, it is known that an incremental variance-
optimal PD is given by

π(xi,k|xi,0:k−1, yi,1:k) = p(xi,k|xi,k−1, yi,1:k);

however, in most cases, this PD is not available for sam-
pling [36]. This is because, in the general case, such
sampling would require solving an integral without an
analytical solution. Consequently, in many cases, the PD
is chosen to be

π(xi,k|xi,0:k−1, yi,1:k) = p(xi,k|xi,k−1), (51)

which further simplifies the PF processing (cf. (50)).

A.2 Sequential Monte Carlomethods for combined state and
parameter estimation
Based on the state estimation methods described above,
extensions can be devised which can be used for a
combined state and parameter estimation. Subsequently,
SSMs of kind (2) are considered, where contrary to the
previous case, the parameters θ are not assumed to be
known which eventually results in the following alterna-
tive description of the dynamic system, where the agent
index has been dropped for simplicity

xk+1 ∼ p(xk+1|xk , θ), yk ∼ p(yk|xk , θ). (52)

While approaches such as state augmentation, where an
extended state x′

k =[ xk , θ ]ᵀ in combination with the SMC
methods described in the Appendix A.1 are theoretically
possible, such approaches are known to be associated with
strong convergence problems. This is even the case if arti-
ficial dynamics for the time-invariant parameters θ are
adopted θk = θk−1 + νθk , as the PF does not properly
explore the parameter space [28, 37].
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It is important to note that similar to the motivation
for the adoption of particle filtering for state estimation,
the estimation of the parameters, e.g., in form of the
parameter posterior

p(θ |y1:k) = p(y1:k|θ)p(θ)
∫
p(y1:k|θ)p(θ)dθ

(53)

or the joint state and parameter posterior p(xk , θ |y1:k) is
analytically intractable in general. This motivates the use
of SMC methods also for the parameter estimation.
To this end, parallel or iterated SMCmethods have been

proposed, where PFs are used for state estimation that
are intertwined with PMCMC method for the parame-
ter estimation [24, 38]. In theses methods, not only state
particles

{〈
x(
)

k ,w(
)

k

〉}L


=1
are used, but also parameter

particles
{〈
w(
θ )

θ ,k , θ (
θ )

k

〉}Lθ


θ=1
. Here, index k for the param-

eter particles indicates that the current estimate of the
parameter may change at time step k despite the fact that
the underlying sought parameter is time invariant. To pre-
vent degeneration of the parameter particles, a PMCMC
rejuvenation procedure is adopted if the ESS goes below
a predefined threshold Lθ th [28]. The resulting procedure
proposed independently by [37] and [28] is henceforth
denoted as SMC2 and exploits, similar to the sequential
importance sampling (SIS) methods for state estimation,
an iterative batch importance sampling (IBIS) scheme.
Details of the SMC2 are discussed in the subsequent
Appendix A.3.

Iterative batch importance sampling The IBIS is a
sequential method to approximate the parameter poste-
rior p(θ |y1:k) via a set of particles

{〈
w(
θ )

θ ,k , θ (
θ )

k

〉}Lθ


θ=1
and

uses a procedure similar to theMetropolis-Hastings (MH)
algorithm to build a Markov chain where the target distri-
bution equals the parameter posterior. However, contrary
to classical MH, which would require a new chain for
every time step, IBIS performs importance sampling (IS)
to adapt the MH algorithm to time variant systems [39].
Based on a parameter prior p(θ), the procedure initial-

izes with

θ
(
θ )
0 ∼ p(θ), 
θ = 1, . . . , Lθ (54)

w(
θ )
θ ,0 = 1

Lθ

, 
θ = 1, . . . , Lθ . (55)

At subsequent time steps, the parameter weights are
updated based on the likelihood, in a similar fashion as for
state estimation (cf. (50)) via [39]:

w(
θ )

θ ,k ∝ w(
θ )

θ ,k−1p
(
yk
∣∣∣y1:k−1, θ

(
θ )

k

)
, 
θ = 1, . . . , Lθ . (56)

