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Abstract

Root tracking is a powerful technique that provides insight into the mechanisms of various time-varying processes.
The poles and the zeros of a signal-generating system determine the spectral characteristics of the signal under
consideration. In this work, time-frequency analysis is achieved by tracking the roots of time-varying processes
using autoregressive moving average (ARMA) models in cascade form. A cascade ARMA model is essentially a high-
order infinite impulse response (IIR) filter decomposed into a series of first- and second-order sections. Each section
is characterized by real or conjugate pole/zero pairs. This filter topology allows individual root tracking as well as
immediate stability monitoring and correction. Also, it does not suffer from high round-off error sensitivity, as is the
case with the filter coefficients of the direct-form ARMA structure. Instead of using conventional gradient-based
recursive methods, we investigate the performance of derivative-free sigma-point Kalman filters for root trajectory
tracking over time. Based on simulations, the sigma-point estimators provide more accurate estimates, especially in
the case of tightly clustered poles and zeros. The proposed framework is applied to real data, and more specifically,
it is used to examine the time-frequency characteristics of raw ultrasonic signals from medical ultrasound images.

Keywords: ARMA models, Time-varying, Cascade structure, Sigma-point Kalman filter, Root tracking, Genetic
algorithm, Ultrasound imaging

1 Introduction
Most of the signals generated by natural or artificial sys-
tems exhibit nonstationary characteristics, i.e., their
properties change over time. Nonstationarity could be
the result of unobservable interactions/trends or an in-
herent feature of the signal itself. Examples of time-
varying (TV) signals are abundant, including biological
measurements such as cardiac and brain signals, music,
speech, seismic waves, as well as financial time series,
and climate data. A useful tool for gaining insight into
the nonstationary nature of a signal is time-frequency
(TF) analysis [1]. TF analysis is a collection of mathem-
atical formulations and signal processing/modeling tech-
niques used to describe the spectral and temporal
variations of a signal. TF analysis has been extensively
used in both industrial and academic environments in a
wide range of applications, from engineering to ecology
and meteorology. Furthermore, TF features and maps

have been exploited successfully in various pattern-
recognition and machine-learning classification prob-
lems [2–5]. Another important feature of TF analysis is
the instantaneous frequency concept [6], which has been
proven valuable in the field of telecommunications as
well as in radar and sonar applications.
Existing TF estimation approaches can be grossly clas-

sified into two categories: parametric and nonparametric.
The basic idea behind nonparametric approaches is to
devise a joint function or else a distribution that de-
scribes the energy density of a signal in both the time
and frequency domains. Examples of such distributions
are the short-time Fourier transform (STFT) [1, 7], the
Gabor transform [1, 8], the Wigner–Ville distribution
(WVD) [1], Cohen’s class time-frequency distributions
[1], and the continuous wavelet transform (CWT) [9,
10]. These methods are simple, fast, and do not require
an explicit model or prior knowledge of the signal char-
acteristics. However, they exhibit important limitations,
for example, in STFT good frequency localization
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depends heavily on the length of the signal being proc-
essed, in CWT the selected mother wavelet may affect
significantly the TF representation, and in WVD cross
terms and negative distribution values deteriorate the TF
resolution. Parametric approaches, on the other hand,
assume that the observed signal is a realization of a sto-
chastic process that can be described by deterministic or
probabilistic models. The estimated TV model coeffi-
cients are then used to create a TF representation of the
signal. If the model is correctly chosen, parametric
methods can achieve higher TF resolution than the non-
parametric techniques, even in relatively short datasets
[11]. However, the choice of an appropriate model, as
well as the tuning of all necessary hyperparameters, may
increase the computational complexity and runtime [12].
In this paper, we focus on parametric approaches and

specifically TF representations based on TV autoregres-
sive moving average (TV-ARMA) models [13–15]. TV-
ARMA models provide parsimonious descriptions of
various nonstationary processes. From a digital signal
processing view, they are equivalent to the well-known
infinite impulse response (IIR) filters with a finite num-
ber of feedforward (MA) and feedback (AR) coefficients
that vary over time. The TV coefficients are usually esti-
mated using quasi-stationary or recursive techniques
and then translated in both the time and frequency do-
mains, generating fine TF representations. The main
issue with the conventional TV-ARMA structure (also
known as the direct-form ARMA model) is the difficulty
of maintaining stability, especially if the underlying
process is narrowband or adaptation becomes too rapid.
A more natural and less sensitive representation that

provides robust stability monitoring is the TV-ARMA
model in cascade form. Essentially, the direct form TV-
ARMA model is reparametrized in terms of its roots and
expressed in a cascade structure of first- and second-
order sections. This enables independent tracking of the
location of the poles and the zeros of each filter. Root
tracking has been proposed earlier for various applica-
tions such as speech [16, 17], biosignal analysis [18–20],
fault diagnosis and condition monitoring [21], and chan-
nel prediction in telecommunications [22]. Even though
the aforementioned representation provides a more nat-
ural description of the process, the transition from the
conventional TV-ARMA form to the cascade form re-
sults in a model that is nonlinear in its parameters. Vari-
ous recursive techniques have been proposed; however,
they exhibit high sensitivity to initial conditions and
noise and require gradient calculations. To this end, we
propose a gradient-free approach based on sigma-point
Kalman filters (KF). Specifically, we employ a Rao–
Blackwellized sigma-point KF structure that uses the
Stirling approximation method of the central difference
KF. The performance of the estimator is validated using

simulations as well as real data from the field of ultra-
sound imaging.

2 Methods
2.1 Time-varying autoregressive moving average (TV-
ARMA) model in direct form
Wold’s decomposition theorem [23, 24] states that any
discrete-time stationary process can be described as the
sum of two components: one deterministic and one sto-
chastic. The deterministic counterpart of the process
can be predicted with no error using its entire past. The
stochastic component, on the other hand, can be
expressed as a linear combination of lagged white noise
process values (the so-called infinite-order moving aver-
age, MA(∞)). Wold’s theorem constitutes the basis of
the well-known ARMA models [15]. ARMA models ap-
proximate the infinite lag polynomial of the Wold repre-
sentation using the ratio of two finite-lag polynomials.
Extending Wold’s theorem to nonstationary processes,
Cramer–Wold’s decomposition [25] allows the represen-
tation of nonstationary signals as ARMA processes with
TV coefficients. A TV-ARMA model of order (p, q) is
expressed as follows [13–15]:

y nð Þ ¼ −
Xp

k¼1
ak nð Þy n−kð Þ

þ
Xq

k¼1
bk nð Þe n−kð Þ þ e nð Þ; ð1Þ

where y ∈ RN × 1 is the output (i.e., the signal under
consideration in our case), e ∈ RN × 1 is the driving white
noise signal with zero mean and variance σ2e , and a(n) = [
a1(n)…ap(n)]

