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Abstract

In this paper, the ill-posedness of derivative interpolation is discussed, and a regularized derivative interpolation for
band-limited signals is presented. The ill-posedness is analyzed by the Shannon sampling theorem. The convergence
of the regularized derivative interpolation is studied by the combination of a regularized Fourier transform and the
Shannon sampling theorem. The error estimation is given, and high-order derivatives are also considered. The
algorithm of the regularized derivative interpolation is compared with derivative interpolation using some other
algorithms.
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1 Introduction
The computation of the derivative is widely applied in
engineering, signal processing, and neural networks [1–
3]. It is also widely applied in complex dynamical systems
in networks [4].
In this section, we describe the problem of finding

the derivative of band-limited signals by the Shannon
sampling theorem [5]. Recall that a function is called �-
band-limited if its Fourier transform has the property that
f̂ (ω) = 0 for every ω /∈[−�,�].
Shannon sampling theorem If f ∈ L2(R) and is �-

band-limited, then it can be exactly reconstructed from its
samples f (nh):

f (t) = lim
N→∞

N∑

n=−N
sinc�(t − nh)f (nh), (1)

where sinc�(t − nh) := sin�(t−nh)
�(t−nh) and h = π/�. Here,

the convergence is in L2 and uniform on R, which means
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the series approaches f (t) according to the L2-norm and
L∞-norm in R.
By the inversion formula, if f is band-limited

F −1(f̂ )(t) = f (t) = 1
2π

∫ �

−�

f̂ (ω)eiωtdω, a.e. t ∈ R. (2)

By the Paley-Wiener theorem [6] p.67, f is real analytic.
It is an elementary property of the Fourier transform

that F[ f (k)(t)]= (iω)kF[ f (t)], where f (k)(t) is the kth
derivative of f (t); consequently, if f is band-limited so is
f (k).
In [7], Marks presented an algorithm to find the deriva-

tive of band-limited signals by the sampling theorem:

f (k)(t) =
∞∑

n=−∞
[sinc�(t − nh)](k) f (nh). (3)

Here, again, the convergence is in L2 and uniform on R.
In this paper, we study the problem of computing f (k)(t)

in the case the samples {f (nh)} are noisy:

f (nh)= fE+ηn = fE(nh) + η(nh), ||{ηn}||l∞ ≤ δ (4)
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where fE(nh) is the exact signal and {ηn} = {η(nh)} is the
noise with the bound δ > 0.
It was pointed out in [7] that the interpolation noise

level increases significantly with k. In [8], Ignjatovic stated
that numerical evaluation of higher-order derivatives of
a signal from its samples is very noise sensitive and pre-
sented a motivation for the notions of chromatic deriva-
tives. The Chromatic derivatives in [8] is too special since
it is the operator polynomial Kn

t = (−i)nPLn(i ddt ), where
PLn are the normalized and scaled Legendre polynomi-
als. A Fourier truncation method to compute high-order
numerical derivatives was proposed in [9], and we will
compare with the method in the simulation section. The
advantage of [9] is that it does not require the function to
be band-limited. The disadvantage is that the accuracy is
not good for band-limited functions. In [10], the series to
approximate a band-limited function and its derivative is
given, but the ill-posedness and noise are not considered.
In [11], an optimal algorithm for approximating band-
limited functions from localized sampling is given. It is
shown that a certain truncated series is the best estimate
for using the local information operator; but the noisy case
is not considered which means ηn = 0 in (4). In [12], the
noisy case is considered for approximating band-limited
functions, but the computation of the derivatives is not
considered in the noisy case.
In [13], pp. 235–249, cubic smoothing spline is dis-

cussed in noisy cases, but no proof of convergence is
given. In [14–16], regularization methods are used to
find the stable solutions in the computation of deriva-
tives. In [14, 16], the approximation error is measured
with respect to L2-norm. This means the regularized solu-
tion approximates the exact solution according to the
L2-norm. Furthermore, the noise models are different: in
[14], the disturbance is assumed to be bounded in the
L2-norm, whereas in [16], it is bounded in the maximum
norm. On a finite interval in R, the maximum norm is
more strict. In [14], the error of the first derivative is given
byO(h)+O(

√
δ). In [16], for the regularization parameter

α = δ2, the error of the jth derivative is given by

||f (j)
α − f (j)||L2 =

[∫ 1

0
|f (j)

