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Abstract

Signal design is an important component for good performance of radar systems. Here, the problem of determining
a good radar signal with the objective of minimizing autocorrelation sidelobes is addressed, and the first
comprehensive comparison of a range of signals proposed in the literature is conducted. The search is restricted to a
set of nonlinear, frequency-modulated signals whose frequency function is monotonically nondecreasing and
antisymmetric about the temporal midpoint. This set includes many signals designed for smaller sidelobes including
our proposed odd polynomial frequency signal (OPFS) model and antisymmetric time exponentiated frequency
modulated (ATEFM) signal model. The signal design is optimized based on autocorrelation sidelobe levels with
constraints on the autocorrelation mainlobe width and leakage of energy outside the allowed bandwidth, and we
compare our optimized design with the best signal found from parameterized signal model classes in the literature.
The quality of the overall best such signal is assessed through comparison to performance of a large number of
randomly generated signals from within the search space. From this analysis, it is found that the OPFS model
proposed in this paper outperforms all other contenders for most combinations of the objective functions and is
expected to be better than nearly all signals within the entire search set.
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1 Introduction

Radar’s primary objective is to detect targets and estimate
their range and velocity. To achieve these objectives, it
is desirable that the radar signals have small autocorrela-
tion (AC) sidelobes or Doppler tolerant. Optimizing over
one characteristic can yield other undesired effects such as
widening the AC mainlobe. Achieving a balance between
the conflicting requirements is the goal of signal modu-
lation. Radar signals are either frequency modulated or
phase modulated. In this paper, we address finding FM
signals that have high-quality performance on reducing
the sidelobes with the constraints on mainlobe width and
energy leakage beyond the specified bandwidth.

The most popular frequency modulation (FM) sig-
nal is linear frequency modulation (LFM). Though LEM
has good Doppler tolerant characteristic, it has relatively
high sidelobes (— 13.4 dB) which may not be suited
for many other radar applications. To achive smaller
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AC sidelobes and also to maintain constant envelope,
researchers turned to stationary phase principle (SPP)
in which the frequency function is varied nonlinearly to
shape the PSD to one that corresponds to smaller AC
sidelobes.

Using this principle, Cook [1] derived frequency func-
tions whose PSDs have the shape of an nth power of
cosine. Cook also noted that deriving the frequency func-
tion from the PSDs can be done only for relatively sim-
ple PSDs, and in his paper [1], Cook derived frequency
functions only for n = 1,2,3, and 4. The best peak side-
lobe level he reported was of — 47dB for the choice of
n = 4. The limitation of SPP to use only simple PSDs
led researchers to come up with ad hoc frequency func-
tions that have desirable PSDs resulting in smaller AC
sidelobes. In 1979, Price proposed a nonlinear frequency
function that achieves small sidelobes [2], ([3], Section
5.2), ([4], Section 8.2.2). After Price’s nonlinear frequency
modulation (NLFM), many researchers proposed ad hoc
frequency functions with the aim of achieving smaller AC
sidelobes [5-9]. These NLEM signals are from the sig-
nal set Q: these signals have monotonically increasing and

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-019-0658-9&domain=pdf
http://orcid.org/0000-0002-7965-1732
mailto: salphons@hawk.iit.edu
http://creativecommons.org/licenses/by/4.0/

Alphonse and Williamson EURASIP Journal on Advances in Signal Processing

midpoint antisymmetric frequency functions. These fre-
quency functions have a continuously varying first deriva-
tive, except for specific parameter settings in which case
they result in LFM.

There is another class of NLFM signals that also belongs
to the signal set Q2 but whose frequency functions have
three segments [10-13]. In the middle segment, the
frequency is a linear function of time having constant
first derivative. The first and the third segments have
derivatives diverging from this particular constant value.
Cook [10] proposed such an NLFM signal whose fre-
quency function has three piecewise linear components
and achieved a peak sidelobe level below — 30 dB. Though
in this case the first and third components are linear,
Cook suggested that these components can be nonlin-
ear. Griffiths and Vinagre [11] used this piecewise linear
EM signal and applied amplitude modulation to get fur-
ther reduction in sidelobe levels. Other researchers sug-
gested nonlinear functions for the first and third segments
to achieve reduced sidelobe levels without performing
amplitude modulation [12, 13].

1.1 Objective functions

We are interested to find the “best” NLFM signal with
small sidelobes. To do this, we define a family of objective
functions that penalize AC sidelobes. The AC of signal s is
defined as

M—m—1
_ o S(n4+m)s*(n), m=> 0,
rom = | Et nE W

The papers we have discussed so far focus on minimiz-
ing only peak sidelobe level with respect to the mainlobe
level. Another important performance metric often con-
sidered in the literature is the integrated sidelobe ratio
(ISLR), which is the energy in sidelobes with respect to the
energy in the mainlobe [14—16]. It is reasonable to form
objective functions that are convex combinations of ISLR
and the peak-to-sidelobe ratio (PSLR). By choosing the
convex weighting between zero to one, the radar operator
can emphasize one metric over the other.