T ∈ Rp × 1 and b(n) = [b1(n)…bq(n)]
T ∈ Rq × 1

are the TV autoregressive (AR) and moving average
(MA) model coefficients, respectively, at time point n. In
practical applications, e is not known, and therefore, the
purpose of estimating a TV-ARMA is twofold: (a) iden-
tify the TV coefficients of the model and (b) extract the
underlying driving noise of the process. Note that herein
we investigate only real signals, and therefore, y is real.
In the z-domain, Eq. (1) can be written as:

Y zð Þ ¼ H z; nð ÞE zð Þ
¼ B z; nð Þ

A z; nð Þ E zð Þ¼ 1þPq
k¼1bk nð Þz−k

1þPp
k¼1ak nð Þz−k E zð Þ; ð2Þ

where Hðz; nÞ¼ 1þ
Pq

k¼1
bk ðnÞz−k

1þ
Pp

k¼1
akðnÞz−k

is the transfer function

of the signal generating system in direct form. Based on
Eq. (2), the nonstationary process y can be described as
the output of a causal linear TV filter driven by a white
noise input sequence e. The poles and the zeros of H(z,
n) (i.e., the roots of A(z, n) and B(z, n), respectively)
should reside inside the unit circle |z| ≤ 1 to guarantee
stability and invertibility.
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2.1.1 TV-ARMA estimation in direct form
Eq. (1) can be reformulated as:

y nð Þ ¼ aT nð Þ bT nð Þ� � �

−y n−1ð Þ
⋮

−y n−pð Þ
e n−1ð Þ

⋮
e n−qð Þ

2
6666664

3
7777775
þ e nð Þ

¼ cT nð Þφ nð Þ þ e nð Þ; ð3Þ

where cT(n) = [aT(n) bT(n)] ∈ R1 × d are the d = p + q
model coefficients at time n, and φ(n) ∈ Rd × 1 is the re-
gressor vector that consists of the p and q past lags of y
and e, respectively. One common method used to esti-
mate the trajectory of the coefficient vector c(n) over
time is the recursive estimation technique. At each time
step, c(n) is updated, enabling the adaptation of the
model to possible variations in the process. In this work,
we focus on the Kalman filtering technique [15]. Use of
a KF assumes that the model coefficients follow a ran-
dom walk driven by Gaussian white noise (GWN) with
covariance R1 = R1Id × d, where R1 ¼ σ2ξ (see Eq. 4a). R1

essentially dictates the expected magnitude of the coeffi-
cient fluctuations. In case of large variations, R1 is
assigned with a large value and vice versa. The measure-
ment noise is also assumed to be GWN with variance
R2. In state-space form this can be expressed as:

c nð Þ ¼ c n−1ð Þ þ ξ nð Þ; ξ�N 0;R1ð Þ; ð4aÞ

yðnÞ ¼ cT ðnÞφðnÞ þ eðnÞ; e∼Nð0;R2Þ; ð4bÞ

where the coefficient vector c(n) is the unknown state,
and y(n) is the observation at time point n. The KF is
thus described by the following set of recursive equa-
tions [15]:

êðnÞ ¼ yðnÞ−φ̂T ðnÞĉðn−1Þ; ð5aÞ

r nð Þ ¼ φ̂T nð ÞP n−1ð Þφ̂ nð Þ; ð5bÞ

K nð Þ ¼ P n−1ð Þφ̂ nð Þ
R2 þ r nð Þ ; ð5cÞ

P nð Þ ¼ P n−1ð Þ þ R1−K nð Þφ̂T nð ÞP n−1ð Þ; ð5dÞ

ĉðnÞ ¼ ĉðn−1Þ þ K ðnÞêðnÞ; ð5eÞ

where êðnÞ is the a priori prediction error, ĉðnÞ are the
estimated coefficients, K(n) ∈ Rd × 1 is the Kalman gain
matrix, and P(n) is the a posteriori error covariance. The
initial value for P is a diagonal matrix P(0) = P0Ip × p,
whereas the initial value for the coefficient vector is ĉð0Þ.
Note that φ̂ðnÞ is given as:

φ̂T nð Þ ¼ −y n−1ð Þ… −y n−kð Þ ê n−1ð Þ … ê n−qð Þ½ �;
ð6Þ

with êðnÞ being the a priori prediction error of Eq.
(5a). The rationale is that in cases where ĉðn−1Þ ≈ ĉðnÞ ,
then êðnÞ is a good approximation of e(n). The described
approach is known in the literature as recursive pseudo-
linear least squares (RPLS) [14]; however, the updating
of the coefficients is realized using a recursive least
squares (RLS) strategy. Therefore, we refer to the com-
bination of RPLS with KF as KF-RPLS.
Recursive estimation may produce noisy estimates, de-

pending on the initialization and the adaptation speed of
the KF algorithm. Optionally, smoothing can be applied
to the extracted TV coefficients using, for example, the
Rauch–Tung–Striebel [26, 27] fixed-interval equations,

W ðnÞ ¼ PðnÞ½Pðnþ 1Þ þ R1Þ�−1; ð7Þ
ĉs nð Þ ¼ ĉ nð Þ þW nð Þ ĉs nþ 1ð Þ−ĉ nð Þ½ �; ð8Þ

where ĉsðnÞ is the smooth estimate of the coefficient
vector. ĉsðnÞ is updated in a backward fashion starting
from time point n =N − 1 up to n = 1 setting ĉsðNÞ ¼ ĉð
NÞ.

2.1.2 TV-ARMA direct form spectrum
A smoothed version of the power spectral density (PSD)
of the signal under consideration can be generated using
the TV-ARMA model as an interpolating function. Once
the model coefficients are computed, the TV PSD of y
can be estimated by taking, at each time instant, the
square of the magnitude of the transfer function H(z, n)
[13],

Sy z; nð Þ ¼ Se z; nð Þ H z; nð Þj j2

¼ σ2e �
1þPq

k¼1bk nð Þz−k�� ��2
z¼e j2πfΔT

1þPp
k¼1ak nð Þz−k�� ��2

z¼e j2πfΔT

; ð9Þ

where ΔT ¼ 1
f s
, fs is the sampling rate, f ≤ f s

2 is the fre-

quency of interest, and σ2e is the variance of the driving
noise. Note that Se(z, n)= σ2e , since e is assumed to be
GWN. The variance σ2

e is unknown, and therefore the
variance of the TV-ARMA residuals (Eq. 5a) is used as
an estimate of σ2e .