α (t) − f (j)(t)|2dt
] 1

2

= O
(
hk−j

)
+ O

(
δ
k−j
k

)

for 0 ≤ j ≤ k − 1 and f ∈ Hk(0, 1) = {g : g ∈ L2(0, 1),
g(k) ∈ L2(0, 1)} in the L2-norm which means the dis-
tance in Hk(0, 1) is measured in the L2-norm. Here, f (j)

α

is the approximate jth derivative by regularization, δ is
the error bound in (4), and h is the step size for the
derivative interpolation. In the current paper, we measure
the approximation error in the L∞-norm on any finite

interval in R and assume additive l∞ noise. The notion of
robustness naturally differs significantly for these different
norms and spaces since the regularized solution approxi-
mates the exact solution according to the maximum norm
on any finite interval in R implies the regularized solution
approximates the exact solution according to the L2-norm
on the same interval. In accordance to the estimated error
in [14, 16], h must be close to zero to guarantee the accu-
racy. This is also needed in [15]. In this paper, since f is
band-limited, there is no O(h) in the error estimate. So,
the estimate of approximation error obtained in this paper
is better since the condition h → 0 is not required for the
approximation.
In [17, 18], other kernels such as Gaussian functions

and the power of sinc functions are studied. However, the
noise and ill-posedness are not considered. In this paper,
the kernel will be given by the regularized Fourier trans-
form in [19]. The regularized transform is found by the
Tikhonov regularization method in [20]. The estimate of
approximation error is obtained in the noisy case. The ill-
posedness is taken into account in the error estimation. In
[21] and [22], the ill-posedness of the problem of comput-
ing f from the samples of f is analyzed and a regularized
sampling algorithm is presented in [21].
In this paper, we will consider a more complex problem.

In Section 2, we will analyze the ill-posedness of the prob-
lem of computing f (k) from the samples of f and conclude
that, in the presence of noise, formula (3) is not reliable
even if k is relatively small. For the case k = 1, we can
see the ill-posedness by the bipolar δ noise in Section 2. In
Section 3, a regularized derivative interpolation formula
will be presented and its convergence property is proved.
We will show the bipolar δ noise that causes ill-posedness
can be controlled by the regularized solution. In Section 4,
a regularized high -order derivative interpolation formula
is presented and its convergence property is proved. In
Section 5, applications will be shown by some examples.
We will see that the error of the regularized solution is
small for the bipolar δ noise. Finally, the conclusion is
given in Section 6. In our algorithm, it is not necessary for
the step size h of the samples to be close to 0.

2 The concepts of Paley-Wiener spaces and
ill-posedness

In this section, we introduce the concepts of entire func-
tions, Bernstein inequality, Plancherel-Pólya theorem,
Paley-Wiener theorem ([6] pp. 48–68), and the ill-
posedness.

Definition 1 A function f (z) : C → C is said to be entire if
is is holomorphic throughout the set of complex numbersC.

By this definition, we can see that any band-limited
function is an entire function.
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Definition 2 An entire function f (z) is said to be expo-
nential type if there exist positive constants A and B such
that

|f (z)| ≤ AeB|z|, z ∈ C.

Definition 3 An entire function f (z) is said to be expo-
nential type at most τ if given ε > 0 there exist a constant
Aε such that

|f (z)| ≤ Aεe(τ+ε)|z|, z ∈ C.

Definition 4 By Eσ we denote the class whose mem-
bers are entire functions in the complex plane and are of
exponential type at most σ .
According to this definition, if f (z) ∈ Eσ , then, given

ε > 0, there exist a constant Aε such that

|f (z)| ≤ Aεe(σ+ε)|z|, z ∈ C.

Definition 5 The Bernstein class Bp
σ consists of those

functions which belong to Eσ and whose restriction to R
belongs to Lp(R).
This means Bp

σ = {f ∈ Eσ : f (z)|z=x+0i ∈ Lp(R)}.
Bernstein inequality For every f ∈ Bp

σ , positive r ∈ Z
and p ≥ 1, we have

||f (r)||p ≤ σ r||f ||p.
Plancherel-Pólya inequality Let f ∈ Bp

σ , p > 0, and let
� = (λn), n ∈ Z be a real increasing sequence such that
λn+1 − λn ≥ 2δ. Then,

∞∑

n=−∞
|f (λn)|p ≤ 2epσδ

πδ
||f ||pp.