Similar to resampling in PF-based state estimation to
avoid degeneracy, the IBIS also performs a correspond-
ing resampling step equivalent if the ESS goes below a

set threshold Lθ th. In this case, new parameter particles
are sampled with equal weights. Due to the fact that
this step is related to the transition step within the MH
algorithm, this procedure is denoted as resample-move
step. The proposal density in the IBIS for the parame-
ter particles is modeled by a Gaussian kernel π(·|θk) =
N
(
μπ(θk),�π(θk)

)
for simplicity. The mean and covari-

ance matrix of this kernel are computed accordingly to

μπ(θk) ≡
∑Lθ


θ=1 w
(
θ )

θ ,k θ
(
θ )

k
∑Lθ


θ=1 w
(
θ )

θ ,k
, (57a)

�π(θk) ≡
∑Lθ


θ=1 w
(
θ )

θ ,k

(
θ

(
θ )

k − μπ(θk)

) (
θ

(
θ )

k − μπ(θk)

)ᵀ

∑Lθ


θ=1 w
(
θ )

θ ,k
.

(57b)

It is important to note that the likelihood increments
p
(
yk
∣∣∣y1:k−1, θ

(
θ )

k

)
are typically intractable. To this end,

the subsequently defined SMC2 is used, which couples the
IBIS with PFs to approximate this PDF.

A.3 Sequential Monte Carlo squared (SMC2)
The SMC2 as proposed in [24] combines the IBIS for
parameter estimation with a PF for state estimation. More
precisely, for every time step k and parameter particle
indexed by 
θ , a PF iteration is performed. Due to this
interwoven structure, where a state particle does not only
depend on the state parameter index 
 but also on the
parameter particle index 
θ , the state particles are sub-
sequently denoted as

〈
w(
,
θ )

k , x(
,
θ )

k

〉
. With this, the likeli-

hood increment needed for the weight update, cf. (56), is
approximated as [24]

p
(
yk
∣∣∣y1:k−1, θ

(
θ )

k

)
= 1

L

L∑


=1
w(
,
θ )

k . (58)

Similar to IBIS, SMC2 performs a PMCMC rejuvenation
step in case the ESS in the parameter domain drops below
a set threshold. The procedure is briefly summarized
below, which is repeated for every parameter particle 
θ .

1. Using kernel (57), a parameter candidate
θ̃


θ ∼ π(·|θk) is sampled.
2. With this parameter particle, a PF is operated to

obtain the state particles x̃(1:L,
θ )

1:k
3. Accept the move, as per MH algorithm, to replace

the old particles by candidates with probability

min

⎛

⎝
p
(
θ̃

(
θ )
)
p̂
(
y1:k

∣∣∣θ̃
(
θ )

)
π
(
θ


θ

k

∣∣∣θ̃
(
θ )

)

p
(
θ

(
θ )

k

)
p̂
(
y1:k

∣∣∣θ (
θ )

k

)
π
(
θ̃

(
θ )
∣∣∣θ
θ

k

) , 1

⎞

⎠ . (59)
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Finally, following the MH algorithm, the set of accepted
particles as well as the acceptance ratio, i.e., the relative
number of accepted candidates per rejuvenation step is
calculated.
The complete SMC2 for the general case is given in [24]

and skipped here for brevity.

Remark 7 As detailed in the proposed algorithm which
builds upon SMC2 (cf. Algorithm 1 Line 20), the SMC2

facilitates automatic adaptation of the number of state
particles L to improve the overall estimation. In case the
number of particles is increased, a PF is operated with the
increased number of particles for every parameter particles
to eventually replace the current set of particles [24].

A.4 General spatial random field
A RF is a spatial random process whose domain is a sub-
set of the Euclidean space. A realization of such a field is
henceforth denoted as z(s), where s ∈ �.

Definition 1 (Random Field, RF, [40]) A random field
z : � → R is a stochastic process with a spatial domain
� ⊂ R

n� :

{z(s)|s ∈ �}. (60)

While theoretically also temporal andmultivariate fields
can be defined, in this work, only two-dimensional time-
invariant scalar fields are considered. Moreover, due to
their model simplicity, Gaussian RFs are of particular
interest. They are defined as follows.