PSLR is defined as the ratio of maximum sidelobe level
squared with respect to the mainlobe level squared. If we
denote the pth AC sidelobe peak value as R, then

2
PSLR(s) = (m;ix{Rp}) JR%(0). (2)

There are few slightly varying definitions for ISLR used
in the literature. The one we have used in this paper is the
one that is widely used [15, 17, 18] in which, the ISLR is
defined as the ratio of energy in the AC when the signals
are not time aligned to the energy in AC when the signals
are time aligned. In this case, one sample correspond to
one sample delay in autocorrelation function.
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A signal with small sidelobes will have smaller values
for both PSLR and ISLR. We form a cost function as
the convex combination of these two metrics. Note that
PSLR is always less than one and ISLR can be greater
than one depending on the signal model. This will force
the optimization procedure to give more importance in
minimizing ISLR. To bring both these objectives to a
comparable level, we will normalize PSLR and ISLR with
respect to LFM’s PSLR and ISLR:

PSL
NPSLR(s) = PSLR(9) (4)
PSLRLEM
and
ISL
NISLR(s) = &. (5)
ISLRLEM

PSLRypm and ISLRppp are the PSLR and ISLR of the
LFM signal whose frequency is a linear function of time.
Hence, our cost function to minimize is

Q(s; B) = B - NPSLR(s) + (1 — B) - NISLR(s), (6)

where 8 €[0, 1] is a weight parameter.

While minimizing PSLR and ISLR, the radar designer
also considers the AC mainlobe width and amount of
transmitted signal energy contained in the allowed band-
width. Reducing the sidelobe level widens the mainlobe.
Though reducing the sidelobes is a higher priority, hav-
ing a very wide mainlobe reduces the range accuracy of
the target [19]. Also. a wide AC mainlobe of a signal
reflected from a strong target will mask the reflection
from a weak target. Hence, we will impose a constraint
that the AC mainlobe width of the signal (MLW (s)) should
not be larger than twice the mainlobe width of LFM
(MLW (s)/MLWpm < 2), and we optimize Q(s; 8) in (6)
subject to this constraint.

A second constraint is about the spectral bandwidth
occupancy of the signal. As the available spectrum is lim-
ited and often needs to be shared with other applications,
it is important to make sure that the designed signal utl-
izes the available bandwidth effectively [20, 21]. A signal
model that occupies a larger bandwidth can have a smaller
PSLR, a smaller ISLR, and a narrower mainlobe width
compared to its own version occupying a smaller band-
width. Hence, to compare the AC characteristics fairly for
different signals, we have to make sure that most of their
spectral energy is confined within the specified useful
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bandwidth By. To quantify the signal’s spectral occupancy,
we will define in-band energy ratio (IBER) as

Energy of s in the spectral range [ —By/2, By /2]

IBER(s) =
© Total energy of the signal s

(7)

In this paper, we will limit our search for the best signal
within the set whose signals have at least 90% of the signal
energy within the specified bandwidth (IBER > 0.9). It
should be noted that the mainlobe width factor (two) and
IBER (0.9) depend on the particular applications and the
choices we have made in this paper fall under a reasonable
range of values for these parameters.

1.2 Related work on finding good FM signals with small
sidelobes

When the radar operator chooses a signal for his objective,
it is useful to have a performance comparison of available
radar signal designs. Though many papers have proposed
different NLFM signal models, there has been little focus
on comparing these signal models. Boukeffa et al. [22]
compares different NLFM signal models, but there are
some discrepancies in the results. For example, according
to [22], the peak sidelobe level for Cook’s [1] proposed sig-
nal whose PSD has the shape of cosine to the power four
is — 84 dB. But Cook himself reported the peak sidelobe
level as — 47 dB. It is not clear from these papers, how
they obtained these values. We used 10log;,((PSLR(s))
(PSLR(s) from Eq. (2)), which is the common expression
for computing PSLR in decibel. Wenzhen and Yan [7]
compared several NLFM signal models (including Price’s
signal model) along with their own proposed NLFM
signal. Though in their comparison, their proposed signal
model achieved smaller sidelobes, we observed from our
analysis that Price’s signal model outperforms the signal
model proposed in [7].

1.3 Our contribution
In this paper, we present the odd polynomial frequency
signal (OPFS) and the asymmetric time exponentiated FM
(ATEEM) signal. Polynomial-phase signals (PPS) are com-
mon in radar applications. As the name suggests in PPS,
the polynomial represents the phase of the signal. While
designing NLFM, representing the frequency function as
a polynomial gives direct control over the PSD which
helps to reduce AC sidelobes. An important distinction of
OPES is that even powers to set zero due to the antisym-
metric nature of the frequency functions from the signal
set Q. Hence we reference this signal as odd polynomial
frequency signal (OPES).