By this inequality,we can see that f ∈ Bp
σ implies f ∈ L∞(R).

Paley-Wiener theorem ([6], p. 67) The class functions
{f (z)} whose members are entire, belong to L2 when
restricted to the real axis and are such that |f (z)| = o(eσ z)
is identical to the class of functions whose members have
a representation

f (z) =
∫ σ

−σ

ϕ(u)eiuzdu,

for some ϕ ∈ L2(−σ , σ).
By the Paley-Wiener theorem, the space of �-band-

limited functions is equivalent to the classical Paley-
Wiener space of entire functions. We denote

PW2 := {
f ∈ L2 : f is � − band − limited

}
.

Then, for each f ∈ PW 2, the Plancherel-Pólya inequality
implies that also f ∈ L∞; hence, the possibility of applying
the Bernstein inequality on f and its derivatives f (k) which
yields that all f (k) ∈ L∞ have a bounded L∞ norm for
k ≥ 1. We will consider a restricted function space which
only includes derivatives of functions f ∈ PW 2 which are

not only �-band-limited but also have a bounded Fourier
transform. The condition f̂ ∈ L∞(R) is required to prove
the approximation property of the derivative interpola-
tion by regularization. This can be seen in the proof of
Lemma 3 in Section 3. Let us denote the space by

PW∞ :=
{
f ∈ PW2 : f̂ is bounded

}
.

The samples we considers are always bounded sequences
in l∞.
The concept of ill-posed problems was introduced in

[20]. Here, we borrow the following definition from it:

Definition 6 Assume A : D → U is an operator in
which D and U are metric spaces with distances ρD(∗, ∗)

and ρU(∗, ∗), respectively. The problem

Az = u

of determining a solution z in the space D from the “ini-
tial data” u in the space U is said to be well-posed on the
pair of metric spaces (D,U) in the sense of Hadamard if
the following three conditions are satisfied:
(i) For every element u ∈ U, there exists a solution z in

the space D; in other words, the mappingA is subjective.
(ii) The solution is unique; in other words, the mapping

A is one-to-one.
(iii) The problem is stable in the spaces (D,U): ∀ε >

0, ∃δ > 0, such that

ρU(u1,u2) < δ ⇒ ρD(z1, z2) < ε.

In other words, the inverse mapping A−1 is uniformly
continuous.

Problems that violate any of the three conditions are said
to be ill-posed.
In this section, we discuss the ill-posedness of deriva-

tive interpolation by the sampling theorem in the pair of
spaces (PW∞, l∞). For f (k) ∈ PW∞, its norm is defined
by

||f (k)(t)||PW∞ := max
t∈R |f (k)(t)| = ||f (k)(t)||L∞ ,

and

l∞ := {{a(n) : n ∈ Z} : ||a||l∞ < ∞}
is the space of bounded sequences with the norm

||a||l∞ := sup
n∈Z

|a(n)|.

We define the operator

S : PW∞ → l∞, by Sf (k) := {f (nh) : n ∈ Z}.
Here, f (nh) is the coefficient of [sinc�(t − nh)](k) in (3).
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Let us describe the case k = 1 in (3). For the �-band-
limited function f, the first derivative is

f ′(t) =
∞∑

n=−∞
[sinc�(t − nh)]′ f (nh)

=
∞∑

n=−∞

[
cos�(t − nh)

t − nh
− sin�(t − nh)

�(t − nh)2

]
f (nh),

(5)

where h = π/�. Here, the convergence is both in L2 and
uniformly on R. The proof of this fact is similar to the
proof of the Shannon sampling theorem [23].
i) The existence condition is not satisfied.
The proof is given in (iii) that the stability condition is

not satisfied. In the proof, we will find a kind of noise
{η(nh) : n ∈ Z} such that

∞∑

n=−∞
[sinc�(t − nh)]′ η(nh) = ∞

at some point t0 ∈ (−∞, ∞).
(ii) The uniqueness condition is satisfied.
Since S is a linear operator, it is one-to-one if and only if

S(f (k)) = 0 ∈ l∞ ⇒ f (k) ≡ 0.