2.2 Time-varying autoregressive moving average (TV-
ARMA) model in cascade form
The main drawback of the direct-form TV-ARMA
model is its temporal instability, especially if the under-
lying process is narrowband, that is, at least one of the
roots is located very close to the unit circle [28, 29].
Large estimation errors either due to abrupt variations
or excessive noise may temporarily force the poles
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outside the unit circle. One way to mitigate this issue
is to transfer all unstable poles inside the unit circle
by factoring the characteristic polynomial of the de-
nominator of Eq. (2) to roots and dividing each un-
stable root by its squared radius [15]. However, this
implies extra computational power. In addition, even
if this method works for low-order filters, it may fail
for higher-order models due to root sensitivity to
round-off errors in the coefficient of the polynomials
[30]. A more convenient approach would be to dir-
ectly adapt and control the location of each pole and
zero, instead of adjusting the model coefficients. A
representation that enables root tracking is the cas-
cade form TV-ARMA [16–20, 31–35], where the
transfer function of Eq. (2) is expressed as:

H z; nð Þ¼
Qqc

k¼1Bk
2ð Þ �Qqr

k¼1Bk
1ð ÞQpc

k¼1Ak
2ð Þ �Qpr

k¼1Ak
1ð Þ ¼

Qqc
k¼1 1−λk nð Þz−1½ � 1−λ�k nð Þz−1� �� � �Qqr

k¼1 1−μk nð Þz−1� �
Qpc

k¼1 1−ρk nð Þz−1� �
1−ρ�k nð Þz−1� �� � �Qpr

k¼1 1−ξk nð Þz−1½ � :

ð10Þ
Equation (10) can be described as a cascade of first-

and second-order filter sections. Bk
(2), Ak

(2) are the kth
second-order sections and Bk

(1), Ak
(1) are the kth first-

order sections of the numerator and denominator, re-
spectively; fλkðnÞ; λ�kðnÞg is the kth pair of complex-
conjugate zeros at time point n; fρkðnÞ; ρ�kðnÞg is the kth
pair of complex-conjugate poles; and μk(n) and ξk(n) are
the kth real zero and pole, respectively. The parameters
pr and pc represent the total number of real and
complex-conjugate pairs of poles. Similarly, qr and qc are
the total number of real and complex-conjugate pairs of
zeros. It is assumed that the number of poles and zeros
remains constant throughout time. A complex pair of
poles describes oscillatory signal behavior (i.e., spectral
peaks), whereas real poles contribute to the high-pass or
low-pass characteristics of the process. The effect of
zeros is exactly the opposite than that of poles. Note that
a TV-ARMA of order (p, q) in direct form has p/2
complex-conjugate pairs of poles if p is even, or (p + 1)/2
complex-conjugate pairs and one real pole if p is odd.
The same applies to zeros. If q is even, then the model
consists of q/2 complex-conjugate pairs of zeros. If q is
odd, then the model has (q + 1)/2 complex-conjugate
pairs and one real zero.

2.2.1 TV-ARMA estimation in cascade form
The complex-conjugate poles and the zeros of Eq. (10)
can be represented in various forms (i.e., polar or rect-
angular representation) however, herein, we select the
Cartesian coordinate representation [35, 36],

ρk nð Þ ¼ ρRk nð Þ þ jρI k nð Þ; ρ�k nð Þ
¼ ρRk nð Þ− jρI k nð Þ; ð11aÞ

λk nð Þ ¼ λRk nð Þ þ jλI k nð Þ; λ�k nð Þ
¼ λRk nð Þ− jλI k nð Þ; ð11bÞ

where −1 ≤ ρRk(n), λRk(n) ≤ 1| and 0<={\rho_I}_k(n),
{\lambda_I}_k(n)<=1. Since we are dealing with real sig-
nals, the poles and zeros should represent only positive
frequencies. The central frequencies mapped by the
poles and the zeros are obtained from the angle of their

respective complex representations, i.e., f kðnÞ ¼ arg½ρk ðnÞ�
2π

f s and f kðnÞ ¼ arg½λk ðnÞ�
2π f s , where fs is the sampling rate.

Based on the Cartesian coordinate representation of Eqs.
(11a) and (11b), the new model coefficient vector is de-
fined as:

c nð Þ ¼ ρ nð Þ λ nð Þ ξ nð Þ μ nð Þ½ �T∈Rd�1; ð12aÞ

ρ nð Þ¼ ρR1 nð Þ…ρRpc nð Þ ρI1 nð Þ…ρI pc nð Þ
h iT

; ð12bÞ

λ nð Þ¼ λR1 nð Þ…λRqc nð Þ λI1 nð Þ…λI qc nð Þ� �T
; ð12cÞ

ξ nð Þ¼ ξ1 nð Þ…ξpr nð Þ� �T
; ð12dÞ

μ nð Þ¼ μ1 nð Þ…μqr nð Þ
h iT

; ð12eÞ

where the total number of coefficients d is now d =
2(pc + qc) + pr + qr. The transfer function of the model
(Eq. 10) then becomes:

H z; nð Þ¼
Qqc

k¼1Bk
2ð Þ nð Þ �Qqr

k¼1Bk
1ð Þ nð ÞQpc

k¼1Ak
2ð Þ nð Þ �Qpr

k¼1Ak
1ð Þ nð Þ

¼
Qqc

k¼1 1−½λk nð Þ þ λ�k nð Þ� �
z−1 þ λk nð Þλ�k nð Þ� �

z−2g �Qqr
k¼1 1−μk nð Þz−1� �

Qpc
k¼1 1−½ρk nð Þ þ ρ�k nð Þ� �

z−1 þ ρk nð Þρ�k nð Þ� �
z−2g �Qpr

k¼1 1−ξk nð Þz−1½ �

¼
Qqc

k¼1 1−2λRk nð Þz−1 þ λR
2
k nð Þ þ λI

2
k nð Þ� �

z−2
� � �Qqr

k¼1 1−μk nð Þz−1� �
Qpc

k¼1 1−2ρRk nð Þz−1 þ ρR
2
k nð Þ þ ρI

2
k nð Þ� �

z−2
� � �Qpr

k¼1 1−ξk nð Þz−1½ � :