From our experiments, we observed that extending the
frequency function beyond the allowed bandwidth range
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helps in reducing the AC sidelobe levels. In the proposed
signal model, we incorporate a frequency scaling param-
eter which helps in extending the frequency function
beyond the allowed bandwidth range. Care must be taken
to limit this extension to focus most of the signal energy
within the allowed bandwidth. Through simulation, we
will demonstrate that OPFS outperforms other signals
for most of the weighted combinations of objective func-
tions that we consider. And the signal proposed by Price
[2] outperforms the other signals when only minimizing
PSLR.

The best signal in © may not be from any of the param-
eterized signal subsets that we studied. To assess the
likelihood of a better signal within Q from outside the
parameterized subsets we have considered, we examine
randomly selected signals in € drawn according to a uni-
form probability distribution. In Section 4, we discuss how
we generate such signals. We created one million ran-
dom signals and determined the best signal among them
with respect to each choice of weights for the objective
function. We observed that our 6D-OPFS and Price’s sig-
nal still outperform these randomly picked signals. From
this experiment, as discussed in Section 4, we estimate
with 95% confidence that 6D-OPFS and Price’s signal
outperforms 99.9997% of the signals in .

2 Library of parameterized NLFM signals
The general form for radar signals is s(tf) = A(®)
exp (} d)(t)), where A(¢) is the time dependent amplitude
of the signal. A varying envelope of the signal reduces
transmitter efficiency. In this paper, we will assume that
the signals have constant amplitude (A(t) = A). ¢ (¢) is the
phase of the signal. Depending on the search range of the
radar and desired range resolution, the radar signal is lim-
ited to have a pulse duration T, bandwidth B, and carrier
frequency f. It is easier to design the signal in baseband,
and hence, without loss of generality, we will set f; to zero.
The phase of the signal ¢ (¢) can be written as an integral
of the frequency function f(¢). The frequency functions
of the FM signals proposed in the literature for small
sidelobes are nondecreasing and antisymmetric about the
temporal midpoint, and we restrict consideration to fre-
quency functions of this form. The class of frequency
functions f(£) we consider thus satisfy the following
conditions:

(A) f(=T/2) = —B/2.

(B) f(¢) is monotonically nondecreasing.

© f(=t) =—f®.

We label the set of (baseband) radar signals whose
elements f(¢) satisfy the above three conditions as .
Note that the bandwidth parameter B that is used in sig-
nal design can be bigger than the useful bandwidth By
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Fig. 1 Typical frequency function from the NLFM signal set €2, which

is monotonically nondecreasing and has temporal midpoint
antisymmetry

(defined in (7)), but care must be taken during design to
make sure that the significant part of the signal energy is
contained within the useful bandwidth.

In Fig. 1, we show an example of a frequency function
from the signal set Q that typifies the NLFM frequency
functions proposed in the literature designed for smaller
sidelobes. By studying the frequency characteristics of this
typical signal, we can understand why the signals from the
signal set Q2 yield smaller sidelobes. The first difference
which is proportional to first order derivative of this typ-
ical frequency function with respect to time is shown in

Frequency difference

b

e

-T/2

-

-T/4 0 T/4 T2
Time

Fig. 2 First difference of frequency function which is proportional to
the first derivative of the typical frequency function shown in Fig. 1.
The derivative has large value near the start and stop of the signal
which correspond to the frequency band edges and small value at
the low frequencies (from baseband perspective). Hence, as per SPP,
the signal spends small time at the band edges and more time at the
center frequencies
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Fig. 2. We can observe that a typical frequency function
has high derivative at the start and end of the signal. The
spectral energy at the edges of the frequency band arises
from these fast variations at the start and end of the signal.
Moreover, the frequency function has a small derivative in
the temporal middle of the signal duration, corresponding
to the low frequencies (from a baseband perspective). This
means the frequency function spends less time in the edge
frequencies and more time in the low frequencies. As per
the SPP, this results in smaller energy in edge frequencies
and higher energy in the low frequencies as we can see in
Fig. 3. As a result, we get a windowed PSD which yields
smaller AC sidelobes as shown in Fig. 4. We can observe
that the red (lower) horizontal line in Fig. 4 is the peak
sidelobe level of this typical NLFM signal which is sub-
stantially smaller compared to the peak sidelobe level of
LFM shown as the black (upper) horizontal line.