Definition 2 (Gaussian Random Field, [41]) AGaussian
RF is a RF that possesses finite-dimensional distributions
that are all multivariate Gaussian. The statistics of a
Gaussian RF z(s) are completely described by their mean
and covariance functions:

μz(s) ≡ E[ z(s)] , (61a)
Covz[ s1, s1] ≡ E

[
[ z(s1) − μz(s1)]ᵀ [ z(s2) − μz(s2)]

]
,
(61b)

where the covariance function must be a positive definite
function, cf. Definition 3 below.

Definition 3 (Positive definite covariance function,
[42]) A covariance function is positive definite, if it satisfies

n∑

j,k=1
cjckCovz[ sj, sk]≥ 0

∀n ∈ N,∀s1 . . . sn ∈ �,∀c1 . . . cn ∈ R.

(62)

For model and computational simplicity, stationary
and isotropic RFs are considered, which respectively are
defined as

Definition 4 (Stationary Gaussian RFs [42]) A real-
valued Gaussian RF is called stationary if the covariance
depends only on the difference between two positions s1 and
s2 such that

Covz[ s1, s2]= Covz[ s1 − s2] . (63)

Definition 5 (Isotropic Gaussian random field [42]) A
real-valued Gaussian RF is called isotropic if the covari-
ance is only dependent on the distance between two posi-
tions such that

Covz[ s1, s2]= Cov[ ‖s1 − s2‖2] . (64)

Both properties can, respectively, be understood as
invariance properties under translation, rotation, and
reflection. Moreover, it is important to note that isotropic
Gaussian RFs are always stationary.
With these definitions and assumptions, the covari-

ance of a Gaussian RF can be parameterized efficiently,
e.g., through the Matérn covariance function discussed
subsequently.

A.5Matérn covariance function
A commonly used approach to model the covariance of
RFs is based on the Matérn model which parameterizes
the covariance as follows.

Definition 6 (Matérn covariance function, [17]) The
Matérn covariance between two points s1, s2 is defined by
their Euclidean distance d = ‖s1 − s2‖ such that

Covz[ s1, s2]≡ σ 2

2ν−1�(ν)
(κd)νKν(κd), (65)

where �(ν) denotes the Gamma function and Kν is the
modified Bessel function of the second kind and order ν.

The Matérn model provides a good compromise
between flexibility and parameter reduction, as only three
parameters are required to model the field. The param-
eters are denoted as marginal variance (σ 2 = V[ z(s)]),
smoothing parameter (ν ∈ R>0) and scale (κ ∈ R>0).
In literature, κ is often also expressed via κ = √

8ν
/

ρ,
where ρ measures how quickly the correlations of the ran-
dom field decays with spatial distance. For this reason, ρ
is also denoted as the range of the field [17, 42].

A.6 GaussianMarkov random field
A special variant of the general RF defined above is
the GMRF which combines the Gaussian and Marko-
vian property. It is of particular importance in this
work as it aims to reduce the computational complexity
that is associated with RF regression for non-Markovian
fields.
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Definition 7 (Gaussian Markov random field, GMRF,
[43]) A random vector α =[α1, . . . ,αNα ] is called a GMRF
with respect to a simple undirected graph G = 〈V , E〉 with
mean μ ∈ R

Nα and precision matrix Q � 0,Q ∈ R
Nα×Nα ,

if and only if it is given by p(α) = N (μ,Q−1) and it holds
that

〈i, j〉 ∈ E ⇔ Qij �= 0, ∀i �= j, (66)

where V = {1, . . . ,Nα} are the vertices of the graph.

It is important to note that (66) describes the Markov
property of α which is summarized in Definition 8.

Definition 8 (Markov property, conditional indepen-
dence, [43]) Two random variables (RVs) x and y are
conditional independent given a third RV z, if and only if

p(x, y|z) = p(x|z)p(y|z). (67)

The GMRF is best understood graphically, where each
component of the random vector α corresponds to a graph
vertex. The graph, in turn, can be interpreted as a not
necessarily regular grid, where the edges describe that
two components of that random vector are conditionally
dependent.
As mentioned above, computational reasons speak in

favor of the GMRF compared to regular Gaussian RFs. In
particular, if the precision matrix Q is sparse, computa-
tionally efficient processing of the GMRF is possible [17].