Since f (nh) = 0 for all n ∈ Z implies f (t) ≡ 0 by the
Shannon sampling theorem, then f (k)(t) ≡ 0. So S is one-
to-one.
(iii) The stability condition is not satisfied, in other

words, S−1 is not continuous.
This can be seen from the following example.

Example 1 Consider any band-limited signal f along
with f (nh) + ηb(nh) where ηb(nh) is a noise.

Assume the noise has the form ηb(nh) = δ ·
sgn{cos�(t0 − nh)/(t0 − nh)}, − N ≤ n ≤ N and
ηb(nh) = 0, for |n| > N , where t0 is a given point in the
time domain and δ is a small positive number. Then, the
noise of the derivative in formula (5) is

η′
b(t) =

N∑

n=−N
[sinc�(t − nh)]′ ηb(nh).

This is the noise of f (k)(t) in which k = 1.
At t = t0 the noise of the derivative is

η′
b(t0) = δ

N∑

n=−N

∣∣∣∣
cos�(t0 − nh)

t0 − nh

∣∣∣∣

−
N∑

n=−N

sin�(t0 − nh)
�(t0 − nh)2

ηb(nh) → ∞,

as N → ∞ if cos�t0 �= 0, since

N∑

n=−N

∣∣∣∣
cos�(t0 − nh)

t0 − nh

∣∣∣∣ =
N∑

n=−N

∣∣∣∣
cos�t0
t0 − nh

∣∣∣∣

= | cos�t0| ·
N∑

n=−N

1
|t0 − nh| → ∞

by the divergence property of the Harmonic series and

N∑

n=−N

sin�(t0 − nh)
�(t0 − nh)2

ηb(nh)

converges by the convergence property of p-series in the
case p = 2.
If we do not set ηb(nh) = 0, for |n| > N and define them

in the same way as |n| ≤ N , then η′
b(t0) = ∞. This shows

that the existence condition is not satisfied.
Also at any point, t = t0 + kπ/�, k ∈ Z

η′
b(t0 + kπ/�) =

N∑

n=−N

cos�(t0 + kπ/� − nh)
t0 + kπ/� − nh

δ

· sgn{cos�(t0 − nh)/(t0 − nh)}

−
N∑

n=−N

sin�(t0 + kπ/� − nh)
�(t0 + kπ/� − nh)2

ηb(nh)

= (−1)kδ
N∑

n=−N

t0 − nh
t0 + kπ/� − nh

∣∣∣∣
cos�(t0 − nh)

t0 − nh

∣∣∣∣

−
N∑

n=−N

sin�(t0 + kπ/� − nh)
�(t0 + kπ/� − nh)2

ηb(nh)

→ ±∞,

as N → ∞.
Thus, ||{ηb(nh)}||l∞ ≤ δ, yet ||(f + ηb)

′ − f ′||PW∞ =
||η′

b||L∞ can be made arbitrarily large. So (iii) in the defi-
nition of well-posedness fails.
Therefore, this is an ill-posed problem.
If we consider the problem on the pair of spaces

(PW∞, l2), the problem is well posed. But the condition
||η||l2 ≤ δ → 0 is too strict.
In Section 3, we will show that the regularized solu-

tion will converge to the exact signal as ||η||l∞ ≤ δ →
0 according to the l∞-norm for suitable regularization
parameters.

3 The derivative interpolation by regularization
To solve the ill-posed problem in last section, we intro-
duce the regularized Fourier transform [19]:
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Definition 7 For α > 0, we define

Fα[ f ] (ω) := F[ fW ] (ω) =
∫ ∞

−∞
f (t)e−iωtdt

1 + 2πα + 2παt2
(6)

where

fW (t) := 1
1 + 2πα + 2παt2

f (t)

is the function f (t) multiplied with the weight function

Kα(t) := (1 + 2πα + 2παt2)−1.

The regularized Fourier transform was found by find-
ing the minimum of a smoothing function and solving an
Euler equation. The detail can be seen in [19].