Each of the NLFM signal models proposed in the lit-
erature is characterized by its own set of parameters ©
that determine the specific nonlinear characteristics of the
frequency function. In this section, we discuss the two sig-
nal models proposed by us the authors. The other signal
models that we have selected from the literature for com-
parison are discussed in Appendix for reference. We made
minor modifications to the notations to be in consistent
with our notations. We have selected what we feel are the
most representative among the classes of NLFM signals
designed for smaller sidelobes published in the literature.
We label the sets of signal models as 4, Qp,..., 2.
However, there are other signal models that we do not

Squared magnitude of S(f)

B2 0 B2 B 2*B
Frequency

-2B -B

Fig. 3 Squared magnitude of fast Fourier transform which is
proportional to PSD of the typical frequency function shown in Fig. 1.
Edge frequencies have small PSD values and low frequencies have
large PSD values. This agrees with SPP, as the edge frequencies have
large derivatives and middle frequencies have large derivatives. In the

end, we get a windowed PSD that should result in small AC sidelobes
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Fig. 4 AC of the typical frequency function shown in Fig. 1. The red (lower) line shows the peak sidelobe level of the typical NLFM signal. The black
(upper) line is the peak sidelobe level of LFM, which is significantly higher than that of NLFM

include here. Such signals can reasonably viewed as vari-
ation [6] of the signals that we do include for comparison
or the signal models that require more information to
recreate [8, 9] for comparison.

2.1 0dd polynomial frequency signal: 224
Our proposed polynomial frequency function is

=T
2

I

N
f® = ¢BY  pe@t/ TN, 8)

k=0

<t<

Since the frequency function in the signal set Q is
antisymmetric, we set the coefficients corresponding to
the even powers py, PN—2,PN—4,... to zero and opti-
mize the coefficients corresponding to the odd powers
PN—1,PN—3,PN—5, - . .. Optimizing only the odd coeffi-
cients helps the optimization routines to focus only on
the important parameters. Though higher degree poly-
nomials can result in flexible frequency functions, we
observed from our experiments the polynomial degree
higher than 11 did not yield improvements in terms of AC
characteristics. Eleventh degree polynomial has six odd
coefficients and hence has six dimensional freedom. We
refer this signal as 6D-OPFS. In this paper, we use the
AC characteristics of 6D-OPFS to compare against other
FM signal models. Though we intend most of the signal
energy to be within the allowed bandwidth, we inten-
tionally allow small amount signal energy to leak beyond
the allowed band to have larger effective bandwidth. This
can enhance the AC characteristics of the signal. The
parameter ¢ in (8) helps in extending the frequency func-
tion beyond the allowed bandwidth range of [-B/2, B/2].
The parameter set for the 6D-OPEFS is given by ©4

{¢,p1,p3,P5,P7, P9, P11}

2.2 Asymmetric time exponentiated FM (ATEFM): 2
The frequency function of ATEFM has a single parameter
®p with v € (1, 2] used to control the nonlinearity:

B (2e+T/2\"' B _T
Fit,v) = F(F2) -5 Fsi<o )
) - v—1
Bor(p0) o=t <]

This signal is used as an example in [23] to compute an
accurate estimate of NLFM signals transmitted by non-
cooperating radars at low SNRs.

3 Signal optimization

For the simulation study, we consider discrete time radar
signals of the form s(t) = A exp (jq)(t)), where the phase
¢ (¢) is the integral of the frequency function f(£) with
sample time values at ¢t = nT/M forn = 0,1,...,M —
1. The signal’s AC characteristics depend on the time-
bandwidth product BT and not on the individual values
of pulse duration T and bandwidth B. From our simula-
tion experiments, we observed that for different values of
BT the relative performance of the AC characteristics of
the considered signal models remain the same. Here, we
present the simulation results for BT = 100. We set the
design parameters as follows.

1. Available signal bandwidth is B = 10 MHz and the
pulse duration of the signal is 7' = 10 ps.

Number of samples M = 1001 resulting in the
sampling frequency of F; = M/T = 100.1 MHz
which conveniently satisfies the Nyquist condition
with respect to the chosen signal bandwidth B.

2.

From each of the parameterized signal sets Qg ,
Qp, ...y defined in Section 2, we find the best signal
element with respect to Q(s; 8):
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$3(B) = argminQ(s; B) (10)
SEQ40

where B is the weight parameter defined in Eq. (6) and # €
{A,B,C,D,E F, G, H}. The signal set denoted by Q40 is
the subset of signals from the signal set 24 that satisfy the
AC mainlobe width and bandwidth requirements defined
in Section 1.1. In a similar manner, we define the other
parameterized signal subsets Qgo, Qco, - - ., QHo. 55 (B) as
the best signal from the signal set Q49 with respect to
the cost function Q(s; B). Similarly, s3(8) is the best signal
from the parameterized signal set 2y and so on. To find
these best signals s%(8), sz(8),...,s5(B) from each of
the signal subsets Q40, €230, - . ., 210, we need to find the
optimum values for the parameters ©4, Op,...,Oy. We
used global optimization routines in Matlab [24] based on
simulated annealing and pattern search methods to search
for these optimum parameters from which we obtain the
best signals 5% (8), s3(B), .. .,s5(B).