Remark 8 The GMRF as per Definition 7 corresponds to
a weak solution of a stochastic partial differential equation
driven by white Gaussian noise which describes a Gaussian
RF with Matérn covariance function.

Nomenclature
‖x‖2 Euclidean norm of vector x
0n×m All zero matrix of dimension n × m
A Set of agents
βk Basis function weight vector at time step k

for mean modeling
βk Basis function weight for basis function k

for mean modeling
cuk (xk) Constant part of the linearized transition

function
| · | Cardinality of set or tuple ·
Covp[ ·] Covariance matrix with respect to density p
δ(x − x0) Dirac delta function centered at x0
de Extension of the domain to reduce

numerical artifacts
lψ(s) Desired covariance mesh edge length
lϕ(s) Desired mean mesh edge length

d�n(s) Smallest Euclidean distance between s and
the �n

EG Edge set of graph G
Ep[ ·] Expectation operator with respect to

density p
ε Random field measurement noise
E(λ) Exponential distribution with rate λ

f (·) State evolution function
f̃ (·) Linearized state evolution function
G Graph
h(·) Measurement function
i, j,k Some agent indices
Kν Modified Bessel function of the second

kind and order ν

L Number of particles

 Particle index
l∗ϕ The mean mesh edge length
l∗ψ The covariance mesh edge length
Lθ Number of parameter particles

θ Parameter particle index
Lθ , th Effective Sample Size threshold for

parameter particles
Ltyp Typical length of the domain of interest
[X]i,j (i, j)th element of matrix X
μπ(θ) Proposal mean for parameter particle

candidates
∇ Gradient
Nα Number of grid vertices
nα Index of a grid vertex
Nβ Number of grid vertices for mean modeling
nβ Index of a grid vertex for mean modeling
η Measurement noise vector
N (μ,�) Normal distribution with mean μ and

covariance matrix �

n� Dimension of the domain of the random
field

ν Process noise vector
� Domain of the random field
�k Subdomain k of the random field
|�n| Area of the fluid-carrying domain �n

within the environment
p(·) Probability density function or probability

mass function
ϕ(s) Basis function vector evaluated at position s
ϕnβ (s) Basis function nβ evaluated at position s for

mean modeling
π(·) Proposal density
ψ(s) Basis function vector evaluated at position s
ψn(s) n-th basis function evaluated at position s
Q(θ) Precision matrix for a given θ

r Range parameter of the covariance function
according to [18]

Rs Agent sensing range
s Position in the random field domain
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suk (xk) Slope part of the linearized transition
function

�ν Process noise covariance matrix
σε Random field measurement noise standard

deviation
σEU Standard deviation of the boundary noise
�π(θ) Proposal covariance for parameter particle

candidates
σu,ω Marginal standard deviation of turn rate

input uω

συ̇ Process noise covariance matrix element
describing acceleration

σφ̇ Process noise covariance matrix element
describing change of heading angle

σx Process noise covariance matrix element
describing change in Cartesian x position

σy Process noise covariance matrix element
describing change in Cartesian Y position

s�b Slope factor describing the increase in
distance between mesh points in �b

N Set of natural numbers
R Set of real numbers
T Sampling, i.e., measurement period
θ State Space Model parameter
θ̂k Parameter estimate at time step k
θ̃

(
θ )

k Parameter particles candidate 
θ at time
step k

θ
(
θ )

k Parameter particles 
θ at time step k
u0k Development point of control input
ui,k Control Input vector of agent i at time

instant k
VG Vertex set of graph G
φi,k Heading angle of agent i at time step k
υi,k Speed of agent i at time step k
ωi,k Turn rate of agent i at time step k
Vp[ ·] Variance with respect to density p
α Gaussian Markov Random Field random

vector
w Particle weight
w(
θ )