ð13Þ
The main reason for selecting the Cartesian coordinate

representation is its robustness to noise. Random pertur-
bations of the real or imaginary part of a complex root
will not affect the location of the corresponding pole or
zero in the z-plane [37] significantly.
Based on the reparameterization of the TV-ARMA

model in terms of its roots, the estimation problem can
now be expressed in state-space form as:

c nð Þ ¼ c n−1ð Þ þ ξ nð Þ; ξ�N 0;R1ð Þ; ð14aÞ
yðnÞ ¼ f fcðnÞg þ eðnÞ; e∼Nð0;R2Þ: ð14bÞ

In contrast to the direct-form case, the problem now
is nonlinear in the coefficients, i.e., the observation y(n) is
a nonlinear function of the states/coefficients. In order
to minimize E(e2), various recursive techniques have
been developed. The most popular method in root

Kostoglou and Lunglmayr EURASIP Journal on Advances in Signal Processing          (2020) 2020:6 Page 4 of 16



tracking is the recursive prediction error method
(RPEM), which is basically a stochastic gradient algo-
rithm. As in the case of the RPLS method, the RPEM
follows the same structure as the conventional RLS tech-
nique. The only difference is that the main regressor
vector, φ̂ðnÞ , is substituted with the negative gradient
vector, defined as:

ψT nð Þ ¼ −
∂e nð Þ
∂c nð Þ : ð15Þ

In this work, we incorporate the RPEM method in the
KF technique (Eq. 5a a–e). The combination of these
two methods will be referred to as the KF-RPEM algo-
rithm, which is summarized as follows:

ê nð Þ ¼ y nð Þ− f ĉ n−1ð Þf g; ð16aÞ
r nð Þ ¼ ψT nð ÞP n−1ð Þψ nð Þ; ð16bÞ

K nð Þ ¼ P n−1ð Þψ nð Þ
R2 þ r nð Þ ; ð16cÞ

P nð Þ ¼ P n−1ð Þ þ R1−K nð ÞψT nð ÞP n−1ð Þ; ð16dÞ
ĉ nð Þ ¼ ĉ n−1ð Þ þ K nð Þê nð Þ: ð16eÞ

The KF-RPEM is very similar to the well-known ex-
tended Kalman filter (EKF). However, there are some
subtle differences, also described in [37, 38]. In order to
estimate the gradient of e in terms of the coefficient vec-
tor c(n) (Eq. (15)), we applied the methodology described
in [34]. The authors assume polar complex root repre-
sentation; however, the extension to the Cartesian coor-
dinates description of Eqs. (11a, 11b) is straightforward.
The nonlinearity f fĉðn−1Þg can be estimated indirectly,
by computing first êðnÞ and then using Eq. (16a). Based
on Eq. (2),

Y zð Þ ¼ H z; nð ÞE zð Þ⇒E zð Þ ¼ 1
H z; nð ÞY zð Þ

¼
Qpc

k¼1Ak
2ð Þ nð Þ �Qpr

k¼1Ak
1ð Þ nð ÞQqc

k¼1Bk
2ð Þ nð Þ �Qqr

k¼1Bk
1ð Þ nð Þ Y zð Þ: ð17Þ

Equation (17) provides the a priori error êðnÞ by feed-
ing y(n) through the inverse filter 1

Hðz;nÞ (Fig. 1). Follow-
ing Eq. (16a), one can then estimate f fĉðn−1Þg as:
f fĉðn−1Þg ¼ yðnÞ−êðnÞ.
As an alternative estimation technique, we propose

sigma-point Kalman filters [39] such as the unscented
Kalman filter (UKF) [40–42] or the central difference
Kalman filter (CDKF) [43], explicitly developed for non-
linear estimation problems. The main idea of UKF is the
generation of several sampling points, also known as
sigma points, around the current state estimate (i.e., the
coefficient vector in our case) and the propagation of

these points through the true nonlinearity. This leads to
a collection of transformed points that enables accurate
estimation of the mean and covariance of the trans-
formed distribution (up to third order under any type of
nonlinearity, assuming the prior distribution of the state
is Gaussian). The CDKF is very similar to the UKF; how-
ever, it approximates the nonlinearity using Stirling’s
polynomial interpolation. In contrast to the commonly
used KF or EKF filters, the sigma-point filters are not
limited to Gaussian and linear modeling assumptions
and do not require explicit Jacobian or Hessian calcula-
tions. They constitute attractive alternatives when ana-
lytical expressions of the system dynamics cannot be
easily formulated or linearized. Furthermore, their com-
putational complexity is rather moderate and compar-
able with that of the EKF and the KF-RPLS.
The conventional sigma-point KFs assume nonlinear-

ities in both state and measurement equations. However,
in our case (Eq. (14)), the model coefficients, which are
the unknown states, follow simple random walks that
are described by first-order difference equations. There-
fore, herein, we propose the fusion of Rao–Blackwellized
UKFs (RB-UKF) [42, 44] with CDKFs. The RB-UKF is
essentially a simplified UKF that assumes that the state
dynamics are linear and the measurement dynamics are
nonlinear, reducing the UKF sampling requirements. In-
stead of the unscented transformation, we apply Stir-
ling’s polynomial interpolation method in the
measurement update stage. The latter requires the opti-
mal tuning of only one hyperparameter, whereas the un-
scented transformation requires the selection of three
scaling parameters (related to the spread of the sigma
points and prior information about the distribution
characteristics). The combination of the two methods is
referred to as RB-CDKF.
The conventional RB-UKF can be described by the fol-

lowing equations:
Time update

ĉ− nð Þ¼ĉ n−1ð Þ; ð18aÞ
P− nð Þ ¼ P n−1ð Þ þ R1; ð18bÞ

Sigma points generation

XðnÞ ¼ ½c−ðnÞ… c−ðnÞ�
þ γ½0

ffiffiffiffiffiffiffiffiffiffiffiffi
P−ðnÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
P−ðnÞ

p
�; ð18cÞ

Measurement update

YðnÞ ¼ f ðXðnÞÞ ¼ ½Y0ðnÞ…Y2dðnÞ�; ð18dÞ
ŷ nð Þ ¼ Y nð Þwm; ð18eÞ
Pyy nð Þ¼ Y nð Þ−ŷ nð Þ½ �W c Y nð Þ−ŷ nð Þ½ �T þ R2; ð18fÞ
PxyðnÞ ¼ fXðnÞ−½c−ðnÞ… c−ðnÞ�gW ŷðnÞ; ð18gÞ
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K nð Þ ¼ Pxy nð Þ
Pyy nð Þ ; ð18hÞ