In [19], we have proved that

lim
δ→0

max
ω∈[−�,�]

|Fα[ f ] (ω) − f̂E(ω)| = 0

under the condition

||fδ(t) − fE(t)||L2 ≤ δ

if α(δ) → 0 and δ2/α(δ) is bounded as δ → 0. So the
weight function Kα(t) has the function of stabilization.
We have successfully used the regularization factor Kα(t)
for band-limited extrapolations in [19]. In [24], we also
successfully used the factor Kα(nh) in the computation
of Fourier transform. The analysis of convergence prop-
erty and the computation are in the frequency domain. In
[21], the weight function Kα(nh) is applied to the Shan-
non sampling theorem. In this paper, we will compute the
derivatives by the combination of (5) and (6). The analysis
of convergence property and computation are in the time
domain for the derivatives. The error estimations of the
computation of the derivatives are also given. The proof is
quite different.

Definition 8 Given {f (nh) : n ∈ Z} in l∞, define

fα(t) :=
∞∑

n=−∞
sinc�(t − nh)Kα(nh)f (nh).

The infinite series is uniformly convergent in R for any
α > 0 since both sinc�(t − nh) and {f (nh) : n ∈ Z} are
bounded.
By the differentiation of fα(t) in Definition 3.2, we obtain

the regularized derivative interpolation:

f ′
α(t) =

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)f (nh)

=
∞∑

n=−∞

[
cos�(t − nh)

t − nh
− sin�(t − nh)

�(t − nh)2

]
Kα(nh)f (nh).

(7)

This derivative is well defined since the infinite series is
also uniformly convergent on R.

Lemma 1 If f is band-limited, then Fα[ f ] (ω) =
1

4πaα
∫ �

−�
f̂ (u)e−a|u−ω|du where a := ( 1+2πα

2πα

) 1
2 .

It can be seen from the convolution

f̂W = 1
2π

f̂ ∗ K̂α

where K̂α(ω) = 1
2aα e

−α|ω| is the Fourier transform of
Kα(t). For the proof of the convergence of the regular-
ized derivative interpolation, we will need the definition
of periodic extension of the function eiωt .

Definition 9 (eiωt)p[−�,�] denotes the periodic exten-
sion of the function eiωt defined on the interval [−�,�] to
the interval (−∞,∞) with period 2�.

Let Et(ω) := (eiωt)p[−�,�]. Then, for ω ∈[−�,�],
Et(ω) = eiωt . For ω ∈ R\[−�,�], Et(ω) is the periodic
extension of Et(ω) for ω ∈[−�,�].
The next Lemma is from [25].

Lemma 2 If f̂ ∈ L1(−∞,∞), then
∞∑

n=−∞
sinc�(t − nh)f (nh)= 1

2π

∫ ∞

−∞
f̂ (ω)(eiωt)p[−�,�]dω

for each t ∈ R.

In order to prove the convergence property of the reg-
ularized derivative interpolation, we need some more
lemmas which are listed in the Appendix.
We are now in a position to state and prove our main

theorem.

Theorem 1 Suppose

f (nh) = fE(nh) + ηn

where ||{ηn}||l∞ ≤ δ and fE ∈ PW∞. Then, if we choose
α = α(δ) = O(δμ), 0 < μ < 2 as δ → 0, then
f ′
α(t) → f ′

E(t) uniformly in any finite interval [-T, T] as
δ → 0. Furthermore,

||f ′
α(t) − f ′

E(t)||C[−T ,T] = max
t∈[−T ,T]

|f ′
α(t) − f ′

E(t)|

≤ O(α
1
2 ) + O(δ/

√
α).

The proof is in the Appendix.

Theorem 2 Suppose

f (nh) = fE(nh) + ηw(nh)

where {ηw(nh)} is white noise, Eηw = 0 and Var(ηw) = σ 2

and fE ∈ PW∞. Then, if we choose α = α(σ) = O(σμ),
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0 < μ < 2 as σ → 0, then Ef ′
α(t) → f ′

E(t) uniformly in
any finite interval [-T, T] as σ → 0. Furthermore,

|Ef ′
α(t) − f ′

E(t)| = O(α
1
2 )

and
Var[ f ′

α(t) − f ′
E(t)]= O

(
σ 2) + O

(
σ 2/

√
α
)
.

The proof is in the Appendix.

4 Derivative interpolation of higher order
In this section, we prove the convergence property of the
derivative interpolation formula of high order:

f (k)
α (t) =

∞∑

n=−∞
[sinc�(t − nh)](k) Kα(nh)f (nh). (8)

Some lemmas are in the Appendix.
We can now state and prove a version of Theorem 1 for

higher-order derivatives.