θ ,k Parameter particle weight 
θ at time step k
{xi}i Collection, i.e. set, of all xi
xi,k State vector of agent i at time instant k
xi,k Cartesian x coordinate of agent i at time

step k
x̂i,k Estimate of state vector of agent i at time

instant k
yi,k Measurement vector of agent i at time

instant k
yi,k Cartesian y coordinate of agent i at time

step k
Z¬i,k All state vectors of agents other than i at

time instant k
z(s) Random field evaluated at the position s
ẑ(s) Estimate of the random field at location s
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Markov random field; GPS: Global Positioning System; i.i.d.: Independent and
identically distributed; IBIS: Iterative batch importance sampling; IPF:
Input-aided particle filter; IQR: Interquartile range; IS: Importance sampling; LA:
Likelihood approximation; LAP: Likelihood approximation problem; LBM:
Lattice Boltzmann method; MC: Monte Carlo; MCA: Monte Carlo
approximation; MH: Metropolis-Hastings; MNS: Measurement noise scenario;
MPF: Multiple particle filter; PD: Proposal distribution; PDF: Probability density
function; PF: Particle filter; PMCMC: Particle Markov Monte Carlo chain; PPA:
Particles per agent; RF: Random field; RFaT: Random field-aided tracking; RFE:
Random field error; RMSE: Root-mean-squared Error; RV: Random variable; SIS:
Sequential importance sampling; SLAM: Simultaneous localization and
mapping; SMC: Sequential Monte Carlo; SMC2: Sequential Monte Carlo
squared; SSM: State space model; w.r.t.: With respect to; WSN: Wireless sensor
network

Acknowledgements
We gratefully acknowledge the computational resources provided by the
RWTH Compute Cluster from RWTH Aachen University under project
RWTH0118.

Authors’ contributions
SS performed the simulations, wrote the majority of the manuscript, and
conceived the proposed method. TH implemented significant parts of the
algorithm and contributed to the manuscript. GA initiated the research and
also commented on and approved the manuscript. All authors read and
approved the final manuscript.

Authors’ information
All authors are with the Chair for Integrated Signal Processing Systems, RWTH
Aachen University, Germany. Email addresses:
schlupkothen@ice.rwth-aachen.de, tim.heidenblut@rwth-aachen.de,
ascheid@ice.rwth-aachen.de

Funding
This project has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No. 665347.

Availability of data andmaterials
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 26 May 2019 Accepted: 28 November 2019

References
1. Y. Wu, E. Mittmann, C. Winston, K. Youcef-Toumi, in 2019 American Control

Conference (ACC). A practical minimalism approach to in-pipe robot
localization, (2019), pp. 3180–3187. https://doi.org/10.23919/acc.2019.
8814648

2. E. H. A. Duisterwinkel, E. Talnishnikh, D. Krijnders, H. J. Wörtche, Sensor
motes for the exploration and monitoring of operational pipelines. IEEE
Trans. Instrum. Meas. 67(3), 655–666 (2018). https://doi.org/10.1109/TIM.
2017.2775404

3. L. Guan, X. Xu, Y. Gao, F. Liu, H. Rong, M. Wang, A. Noureldin, in Advances
in Human andMachine Navigation Systems. Micro-inertial-aided
high-precision positioning method for small-diameter PIG navigation
(IntechOpen, 2019). https://doi.org/10.5772/intechopen.80343

4. E. Talnishnikh, J. van Pol, H. J. Wörtche, in Intelligent Environmental Sensing,
Smart Sensors, Measurement and Instrumentation, vol. 13, ed. by H. Leung,
S. Chandra Mukhopadhyay. Micro motes: A highly penetrating probe for
inaccessible environments (Springer, Cham, 2015), pp. 33–49. https://doi.
org/10.1007/978-3-319-12892-4_2

https://doi.org/10.23919/acc.2019.8814648
https://doi.org/10.23919/acc.2019.8814648
https://doi.org/10.1109/TIM.2017.2775404
https://doi.org/10.1109/TIM.2017.2775404
https://doi.org/10.5772/intechopen.80343
https://doi.org/10.1007/978-3-319-12892-4_2
https://doi.org/10.1007/978-3-319-12892-4_2