For reference, Table 1 shows the signal parameters
obtained from the optimization routines for all the signal
models. We have also listed the PSLR and ISLR obtained
for all the signals using these optimum parameters in
Table 2 and Table 3. Figure 5 shows the summary of the
cost values Q(s}, B), Q(sz, B), . .., Q(sf;, B) plotted versus
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the cost function weight 8. We vary the weight 8 from
0.00 to 1.00 in steps of 0.25. Note that 8 = 0 corresponds
to minimizing only the ISLR and 8 = 1 corresponds
to minimizing only PSLR. We can observe that the 6D-
OPES signal outperforms the other signal models for all
the considered weights except when 8 = 1. For 8 = 1,
Price’s 6D-OPFS, Collins and Atkins, Wenzhen and Yan,
and Cook’s signal designs have cost function close to zero
(which can be observed in the last column of Table 2).
In this case, Price’s signal models achieves the minimum
cost.

4 Discussion on sub-optimality of
s (B): - . .,sy(B) and simulation results

In the preceding section, we found the best signals from
within the parameterized signal sets 240, ..., 2xo. Note
that these signal sets 40, . .., Qpo are subsets of 2p. We
noticed the signal set 6D-OPFS (4¢) and the signal set
proposed by Price (2po) outperform the other parame-
terized signal sets for the cost functions we considered.
However, the best overall signal from the signal set Qg
may not lie in any of Q40,...,2po. In order to char-
acterize how good 5% (B),...,s};(8) and particularly the
optimal signals s% (8) and s}, (B) are, we are interested to

Table 1 Table listing signal parameters obtained from optimization routines for 8 = 1000, T = 0.1,and M = 1001

Signals e} B =000 B =025 B =050 B =075 g =100
6D-OPFS 4 1.2 14 0.9969788 14 1.0888194
D1 2.9833301 3.0322699 3.2706690 23061778 3.8595594
p3 —6.0137280 — 5.7741939 —6.0897503 — 45383562 — 4.9449954
Ds 44237943 41432707 3.8108525 3.1916240 1.7412935
p7 — 1.3836515 — 14752306 —0.7409933 —0.8812900 0.0453272
Po 0.1308622 0.3757097 0.0982280 0.1745349 0.3363182
P 0.4617059 0.2827204 0.4160720 0.2849106 0.0630924
ATEFM v 2.0957537 1.7356345 16155135 16155135 14533719
Cook n 1 4 4 4 4
Price B 0.8436638 0.6848811 0.5611050 04381695 0.1296791
Bc 0.1154728 0.1847406 0.2379900 0.2909956 03511787
Collins and Atkin o 279 x 10~/ 79176303 0.8057049 0.6119288 0.8456120
y 522 % 107 0.3160832 1.0382372 1.2681669 14259004
Wenzhen and Yan Kk 0.3893824 0.3987516 0.3896719 0.2541758 0.1094573
ky 2.0355661 20105194 2.0347858 24453675 3.0024526
Vizitiu-Arcsin Af 0.6324528 04586289 0.4500549 04297516 04243944
At 5.9713625 6.3463664 6.3915436 6.5225125 6.5638456
Vizitiu-Power Af 0.5602052 03627173 0.2660381 0.2117072 0.2412588
At 6.0205251 6.1973325 5.6443412 50191368 54134402
m 0.6472525 0.8361837 16453131 4.1791038 2.2394050
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Table 2 PSLR of the parameterized signals computed with the parameters obtained from optimization routines

Signals B = 000 g =025 g =050 g =075 B =100
6D-OPFS — 14.6434 — 254724 — 33.7720 — 33.2736 — 51.7987
ATEFM —12.2009 — 18.8418 — 23.6508 — 23.6508 — 24.7634
Cook — 216920 — 344314 — 344314 — 344314 — 344314
Price —19.7837 — 243293 — 28.8422 — 34.3562 —59.5167
Collins and Atkins — 134874 —21.2493 244017 —29.1210 —39.1003
Wenzhen and Yan — 239121 — 238514 — 239103 — 32.5355 — 50.0584
Vizitiu-Arcsin — 165711 — 18.1255 — 18.1276 — 18.1307 — 181306
Vizitiu-Power — 16.7527 — 18.1670 — 18.2869 — 18.3328 — 181368

estimate the fraction of signals in €29 that is outperformed
by s% (B) and s7,(B8). To do this, we run an experiment by
randomly generating signals in Q according to a uniform
distribution.

4.1 Random signal experiment design

In our experiment, we will draw L random signals and,
assuming that none of these outperforms the reference
signal s*, assess what this tells us about the (true) fraction
p of Qq that outperforms s*. Let p be an estimate of p. If
the probability of s* outperforming the L samplesis 1 — n
(under the assumption that p is the fraction of € that out-
performs s*), we say that we have confidence n that p < p.
Therefore, in order to have confidence at least as large as
n, we desire

1-pt<a-n.