Theorem 3 If we choose α = α(δ) = O(δμ), 0 < μ < 2
as δ → 0, then f (k)

α (t) → f (k)
E (t) uniformly in any finite

interval [-T, T] as δ → 0. Furthermore, we have the
estimate

||f (k)
α (t) − f (k)

E (t)||C[−T ,T] = max
t∈[−T ,T]

|f (k)
α (t) − f (k)

E (t)|

≤ O(α
1
2 ) + O(δ/

√
α).

The proof is in the Appendix.

Remarks 1 This theorem shows that evaluation of higher
order derivatives fromNyquist rate samples with any accu-
racy is possible. Here, the Nyquist rate samples mean the
samples with the step size h = π

�
.

Theorem 4 Suppose

f (nh) = fE(nh) + ηw(nh)

where {ηw(nh)} is white noise, Eηw = 0 and Var(ηw) = σ 2

and fE ∈ PW∞. Then, if we choose α = α(σ) = O(σμ),
0 < μ < 2 as σ → 0, then Ef (k)

α (t) → f (k)
E (t) uniformly in

any finite interval [-T, T] as σ → 0. Furthermore,

|Ef (k)
α (t) − f (k)

E (t)| = O(α
1
2 )

and

Var[ f (k)
α (t) − f (k)

E (t)]= O(σ 2) + O(σ 2/
√

α).

The proof is similar to the proof of Theorem 2. We omit
it here.

5 Methods, experimental results, and discussion
In this section, we give some examples to show that the
regularized sampling algorithm is more effective in con-
trolling the noise than some other algorithms. We will
compare it with the Fourier truncation method ([9]) and

Tikhonov regularization method ([16]). The procedure of
how the Tikhonov regularization method was performed
is described in detail in [16].
In practice, only finite terms can be used in (8), so

we choose a large integer N and use next formula in
computation:

f (k)
αN (t) =

N∑

n=−N
[sinc�(t − nh)](k) Kα(nh)f (nh) (9)

where f (nh) is the noisy sampling data given in (4) in
Section 1 . Due to the weight function, the series above
converges much faster than the series (3) of using Shan-
non’s sampling theorem. We give the estimate of the
truncation error next.
Since t ∈[−T , T], for |n| > N

[sinc�(t − nh)](k) =
k∑

l=0
(kl )

[
1

�(t − nh)

](l)

[ sin�(t − nh)](k−l) = O
(
1
N

)
.

Then, the truncation error

TR = O
(
1
N

∫ ∞

N
Kα(x)dx

)

where
∫ ∞

N
Kα(x)dx = 1

2πα

∫ ∞

N

dx
a2 + x2

= 1
2παa

(
π

2
− arctan

N
a

)
= O

(
1
Nα

)
.

Therefore,

TR = O(
1

N2α
).

So, if N is large enough, the truncation error can be very
small.

Theorem 5 If we choose α such that α(δ) = O(δμ), 0 <

μ < 2 as δ → 0, and α = O(Nγ ), − 2 < γ < 0 as
N → ∞, then we have the estimate

||f (k)
αN (t)−f (k)

E (t)||C[−T ,T]=O(α
1
2 )+O(δ/

√
α)+O

(
1

N2α

)
.

In this case, TR = O( 1
N2+γ ), which will vanish as N →

∞.
In next three examples, we choose N = 100 and α =

0.01 in (9). We will consider three types of noise:
(i) Bipolar δ noise

ηb(nh) = δ · sgn{cos�(t0 − nh)/�(t0 − nh)}
where t0 = 30, and δ = 0.1, This is the noise given in
Section 2 for which we have shown the stability condition
is not satisfied.
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(ii) White noise that is uniformly distributed in
[−0.1, 0.1].
(iii) White Gaussian noise whose variance is 0.01.
For the bipolar δ noise, we will give the square errors

(SE). For the white noise, we use the three methods 100
times and will give the mean square errors (MSE).

Example 2 Suppose

fE(t) = sin(�t)
π t

.

Then,

f̂E(ω) =
{
1, ω ∈[−�,�]
0, ω /∈[−�,�] .

where � = 1.5.