Schlupkothen et al. EURASIP Journal on Advances in Signal Processing          (2020) 2020:5 Page 27 of 27

5. X. R. Li, V. P. Jilkov, Survey of maneuvering target tracking. part i. dynamic
models. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1333–1364 (2003).
https://doi.org/10.1109/TAES.2003.1261132

6. P. M. Djuric, M. F. Bugallo, in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Multiple particle filtering
with improved efficiency and performance, (2015), pp. 4110–4114.
https://doi.org/10.1109/ICASSP.2015.7178744

7. NH. Do, J. Mahdi, T. Mehmet, C. Jongeun, Fully bayesian field slam using
gaussian markov random fields. Asian J. Control. 18(4), 1175–1188 (2015).
https://doi.org/10.1002/asjc.1237

8. Y. Xu, J. Choi, S. Dass, T. Maiti, Efficient bayesian spatial prediction with
mobile sensor networks using gaussian markov random fields.
Automatica. 49(12), 3520–3530 (2013). https://doi.org/10.1016/j.
automatica.2013.09.008

9. M. Jadaliha, Y. Xu, J. Choi, N. S. Johnson, W. Li, Gaussian process regression
for sensor networks under localization uncertainty. IEEE Trans. Sig.
Process. 61(2), 223–237 (2013). https://doi.org/10.1109/tsp.2012.2223695

10. S. Choi, M. Jadaliha, J. Choi, S. Oh, Distributed gaussian process regression
under localization uncertainty. J. Dyn. Syst. Meas. Control. 137(3), 031002
(2014). https://doi.org/10.1115/1.4028148

11. H. Braham, S. B. Jemaa, G. Fort, E. Moulines, B. Sayrac, Spatial prediction
under location uncertainty in cellular networks. IEEE Trans. Wirel.
Commun. 15(11), 7633–7643 (2016). https://doi.org/10.1109/twc.2016.
2605676

12. Z. Song, K. Mohseni, in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Autonomous vehicle localization in a vector field:
Underwater vehicle implementation (IEEE, 2014). https://doi.org/10.1109/
iros.2014.6942872

13. S. Schlupkothen, G. Ascheid, in 2018 6th IEEE International Conference on
Wireless for Space and Extreme Environments (WiSEE). Particle Filter Based
Tracking of Highly Agile Wireless Agents via Random Input Sampling,
(2018), pp. 227–232. https://doi.org/10.1109/WiSEE.2018.8637343

14. F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, F. Hlawatsch, Cooperative
simultaneous localization and tracking in mobile agent networks (2014).
arXiv:1403.1824v2

15. F. Daum, J. Huang, in 2003 IEEE Aerospace Conference Proceedings (Cat.
No.03TH8652), vol. 4. Curse of dimensionality and particle filters, (2003),
pp. 1979–1993. https://doi.org/10.1109/AERO.2003.1235126

16. S. Schlupkothen, G. Ascheid, Multiple particle filtering for tracking wireless
agents via monte-carlo likelihood approximation. EURASIP J. Adv. Sig.
Process. (2019). https://doi.org/10.1186/s13634-019-0643-3

17. F. Lindgren, H. Rue, J. Lindström, An explicit link between gaussian fields
and gaussian markov random fields: the stochastic partial differential
equation approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73(4), 423–498
(2011). https://doi.org/10.1111/j.1467-9868.2011.00777.x

18. H. Bakka, J. Vanhatalo, J. B. Illian, D. Simpson, H. Rue, Non-stationary
gaussian models with physical barriers. Spat. Stat. 29, 268–288 (2019).
https://doi.org/10.1016/j.spasta.2019.01.002

19. E. T. Krainski, V. Gómez-Rubio, H. Bakka, A. Lenzi, D. Castro-Camilo, D.
Simpson, F. Lindgren, H. Rue, Advanced Spatial Modeling with Stochastic
Partial Differential Equations Using R and INLA. (Chapman and Hall/CRC,
2018). https://doi.org/10.1201/9780429031892