ê nð Þ ¼ y nð Þ−ŷ nð Þ; ð18iÞ
ĉðnÞ ¼ c−ðnÞ þ K ðnÞêðnÞ; ð18jÞ

P nð Þ ¼ P− nð Þ−K nð ÞSyy nð ÞKT nð Þ; ð18kÞ

whereXðnÞ∈Rd�ð2dþ1Þ are the 2d + 1 sigma points gen-
erated at time point n, γ is a scaling parameter (see Eq.
(19 g)), c−(n) and P−(n) are the predicted state (i.e.,
model coefficients) mean and covariance, ŷðnÞ and Pyy(n)
are the predicted mean and covariance of the measure-
ment, and Pxy(n) is the predicted cross-covariance of the
state and the measurement. Note that P is assumed to
be positive definite. In order to compute the square root
of P, the lower triangular Cholesky factorization is used
[45]. In Eq. (18c), the sigma points are generated based
on the predicted state mean and covariance. Each sigma
point is then propagated through the nonlinearity f (Eq.
18d). The mean and covariance of the measurement out-
put y are approximated using a weighted sample mean
and covariance of the posterior sigma points (Eqs. 18e,
18f). The weights wm and Wc are given as:

wm ¼ wm0…wm2d½ �T∈R 2dþ1ð Þ�1; ð19aÞ

wm0 ¼
δ

d þ δ
; ð19bÞ

wm j ¼
1

2 d þ δð Þ ; j ¼ 1;…; 2d; ð19cÞ

W c ¼
wc0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ wc2d

2
4

3
5
T

∈R 2dþ1ð Þ� 2dþ1ð Þ; ð19dÞ

wc0 ¼
δ

d þ δ
þ 1−α2 þ β
� 	

; ð19eÞ

wc j ¼
1

2 d þ δð Þ ; j ¼ 1;…; 2d; ð19fÞ

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d þ δ

p
; ð19gÞ

δ ¼ α2 d þ κð Þ; α > 0; κ≥0; ð19hÞ
where d is the total number of coefficients, and δ is a

scaling parameter. The parameters α and κ determine
the spread of the sigma points around the state, while β
incorporates knowledge regarding the distribution char-
acteristics of the state (i.e., β = 2 for a Gaussian
distribution).
As mentioned earlier, instead of the unscented trans-

formation, we use Stirling’s polynomial interpolation
since it requires the tuning of only one parameter. The
proposed RB-CDKF follows the same structure as the
RB-UKF. However, the measurement update Eqs. (18f,
18g) are expressed as:

Pyy nð Þ¼
Xd
j¼1

wc
1ð Þ
j Y j nð Þ−Ydþ j nð Þ� �2

þ wc
2ð Þ
j Y j nð ÞþYdþ j nð Þ−2Y0 nð Þ� �2þR2; ð20aÞ

Pxy nð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wc

1ð Þ
1 P− nð Þ

q
� Y1:d nð Þ−Ydþ1:2d nð Þ½ �T : ð20bÞ

The weights wm, wc
(1), and wc

(2) are given as:

wm ¼ wm0…wm2d½ �T∈R 2dþ1ð Þ�1; ð21aÞ

wm0 ¼
γ2−d
γ2

; ð21bÞ

wm j ¼
1
2γ2

; j ¼ 1;…; 2d; ð21cÞ

wc
1ð Þ ¼ wc

1ð Þ
1 …wc

1ð Þ
2d

h iT
∈R2d�1; ð21dÞ

wc
1ð Þ
j ¼ 1

4γ4
; for j ¼ 1;…; 2d; ð21eÞ

wc
2ð Þ ¼ wc

2ð Þ
1 …wc

2ð Þ
2d

h iT
∈R2d�1; ð21fÞ

wc
2ð Þ
j ¼ γ2−1

4γ4
; j ¼ 1;…; 2d: ð21gÞ

The parameter γ (γ ≥ 1), here, is the central difference
interval size and is equal to the square root of the kur-
tosis of the state’s distribution. Assuming a Gaussian

Fig. 1 Proposed procedure for estimating the nonlinearity ffĉðn−1Þg in the case of the cascade TV-ARMA structure (Eq. 16a). y(n) is fed into the
inverse filter 1

Hðz;nÞ providing the a priori estimate êðnÞ. ffĉðn−1Þg can thus be computed as ffĉðn−1Þg ¼ yðnÞ−êðnÞ
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distribution, γ can be optimally set to γ ¼ ffiffiffi
3

p
[43].

Compared with the RB-UKF, which requires the optimal
tuning of three scaling parameters (namely α, β, κ), the
RB-CDKF is only dependent on γ. Smoothing may also
be applied once the TV coefficients are extracted. We
chose the Rauch–Tung–Striebel fixed-interval smooth-
ing algorithm, summarized as [46]:

G nð Þ ¼ P nð Þ P− nþ 1ð Þ½ �−1; ð22Þ
ĉs nð Þ ¼ ĉ nð Þ þ G nð Þ ĉs nþ 1ð Þ−c− nþ 1ð Þ½ �: ð23Þ

The smoother runs backward starting from time point
N with initial conditions ĉsðNÞ ¼ ĉðNÞ.

2.2.2 TV-ARMA cascade-form spectrum
Similarly, with the direct-form case, the PSD of the TV-
ARMA process y in cascade form can be estimated as:

Sy z; nð Þ ¼ σ2e �
Qqc

k¼1 1−λk nð Þz−1½ � 1−λ�k nð Þz−1� ��� ��2
z¼e j2πfΔT

�Qqr
k¼1 1−μk nð Þz−1�� ��2

z¼e j2πfΔTQpc
k¼1 1−ρk nð Þz−1� �

1−ρ�k nð Þz−1� ��� ��2
z¼e j2πfΔT �Qpr

k¼1 1−ξk nð Þz−1j j2z¼e j2πfΔT

;

ð24Þ

where ΔT ¼ 1
f s
, fs is the sampling rate, f ≤ f s

2 is the fre-

quency of interest, and σ2e is the variance of the driving
noise. Note that the closer a pole or a zero is to the unit
circle, the higher its contribution to the total PSD. For
poles, this can be translated as more prominent peaks,
and for zeros deeper spectral valleys.