Taking natural logarithm on both sides and dividing by
L yields

1
In(1-p) < I In(1 —n).

Since for p small In(1 — p) &~ —p, we can rearrange this
expression to yield the estimate p as a function of L and
n as

(the smallest value for p satisfying the inequality and thus
achieving the desired confidence level). One may also
express this as the number of trials L needed to attain
confidence 7 for a probability size p:

In(1 —
Lp,n) = L_ﬁ "

(the smallest L satisfying the inequality). With a confi-
dence level of n = 95%, the above expressions yield

(approximately)
(L) =3/L;
L(p) =3/p.

The first of these equations corresponds to the “rule of
three” [25].

4.2 Generation of random signals from ¢

We wish to have a means to generate a random signal s(t)
from within € according to a uniform probability distri-
bution function. The time variable ¢ is quantized so that

te{—T/2, -T2+ T/M,~T/2+2T/M, ..., T/2).
(11)

We will also assume a quantized set of frequency values:

. —In(1—1n) f@ € {-B/2,—B/2+ B/N,—B/2+ 2B/N,...,B/2}.

plom) = ——p—= (12)
Table 3 ISLR of the parameterized signals computed with the parameters obtained from optimization routines
Signals B =000 B =025 B =050 B =075 B =100
6D-OPFS 8.7501 8.9490 9.0546 9.0692 13.1738
ATEFM 9.4972 9.9480 10.3648 10.3648 11.2750
Cook 10.6062 10.6093 10.6093 10.6093 10.6093
Price 8.8081 8.9610 9.1442 9.3659 10.8203
Collins and Atkins 9.5269 9.8189 10.0512 10.3953 12.6246
Wenzhen and Yan 9.0983 9.0792 9.0977 9.6324 11.7304
Vizitiu-Arcsin 89193 8.9479 8.9489 8.9504 8.9506
Vizitiu-Power 8.9239 8.9612 9.0006 9.0504 9.0186




Alphonse and Williamson EURASIP Journal on Advances in Signal Processing

(2019) 2019:62

Page 8 of 12

s, (Cook)
*-s,) (Price)

E'S;E (Collins & Atkins)

1.4 Cost
©'s, (6D-OPFS) s. (Wenzhen & Yan)
121 sesy (ATEFM) s (Vizitiu-Asin)

A, (Vizitiu-Pow)
es; (Random signal)

0 0.25

randomly generated signals of Section 4

0.5 0.75

3 (relative weights for ISLR and PSLR)

Fig. 5 Performance curves are labeled s%, 5§, etc. in reference to the subsets defined in Section 2. The curve s shows the best performance from the

Let t,, = —T/2 + mT/M. With f(t,,) = —B/2 +
n(m)B/N, we will for ease of notation refer to the pair
(tw> f (t)) as (m, n(m)). Given that a frequency f (¢) passes
through (m, n(m)), there is some finite number K of dif-
ferent ways for f(¢) to continue to f(7/2) = B/2 while
satisfying the conditions required of €2. Let us denote
K(m, n) as the number of signals that pass through (m, n)
in this quantized version of €2p. Then under a uniform
probability distribution, the probability that f(¢) passes
through (m + 1,n(m + 1)) given that it passes through
(m, n(m)) is

K(m+ 1,n(m+ 1))

S K + 1,6
(13)

Pr((m+1,n(m+1))|(m, n(m))) =

Note that the expression (13) reflects that f(t) must
be nondecreasing. To be able to generate signals in Qg
randomly, we need to determine K(m,n) for all m =
1,...,M—1andall n. This is done working from m = M—
1 (corresponding to one step shy of ¢ = T/2) backwards
to m = 0 as follows:

1. KM—1,n) =1forallm=0,1,..,N.
2. Form=N —2to
n=1, Kimn) =Y 4, Kim+1,k).

The validity of step 1 stems from the fact that all f(¢)
satisfy f(T/2) = B/2, so that no matter what the value
of n(M — 1), there is only one possible choice for n(M).
The validity of step 2 is seen by noting that if f(¢) passes
through (m, n), then the frequency index at time index
m + 1 must liein {#,n + 1,...,N}, so that the total num-
ber of signals passing through (m, n) is the sum of the total

number of signals passing through each of (m+1, n), (m+
1,n+1), ..., im+ 1,N). Note also that the total number
of quantized f(¢) that can be generated this way is

N
Ko = Zl((l,n).

n=0

(14)