20. Y. Bar-Shalom, X. R. Li, T. Kirubarajan, Estimation with Applications to
Tracking and Navigation: Theory, Algorithms and Software. (John Wiley &
Sons, Inc., 2001). https://doi.org/10.1002/0471221279

21. C. Andrieu, A. Doucet, R. Holenstein, Particle markov chain monte carlo
methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3), 269–342 (2010).
https://doi.org/10.1111/j.1467-9868.2009.00736.x

22. T. B. Schön, A. Wills, B. Ninness, System identification of nonlinear
state-space models. Automatica. 47(1), 39–49 (2011). https://doi.org/10.
1016/j.automatica.2010.10.013

23. M. K. Pitt, R. dos Santos Silva, P. Giordani, R. Kohn, On some properties of
markov chain monte carlo simulation methods based on the particle
filter. J. Econ. 171(2), 134–151 (2012). https://doi.org/10.1016/j.jeconom.
2012.06.004

24. N. Chopin, P. E. Jacob, O. Papaspiliopoulos, SMC2: an efficient algorithm
for sequential analysis of state space models. J. R. Stat. Soc. Ser. B (Stat.
Methodol.) 75(3), 397–426 (2012). https://doi.org/10.1111/j.1467-9868.
2012.01046.x

25. A. Papavasiliou, Parameter estimation and asymptotic stability in
stochastic filtering. Stoch. Process. Appl. 116(7), 1048–1065 (2006).
https://doi.org/10.1016/j.spa.2006.01.002

26. D. Crisan, J. Míguez, Nested particle filters for online parameter estimation
in discrete-time state-space markov models. Bernoulli. 24(4A), 3039–3086
(2018). https://doi.org/10.3150/17-bej954

27. J. Liu, M. West, Combined Parameter and State Estimation in
Simulation-Based Filtering. (A. Doucet, N. de Freitas, N. Gordon, eds.)
(Springer, New York, 2001), pp. 197–223

28. N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski, N. Chopin, On particle
methods for parameter estimation in state-space models. Stat. Sci. 30(3),
328–351 (2015). https://doi.org/10.1214/14-sts511

29. D. Simpson, H. Rue, A. Riebler, T. G. Martins, S. H. Sørbye, Penalising model
component complexity: A principled, practical approach to constructing
priors. Stat. Sci. 32(1), 1–28 (2017). https://doi.org/10.1214/16-sts576

30. G.-A. Fuglstad, D. Simpson, F. Lindgren, H. Rue, Constructing priors that
penalize the complexity of gaussian random fields. J. Am. Stat. Assoc.
114(525), 445–452 (2019). https://doi.org/10.1080/01621459.2017.
1415907

31. Q. Zou, X. He, On pressure and velocity boundary conditions for the
lattice boltzmann bgk model. Phys. Fluids. 9(6), 1591–1598 (1997). https://
doi.org/10.1063/1.869307

32. P.-o. Persson, G. Strang, A simple mesh generator in matlab. SIAM Rev. 46,
2004 (2004)

33. P. J. Rousseeuw, I. Ruts, J. W. Tukey, The bagplot: A bivariate boxplot. Am.
Stat. 53(4), 382–387 (1999). https://doi.org/10.1080/00031305.1999.
10474494

34. S. Särkkä, Bayesian Filtering and Smoothing. (Cambridge University Press,
New York, 2013)

35. A. Doucet, N. Freitas, N. Gordon, Sequential Monte CarloMethods in Practice.
(Springer New York, 2001). https://doi.org/10.1007/978-1-4757-3437-9

36. A. Doucet, S. Godsill, C. Andrieu, On sequential monte carlo sampling
methods for bayesian filtering. Stat. Comput. 10(3), 197–208 (2000).
https://doi.org/10.1023/A:1008935410038

37. G. Kitagawa, A self-organizing state-space model. J. Am. Stat. Assoc.
93(443), 1203 (1998). https://doi.org/10.2307/2669862

38. A. Fulop, J. Li, Efficient learning via simulation: A marginalized
resample-move approach. J. Econ. 176(2), 146–161 (2013). https://doi.
org/10.1016/j.jeconom.2013.05.002