2.3 Model order selection and hyperparameter
optimization
A particularly crucial step in the estimation of the TV-
ARMA models in both direct and cascade form is the
model order selection procedure. In the direct-form
case, model order is defined as the number of AR and
MA coefficients (p, q). In the cascade structure, the
model order is linked to the number of poles and zeros
of the filter, i.e., (pr, pc, qr, qc). A high model order leads
to overly complex models that overfit the data. In terms
of TF representation, this may lead to spurious spectral
peaks. On the other hand, an underdetermined model
may produce over-smoothed spectrums, lacking detail,
and important spectral information. The final TF distri-
bution is also affected by the hyperparameters of the re-
cursive estimators. Suboptimal tuning of the estimators
may lead to noisy or biased spectral representations. In
this work, we are interested in exploring the capabilities
of the models in both forms and compare them fairly
under the same grounds.
To achieve this, optimal tuning of the models is neces-

sary in order to extract the maximum possible perform-
ance. Grid search or exhaustive search procedures would
require days of computations due to the large number of
hyperparameters. To this end, we apply mixed integer

genetic algorithms (GA) [47] (ga function from Math-
Works MATLAB) to select the best possible combin-
ation of model orders and hyperparameters in a fast and
efficient manner. In Table 1, we summarize all the vari-
ables that have to be optimized for each case. Note that
from this point and on, when we refer to KF-RPLS, we
automatically assume that the estimation is realized using
direct-form TV-ARMA models, whereas KF-RPEM, RB-
UKF, and RB-CDKF refer to the cascade TV-ARMA
structure. For a fitness function, we used the Akaike infor-
mation criterion (AIC). The AIC takes into account both
the predictive accuracy of the models (affected by both
model order and estimator hyperparameters), as well as
the model complexity (affected by the model order only).
For each candidate solution Csj, the GA provides a model
order and a set of hyperparameters to the estimators and
evaluates their performance on all the available data based
on the AIC score defined as [48, 49]:

AIC Cs j
� 	 ¼ N

2
log

J
N


 �
þ d; ð25Þ

where N is the length of the dataset, d is the total

number of model coefficients, and J ¼ PN
n¼1

ê2ðnÞ is the

sum of squares of the a priori prediction error. The opti-
mal solution is the one with the lowest AIC score [50, 51].

3 Results
3.1 Time-invariant ARMA processes
The performance of the algorithms was tested on a time-
invariant ARMA (6, 4) process of length 1200 samples,
driven by 30 different realizations of zero-mean white noise
(σ2e ¼ 1Þ. The process had three complex pairs of poles and
two complex pairs of zeros. In the frequency domain, this
can be translated as three spectral peaks and two spectral
valleys. No additive measurement noise was considered.
Note here that we selected an ARMA process in order to
have a defined ground truth of the exact PSD. This PSD
can then be used to compare the estimation capabilities of
each algorithm. We investigated three different scenarios:

� Scenario I: The poles and zeros of the process were
positioned far apart from each other. The
contribution of each root was distinguishable in the
PSD (Figs. 2 and 4a).

Poles : ρ1 ¼ −0:9e� j2:5; ρ2 ¼ 0:9e� j2:5; ρ3 ¼ 0:9e� j1:5

Zeros : λ1 ¼ −0:9e� j1:1; λ2 ¼ 0:9e� j1:1

� Scenario II: The process was narrowband and
consisted of closely spaced poles and zeros (Figs. 2
and 4c).
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Poles : ρ1 ¼ 0:9e� j1:6; ρ2 ¼ 0:9e� j1:5; ρ3 ¼ 0:9e� j1:4

Zeros : λ1 ¼ 0:9e� j1:1; λ2 ¼ 0:9e� j0:8

� Scenario III: The process was narrowband and
consisted of closely spaced poles and zeros as in the
case of Scenario II; however, the roots were closer
to the unit circle (Figs. 2 and 4e)

Poles : ρ1 ¼ 0:98e� j1:6; ρ2 ¼ 0:98e� j1:5; ρ3
¼ 0:98e� j1:4

Zeros : λ1 ¼ 0:98e� j1:1; λ2 ¼ 0:98e� j0:8

The number of poles and zeros was assumed to be
known to avoid possible biases due to erroneous model
order selection. During the adaptive process, stability
and invertibility were enforced in all estimators, and
therefore, all the roots were restricted to the interior of
the unit circle. For the cascade structure, unstable roots
were divided by their respective conjugate complex [52],
which did not affect the magnitude of the final obtained
PSD. On the other hand, in the direct-form TV-ARMA
models, no stability monitoring/correction was applied
due to the increased computational load required to

factorize the polynomials to roots and re-express the
roots back to polynomial coefficients. To quantify the
overall performance of each algorithm, we used the nor-
malized mean squared error (NMSE) between the simu-
lated and estimated TV spectrum, expressed either with
no units or in dB (NMSE(dB) = 10log10NMSE).
Figure 3 a–f depicts boxplots of the obtained NMSE

values as well as absolute differences between simulated
and estimated PSDs for all three scenarios and the dif-
ferent TV-ARMA estimation algorithms. In Scenario I,
where the root contributions were distinguishable, both
direct and cascade models were able to approximate the
simulated PSD accurately (Fig. 3a, d). In Fig. 4, we pro-
vide the zero-pole plots created based on all the realiza-
tions, using only the final root/coefficient estimates. All
methods detected the exact location of the true roots of
the system (Fig. 4b). However, in Scenarios II and III,
the direct-form models were unable to capture all the
PSD components correctly, leading to increased NMSE
values (Figs. 3b, c, 4d, f).
The cascade-form models, on the other side, exhibited

superior performance compared with that of the direct-
form models in all cases (Fig. 3a–f), and this is in line
with previous work [53]. In [53], it was shown that cas-
cade models converge faster, especially when the poles
are tightly clustered. The author’s main argument was
that the condition number of each section of the cascade
structure is not influenced by the roots of the other sec-
tions, as is the case with the direct form models. There-
fore, the convergence rate of the cascade structure is
higher compared to the direct form (Fig. 3h, i). Regard-
ing the recursive estimators, the sigma-point KFs pro-
vided more accurate estimates than the KF-RPEM for
the case of closely spaced poles (Fig. 3b, c, e, f). Optimiz-
ing the RB-UKF and RB-CDKF hyperparameters was ra-
ther straightforward. One should be aware, though, that
the upper bound for the initial covariance matrices
should not exceed one and, overall, should be relatively
small. Taking into account the fact that the real and im-
aginary parts of the roots lie between − 1 and 1, the
initialization should not force the roots outside the unit
circle. Initializing the filters with unstable roots does not
guarantee convergence. Optimization of the KF-RPEM
hyperparameters, on the other hand, was not trivial for

Table 1 Hyperparameters tuned by the GA for each recursive estimator

Model Recursive estimator Candidate solution form

TV-ARMA direct-form KF-RPLS ½p; q; R1; R2; P0; ĉT ð0Þ�
TV-ARMA cascade-form KF-RPEM ½pr ; pc; qr ; qc; R1; R2; P0; ĉT ð0Þ�

RB-UKF ½pr ; pc; qr ; qc; α; β; κ; R1; R2; P0; ĉT ð0Þ�
RB-CDKF ½pr ; pc; qr ; qc; γ; R1; R2; P0; ĉT ð0Þ�

The upper and lower bounds ([LB, UB]) were set to [0,1] for R1, R2, and P0 [1, 10]; for p and q [1, 5]; for pc and qc; [0, 2] for pr and qr [1, 2]; for γ; [0, 1] for α; [0, 3]
for β; [0, 3] for κ; and [− 1, 1] for each element of ĉT ð0Þ

Fig. 2 The simulated time-invariant ARMA PSDs for Scenarios I, II,
and III
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Scenarios II and III. Two or three GA repetitions were
required, with different initial solutions to obtain a good
solution. The KF-RPEM is known to be sensitive to the
initial conditions, and the high variance boxplots in Fig.
3 b and c indicate this. Between the two sigma-point fil-
ters, the RB-CDKF exhibited improved performance and
convergence characteristics compared with the RB-UKF,
especially in the case of the closely spaced pole scenarios
(Fig. 3c, f, i).

3.2 TV-ARMA processes
In order to investigate the tracking capabilities of the al-
gorithms under noisy and TV environments, we gener-
ated 30 realizations of a TV-AR (4) process with additive
GWN of 40, 30, 20, 10, and 5 dB signal-to-noise ratios
(SNR). The process had two complex pair of poles. An
AR (p) process in additive noise can be modeled either
by a high-order AR or by an ARMA(p, p) model [54].
Two scenarios were examined:

Fig. 3 NMSE (dB) boxplots (upper panel, a–c), absolute difference between simulated and estimated PSD (middle panel, d–f), and time evolution of
NMSE (bottom panel, g–i) for Scenario I (left panel, a, d, g), II (middle panel, b, e, c), and III (right panel, g, h, i). Blue, red, yellow, and green boxplots/
curves refer to direct-form models estimated by KF-RPLS and cascade-form models estimated by KF-RPEM, RB-UKF, and RB-CDKF,respectively
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� Scenario I: One pole remained constant throughout
time, while the other varied sinusoidally (in terms of
their angle). The poles were placed further apart
from each other (Fig. 6a).

� Scenario II: The two poles of the process varied
sinusoidally (in terms of their angle) and in close
proximity to one another (Fig. 6d).

Herein, the model order/number of roots was not as-
sumed to be known a priori and was optimized by the
GA, along with all the rest of the hyperparameters
(Table 1). The obtained NMSE values for both scenarios

can be seen in Fig. 5. In Scenario I, as in the time-
invariant case, all algorithms performed equivalently,
and no significant changes were observed with increased
SNR (Fig. 5a). The GA was able to select the correct
number of roots in almost all cases (Fig. 5b). On the
other hand, in Scenario II, we observe the same pattern
again as in the time-invariant case. The direct-form
models faced difficulties with the closely spaced poles,
resulting in a degraded performance. The sigma-point
KFs provided more accurate estimates overall, with RB-
CDKF being slightly better than the RB-UKF (Fig. 5c).
We expect that in more complex processes, the

Fig. 4 Pole-zero plots of the actual simulated (left panel a, c, e) and estimated ARMA processes (right panel) for Scenarios I (upper panel), II
(middle panel), and III (bottom panel). Blue, red, yellow, and green markers refer to direct-form models estimated by KF-RPLS and cascade-form
models estimated by KF-RPEM, RB-UKF, and RB-CDKF, respectively
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differences between the algorithms will be more pro-
nounced. Based on Fig. 5d, the two closely spaced TV peaks
were not easily distinguishable for low SNR levels (5 and
10 dB). Thus, the GA was able to resolve only one spectral
peak. Figure 6 illustrates the simulated and estimated TV
PSDs (based on cascade-form models and RB-CDKF), aver-
aged over all realizations and for SNR of 40 dB. Smoothed
and non-smoothed versions of the TV PSDs are also pro-
vided. The average runtime over all 30 realizations was 4.54
± 0.31, 4.63 ± 0.35, 6.33 ± 0.17, and 6.26 ± 0.20 s for KF-
RPLS, KFR-RPEM, RB-UKF, and RB-CDKF, respectively
(on an Intel Core™ i7-6700 @ 3.4 GHz, 32 GB using parallel
computing and MATLAB MEX functions).

4 Applications in medical ultrasound imaging
One possibly interesting application of the described TV-
ARMA methodology is the investigation of the propagation
characteristics of ultrasonic waves in medical ultrasound
(US) imaging. US imaging is a non-invasive technique that
produces real time images of the human body anatomy.
During a US scan, short acoustic pulses are emitted to-
wards targeted areas, giving rise to reflections from internal
structures. The echoes that return to the ultrasonic trans-
ducer are recorded and then combined to produce 2D im-
ages of the interrogated area. It is well known that the
emitted pulse undergoes gradual waveform distortions and
amplitude fluctuations as it propagates through the tissue.

Fig. 5 NMSE (dB) boxplots (left panel, a, c) and number of complex pair of poles selected by the GA (right panel, b, d) for Scenario I (upper
panel) and Scenario II (bottom panel). Blue, red, yellow, and green boxplots/curves refer to direct-form models estimated by KF-RPLS and
cascade-form models estimated by KF-RPEM, RB-UKF, and RB-CDKF, respectively
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Our main aim is to use the proposed TV methodology
to detect these changes in time. This may, first of all, give
further insight into the underlying mechanisms of pulse
propagation. Second, information extracted by the esti-
mated TV models can also be used for segmentation, de-
tection, classification (e.g., breast, prostate, lymph node
lesion classification), and even tissue characterization.
However, herein, we focus only on extracting the TV
spectral characteristics of the ultrasonic pulse in order to
validate the method described in this paper. The main rea-
son for selecting this specific application is the nature of
the problem and its close relation to the ARMA models. It
has been shown that the echoes that are reflected back to
the transducer can be modeled as ARMA processes [55],
i.e., the output of an IIR filter driven by noise. The filter,
in this case, is the TV ultrasonic pulse, and the noise is
the so-called reflectivity function or else the strength of
the acoustic reflection and scattering of the tissue as a
function of its spatial coordinates. The recorded echoes,
therefore, are the result of the convolution between the
TV pulse and the underlying reflectivity signal. The tissue
reflectivity function along a US image line can be grossly