We will demonstrate this process of computing the
number of frequency paths K(m,n) going through
(tm>f (tny)) with an example where M = 6 and N = 5.
The final results of this example are shown in Fig. 6.
Due to the antisymmetric nature of the frequency func-
tion, it is enough to generate only the first half of the
frequency function. Each cell shows the values of (m, n)
above the value K (m, n). Hence, for this example, the fre-
quency starts at —B/2 at time —7'/2 denoted by location
(to,fo) and ends at frequency 0 at time 0 denoted by loca-
tion (¢5,f4). To compute the number of frequency paths
through each (¢, f,,) locations, we start from the destina-
tion (¢5,fa). As given in step 1, the number of paths from
time # is K(4,n) = 1 for n = 0, 1, 2, 3, 4, which we denote
in red font in locations (¢4, o) to (¢4,f2) in the fourth col-
umn of the Fig. 6. The number of frequency paths from the
time points £3 to o are computed as in step 2. For exam-
ple, the number of frequency paths through (£3,f3) is two
to one is (t3,f3) — (t4,f3) — (t5,f1), second is (£3,f3) —
(ta, fa) — (t5,f2). We compute this number from step 2 as
K(3,3) =K(4,3) + K(4,4) = 2. By following this proce-
dure, we can compute the number of possible frequency
paths for all (¢,,f,) to (f5,fa) is the sum of frequency
paths from (ty,41,/4)> Gm+1,fu+1) - - - (Em+1,f2)- At time £,
the only possible frequency location is fy, since it is the
start of the frequency function. To compute the number
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E; i t s B
1 1 1 1
. " 4 3 2 1
B
2 Bli= 10 6 3 1
Z15
¢ g (L) 21 G141
L = 20 10 4 1
1,0 2,0 3,0 4,0
f,  |lgp ©O 1O 20 GO (40
70 85 15 5 i
&2 Time axis 0
M=6
Fig. 6 All possible monotonically increasing frequency functions with six discrete time values and five discrete frequency values. Number of
possible frequency paths for the given (time, frequency) combination is given by the number written below in red font. All frequency paths start at
(0,0) and ends at (5,4)

of frequency paths from (¢, fp) to (Z4,f5), we add all the
frequency paths from (t1,£1), (t1,/2), (t1,/3), and (¢1, f2) as
4
K(0,0) = ZK(I,n) = 35+20+10+4+1 =70, (15)
n=0
which is shown in lower left location in Fig. 6.

Once we have created the number of frequency paths
table, the next step is to generate a frequency function.
The frequency function starts from location (¢,fp). At
this location, there are 70 possible frequency functions.
Thity-five of those frequency functions go through loca-
tion (¢1, /o), 20 of them go through (¢1,f1), 10 of them go
through (1, /2), four of them go through (1, f3), and one of
them goes through (¢, f4). To randomly pick a frequency
path with uniform probability distribution, we choose a
random integer n from 1 to 70 inclusive with uniform
distribution. n will determine the choice of frequency
location at time #; as given below:

Jfo,
S,
fas
S
far

From the selected frequency location at time #;, we
repeat this procedure for randomly selecting a frequency
value at £,. For example, say the frequency location at ¢; is
fo. From this location, 10 frequency paths are possible as
shown in the Fig. 6. Now we choose a random integer 5
from 1 to 10 inclusive and the frequency location at time
ty is

ifl<n<35
if36 <n <55
if56 <n <65
if66 <n <69
if n = 70.

f(t) = (16)

5, if1<n<6
n

3, if7<n<9

f n

fa, if n = 10.

Note in this case, the frequency values fy and f; are
not considered at ¢, due to the monotonically increasing
characteristic of the frequency function. We repeat this
procedure by selecting 1 with uniform probability distri-
bution for the remaining time instances till the frequency
function reaches the destination (Zs,fs) to get the first
half of the frequency function. We obtain the complete
frequency function as

fl) = (17)

| fm), fl<m<M+1)/2

SO =V M1 —m), i M+ 1)/2+1 <m < M.
(18)

for odd M and

| f(m), ifl<m=<M/2
f(’”)_{—f(M+1—m), ifM/2+1<m<M.

(19)

for even M.

Using this frequency function, we obtain the associated
EM signal as

s(m) = exp (271]’ Zf(l)At).

=1

(20)

At is the time interval between the consecutive frequency
points. The characteristics of the signal s may not be suit-
able for radar applications. Hence, we include the signal
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s in the signal set €2 only if it satisfies the AC mainlobe
width and bandwidth conditions mentioned in (1.1).

4.3 Experiment parameters and results

Using the procedure from Subsection 4.2, we generated
L = 10° random signals from the signal set Qo with band-
width B = 1000, time width T = 0.1, and number of
samples M = 1001. We find the best randomly picked
signal with respect to the cost metric Q(s; 8) for different
weights 8. The magenta curve (solid line with diamond
shaped markers) in Fig. 5 corresponds to the cost of the
best random signals selected for each weight 8. We can
observe that the performance of the best random signals
are in the same range as most of the parameterized sig-
nal sets. But none of these random signals outperform
the best low dimensional signal sets for all the consid-
ered weights (6D-OPFS signal for 8 = 0,0.25,0.50,0.75
and Price’s signal for § = 1.00). Hence, as we argued
in the beginning of this section, with 95% of confidence
level, we estimate that 6D-OPFS and Price’s signal outper-
form a fraction of at least (1 — %) = 99.9997% of the
random signals from the signal set . From the simula-
tion, we can infer that searching for the best radar signal
from the 6D-OPFS and Price’s signal models require much
less computational resources with small degradation in
performance.