39. N. Chopin, A sequential particle filter method for static models. Biometrika.
89(3), 539–552 (2002). https://doi.org/10.1093/biomet/89.3.539

40. E. Vanmarcke, Random Fields: Analysis And Synthesis (Revised And Expanded
New Edition). (WORLD SCIENTIFIC, 2010). https://doi.org/10.1142/5807

41. R. J. Adler, The Geometry of Random Fields. (Society for Industrial and
Applied Mathematics, 2010). https://doi.org/10.1137/1.9780898718980

42. M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging (Springer
Series in Statistics). (Springer, 1999). https://doi.org/10.1007/978-1-4612-
1494-6

43. H. Rue, L. Held, GaussianMarkov Random Fields. (Chapman and Hall/CRC,
2005). https://doi.org/10.1201/9780203492024

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/TAES.2003.1261132
https://doi.org/10.1109/ICASSP.2015.7178744
https://doi.org/10.1002/asjc.1237
https://doi.org/10.1016/j.automatica.2013.09.008
https://doi.org/10.1016/j.automatica.2013.09.008
https://doi.org/10.1109/tsp.2012.2223695
https://doi.org/10.1115/1.4028148
https://doi.org/10.1109/twc.2016.2605676
https://doi.org/10.1109/twc.2016.2605676
https://doi.org/10.1109/iros.2014.6942872
https://doi.org/10.1109/iros.2014.6942872
https://doi.org/10.1109/WiSEE.2018.8637343
https://doi.org/10.1109/AERO.2003.1235126
https://doi.org/10.1186/s13634-019-0643-3
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1016/j.spasta.2019.01.002
https://doi.org/10.1201/9780429031892
https://doi.org/10.1002/0471221279
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1016/j.automatica.2010.10.013
https://doi.org/10.1016/j.automatica.2010.10.013
https://doi.org/10.1016/j.jeconom.2012.06.004
https://doi.org/10.1016/j.jeconom.2012.06.004
https://doi.org/10.1111/j.1467-9868.2012.01046.x
https://doi.org/10.1111/j.1467-9868.2012.01046.x
https://doi.org/10.1016/j.spa.2006.01.002
https://doi.org/10.3150/17-bej954
https://doi.org/10.1214/14-sts511
https://doi.org/10.1214/16-sts576
https://doi.org/10.1080/01621459.2017.1415907
https://doi.org/10.1080/01621459.2017.1415907
https://doi.org/10.1063/1.869307
https://doi.org/10.1063/1.869307
https://doi.org/10.1080/00031305.1999.10474494
https://doi.org/10.1080/00031305.1999.10474494
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1023/A:1008935410038
https://doi.org/10.2307/2669862
https://doi.org/10.1016/j.jeconom.2013.05.002
https://doi.org/10.1016/j.jeconom.2013.05.002
https://doi.org/10.1093/biomet/89.3.539
https://doi.org/10.1142/5807
https://doi.org/10.1137/1.9780898718980
https://doi.org/10.1007/978-1-4612-1494-6
https://doi.org/10.1007/978-1-4612-1494-6
https://doi.org/10.1201/9780203492024

	Abstract
	Keywords

	Introduction
	Related works
	Contribution
	Organization

	Background
	State space models
	Multiple particle filtering
	Gaussian Markov random fields

	Proposed Gaussian Markov random field model
	Environment modeling via Gaussian Markov random fields
	Barrier/Matérn environment model
	Finite element method
	Contributions of this section

	Gaussian Markov random field as control input
	Time update model
	Approximation by linearization
	Sequential sampling
	Control input-driven motion model
	Contributions of this section

	Proposed random field-aided tracking algorithm
	Estimation framework
	Alternative online estimation methods

	Parameter priors
	The algorithm
	Contributions of this section

	Simulation setup and method
	Environment uncertainty
	Performance metric: random field error
	Boxplots
	Algorithms

	Numerical results and discussion
	MCA-based multiple particle filtering vs. input-aided particle filtering
	Input-aided particle filtering vs. random field-aided tracking
	RFaT: parameter particle set size and environment uncertainty analysis

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