described as a Gaussian–Bernoulli sequence; hence, it fits
the description of the driving process noise.
For this study, we used the open-access database of

raw ultrasonic signals acquired from malignant and be-
nign breast lesions [56]. A representative example of an
US image and a raw US signal can be found in Fig. 7.
We applied our proposed methodology, and specifically,
the cascade-form ARMA models along with the RB-
CDKF estimator, on signals extracted from different
lines of one of the US images of the database. Here, we
present results obtained from one image line. The num-
ber of poles and zeros, as well as all the estimator hyper-
parameters, was optimized using the GA. For this
specific example, the GA selected an optimal number of
ARMA roots, three complex pairs of poles and three
complex pairs of zeros. To validate this selection, we
manually increased the number of complex roots from
one to six and optimized the rest of the hyperparameters
with the help of the GA. Then, we compared the AIC
values as well as the NMSE between the original and the
predicted (a posteriori) time series, for different number
of roots. The results are presented in Fig. 8. For both

Fig. 6 Simulated (a, d) and estimated (b, c, e, f) TV PSDs (averaged over all 30 realizations) for Scenario I (upper panel) and Scenario II (bottom
panel), under 40 dB SNR and either with (right panel) or without (middle panel) smoothing. The estimation technique used was RB-CDKF
combined with the cascade-form ARMA models
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AIC and NMSE, the minimum was achieved, indeed, for
three complex poles and three complex zeros.
The obtained TV-ARMA PSD, along with the time

evolution of the instantaneous frequency estimates and
the radiuses of the complex poles, is depicted in Figs. 9 a
and 10 respectively. For comparison purposes, we also
estimated the STFT, the CWT, and the smoothed
pseudo-WVD (Fig. 9b–d). Compared with the rest of the
methods, the TV-ARMA PSD was smoother and less
noisy. This was expected since the used models take into
account the stochastic nature of the signal. In the ob-
tained PSDs, one can see a gradual, almost linear shift of
the spectral characteristics of the pulse towards lower
frequencies, which is in accordance with what has been

previously observed [57]. During the propagation of the
pulse through the tissue, high-frequency components
undergo higher attenuation than the low-frequency
components, giving rise to this spectral downshift ob-
served with depth.
Τhe fundamental frequency of the pulse was repre-

sented by the complex pole with the largest radius value
and, as seen in Fig. 10 b, was pole ρ1. Its contribution
remained dominant up to almost 20 mm and then
started to subside. The same pattern was observed for
the ρ3 pole, which probably describes a second har-
monic. On the other hand, the spectral peak represented
by the pole ρ2 became more prominent with depth. Of
course, one may select a larger number of poles and ob-
serve their time evolution, however, based on the model
order selection procedure, three poles were adequate to
describe the basic time variations of the process. Inter-
preting the exact mechanisms of pulse propagation is
beyond the scope of this paper. Nonetheless, this section
presents one possible direction for future work.

5 Discussion and conclusions
This work has provided a complete framework for esti-
mating TV-ARMA processes and other types of nonsta-
tionary processes that are not necessarily stochastic in
nature. The presented framework is based on the notion
of root tracking, a powerful technique that provides
insight into the core mechanisms of a process. Systems
are usually identified by estimating the coefficients asso-
ciated with the characteristic polynomials of their trans-
fer functions. However, all the relevant information
concerning the system dynamics is encompassed within
the roots of these polynomials. In addition, transfer
function coefficients can either become overly sensitive

Fig. 7 A representative US image [56] and a raw US signal extracted from one of the image lines. The US image is formed using the log-
compressed envelope of the raw US signals of each line

Fig. 8 AIC score and NMSE between original and predicted (a
posteriori) time series for an increasing number of complex pair of
poles and zeros. The smallest AIC and NMSE value was achieved for
three complex poles and three complex zeros
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Fig. 9 a Estimated TV-ARMA PSD. b STFT spectrogram using a window of 150 samples and an overlap of 149 samples. c CWT using the Bump
wavelet. d Smoothed pseudo-WVD

Fig. 10 a Time evolution of the instantaneous frequency estimates that correspond to the three identified complex poles. b Time evolution of
the radius of each complex pole
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to numerical round-off errors or produce temporal
instabilities that are computationally expensive to
control and correct. To this end, the direct-form
ARMA models are reparameterized in terms of their
roots and expressed as a cascade of first- and second-
order sections. Each section is therefore related to
one of the roots of the process, allowing independent
tracking and robust stability monitoring with minimal
computational effort.
Tracking the roots of the system requires the use of

recursive estimation techniques. However, classical
methods, such as the KF or the RLS, cannot be directly
applied since the cascaded ARMA structure is nonlinear
in its coefficients. The most commonly used adaptive
method is a type of gradient-based RLS algorithm.
Herein, we explored, for the first time to our knowledge,
the capabilities of sigma-point KFs. Sigma-point filters
are gradient-free estimators that apply deterministic
sampling approaches to deal with nonlinearities in the
system. We combined the UKF and the CDKF in one al-
gorithm and compared its performance with the conven-
tional gradient-based technique.
Based on simulations, we concluded that sigma-point

filters are less sensitive to the initial conditions and more
easily tuneable. We also observed that when the process
consists of tightly clustered roots, sigma-point filters
provide more accurate results and may converge faster.
To ease the identification procedure, instead of tuning
in an ad hoc manner, all the relevant hyperparameters
or resorting to exhaustive/grid search methods, we
allowed a GA to optimize the models. Of course, the
bottleneck in terms of speed compared with other
methods is the GA itself (4 to 5 s for a signal of length
1200 and a maximum of 5 desired roots, on an Intel
Core™ i7-6700 at 3.4 GHz, 32 GB using parallel comput-
ing, and MATLAB MEX functions); however, this gave
us the opportunity to explore in a greater extent the
capabilities of both direct- and cascade-form models, as
well as the estimation performance of the different adap-
tive filtering techniques. For the sake of demonstration,
the proposed framework was applied to medical ultra-
sound images to explore the TV characteristics of raw
ultrasonic signals. Future work will revolve around min-
imizing the computational complexity related to the
optimization of the models, as well as developing data-
driven tuning algorithms. We will extend our research
to methods that are robust to different types of noise
(e.g., impulsive, heteroskedastic, or heavy-tailed noise).
Once the algorithmic development is completed, the
next challenging and interesting step is the implementa-
tion of the root tracking framework in the hardware.
This will require refinements in order to balance the
need for increased estimation accuracy with efficient
hardware design.
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