5 Conclusion

In this paper, we searched for the best FM signal with
primary objective of minimizing AC sidelobes that are
characterized by PSLR and ISLR. Apart from the AC side-
lobe levels, the signal has to satisfy other constraints such
as AC mainlobe width and IBER. The frequency func-
tions of the FM signals proposed in the literature have
monotonically increasing frequency functions with anti-
symmetry around the temporal midpoint. We referred
to the set of signals with such frequency function and
also satisfying the AC mainlobe width and IBER con-
straints as €29. Many researchers have proposed parame-
terized FM signals that are in subsets of Q2p. We searched
for the best FM signal from these parameterized sig-
nal subsets of €. To find the best signal, we defined
cost functions that are convex combinations of PSLR and
ISLR with the objective of penalizing the AC sidelobes.
We found that the 6D-OPFS signal model proposed in
this paper outperforms other signal models for most of
the convex combinations and Price’s signal model out-
performs other signal models for § = 1. But the best
radar signal may be from the random signal element of
the signal set Q¢ and not from the parameterized sig-
nal subsets. It is informative to find the proportion of
the random signal elements that 6D-OPFS and Price’s sig-
nal outperforms with certain confidence interval. From
the argument we presented in Section 4, we expect with
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95% confidence that 6D-OPFS and Price’s signals outper-
form at least 99.9997% of the randomly picked signals
from Q.

Appendix

Cook’s NLFM Using SPP: ¢

Cook [1] designed NLFM signals whose PSDs have a shape
of cos”(f). In his paper Cook presented the group delays
as a function of frequency for n = 1,2,3,4. With 7,,(f)
denoting the group delay for a given value of n, we have

u(f) = gsin (’Z) , (21)
w1 Lo Lan(a L)) e
3(f) = gsin(%) [cos2 <;ng> + 2], (23)
u() =T [1;3 + ;Tsm@n 1‘573)

(24)

2
+— cos® Lf sin Lf .
3 1.57B 1.57B

The frequency function f(¢) is given by the inverse func-
tion of group delay 7,,(f), 7,71 (¢):

n
@ =1, @). (25)
Price’s NLFM: p
Price’s NLFM [2] has a two dimensional parameter ®p =
[Br, Bc] to control the nonlinearity of the frequency func-
tion,

f(t’BLrBC) = E

Bi+ ——2C
L py————— I}
T V1 —42/T2

— <t<

-T T
2 = 2°

(26)

These parameters also control the signal bandwidth. We
modify this frequency expression slightly to

f(t,B B)—Bt B+ B _T<t<T
e\ A 2 T

(27)

where B; = Br/Band B, = Bc/B. This change makes
the parameter search space independent of the signal
bandwidth. This change also reduces the parameter space
which will facilitate the optimization routines to converge
on more appropriate parameter set.

Collins and Atkins NLFM: Q¢
In [5], Collins and Atkins proposed a NLFM frequency
function that has two parameters O =[« y] to con-
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trol the nonlinearity and suggested that parameter values
around [ 0.5, 1.4] minimizes the peak sidelobe level.

21 —-a)t] —T T
,— <t< —.
tan y T 2 - T2

f(t,O{, V) =

B |:oz tan(2y¢t/T)
2

(28)

They also proposed an amplitude weighting function to
reduce the sidelobe level. It is possible to find amplitude
weighting functions for the other NLFM signal models
also to reduce the sidelobes. That activity is beyond the
scope of this paper and we will limit the signals to have
constant envelope so that we can have fair comparison
with the other signal models.

Wenzhen-Yan: ¢

Wenzhen and Yan [7] designed a NLFM frequency func-
tion with the intention of achieving a PSD whose shape
resembles a Blackman window [26]. Such a PSD will result
in small AC sidelobes. Their frequency function

f(t ki, k) = Bk tan(kyt/T) (29)

has two parameters ®r =[k; kz]. Wenzhen and Yan
suggested the parameter values around [0.1171 2.607] to
minimize AC sidelobes.

Vizitiu NLFMs: 26 and Q4

In [13], Vizitiu proposed two NLFM frequency functions
that belong to the family of distorted LFM signal models.
The first frequency function has two parameters g =
[6f &t] in an arcsin based distortion function and is shown
in (30) below. The second frequency function has three
parameters ®y ={[n §f &t] and a t” based distortion
function and is shown below in (31).

%(Sfarcsin (tg—ft) — % + %M, t € (0,6t],
f@of, 60 =1 -5+ % te 8T -6,
B _ Bst+ 25f arcsin (%) te(T—6tT).
(30)

(SfB(é)Z —(B+of)+ 8oz, te(o5],
ft,m8f,8t)y =4 —3 + 1t te 8¢t T—dt],
B_ %at+3f—3f(TT;t)  te (T —56T).
(31)
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