The simulation results for the bipolar δ noise are in
Fig. 1. The solid curve is the exact derivative. The dot is
the result by the Fourier truncation method. We choose
α = 0.01. The dot dashed is the result by the Tikhonov
regularization method. The dashed is the result by the
regularized sampling algorithm. We give the SE in the
table:

Methods Fourier
trunc

Tikhonov
reg

Reg sampling

SE of f ’ 1.1886 0.4264 0.0777
SE of f” 2.6905 0.9451 0.1518

The simulation results for the uniform noise are in
Fig. 2. The MSE is in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

MSE of f ’ 0.1000 0.1050 0.0152
MSE of f” 0.1318 0.1534 0.0201

The simulation results for the Gaussian noise are in
Fig. 3. The MSE is in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

MSE of f ’ 0.2872 0.2465 0.0340
MSE of f” 0.3924 0.3308 0.0439

Fig. 1 The simulation results for the bipolar δ noise in Example 2
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Fig. 2 The simulation results for the uniform noise in Example 2

Fig. 3 The simulation results for the Gaussian noise in Example 2
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Example 3 In this example, we choose a function that
has a triangular spectrum. Let

fE(t) = 1 − cos(�t)
π t2

.

Then,

f̂E(ω) =
{

� − |ω|, ω ∈[−�,�]
0, ω /∈[−�,�] .

where � = 1.5.

We still choose α = 0.01. The simulation results for the
bipolar δ noise are in Fig. 4.
We give the SE in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

SE of f ’ 0.5605 0.2084 0.1062
SE of f” 1.2629 0.4422 0.2010

The simulation results for the uniform noise are in
Fig. 5. The MSE is in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

MSE of f ’ 0.0511 0.0409 0.0155
MSE of f” 0.0700 0.0517 0.0210

The simulation results for the Gaussian noise are in
Fig. 6. The MSE is in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

MSE of f ’ 0.1418 0.1141 0.0384
MSE of f” 0.1863 0.1362 0.0497

Example 4 In this example, we choose a function that is
a raised-cosine filter. Let

fE(t) = 1
1 − (

2βωct
π

)2
sinωct

t
cosβt.

Then,

f̂E(ω) =

⎧
⎪⎨

⎪⎩

1, |ω| ≤ ωc(1 − β)
1
2 + 1

2 cos
π [|ω|−ωc(1−β)]

2βωc
, ωc(1 − β) < |ω| < ωc(1 + β).

0, |ω| ≥ ωc(1 + β).

where ωc = 1 and β = 0.5. Here, � = ωc(1 + β) = 1.5.

Fig. 4 The simulation results for the bipolar δ noise in Example 3
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Fig. 5 The simulation results for the uniform noise in Example 3

Fig. 6 The simulation results for the Gaussian noise in Example 3
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We still choose α = 0.01. The simulation results for the
bipolar δ noise are in Fig. 7. We give the SE in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

SE of f ’ 0.5605 0.2083 0.1142
SE of f” 1.2629 0.4399 0.2142

The simulation results for the uniform noise are in
Fig. 8. The MSE is in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

MSE of f ’ 0.0508 0.0400 0.0182
MSE of f” 0.0709 0.0511 0.0248

The simulation results for the Gaussian noise are in
Fig. 9. The MSE is in the table:

Methods Fourier
trunc

Tikhonov
reg

Reg
sampling

MSE of f ’ 0.1522 0.1190 0.0410
MSE of f” 0.2038 0.1427 0.0541

Next, we compare the three algorithms in dependence
of the variance of the Gaussian noise. The MSE for
variance = 1, 0.25, 0.04, 0.01, 0.0025 for the three
algorithms are in the next three tables.

Fourier truncation method:

Variance 1 0.25 0.04 0.01 0.0025
MSE of f ’ 14.7080 3.7270 0.5887 0.1669 0.0338
MSE of f” 20.2585 4.9441 0.7787 0.2340 0.0444

Tikhonov regularization method:

Variance 1 0.25 0.04 0.01 0.0025
MSE of f ’ 11.6155 2.9553 0.4703 0.1306 0.0270
MSE of f” 14.6477 3.5348 0.5652 0.1668 0.0319

Regularized sampling algorithm:
Variance 1 0.25 0.04 0.01 0.0025
MSE of f ’ 3.8618 0.9755 0.1658 0.0485 0.0141
MSE of f” 5.1606 1.2406 0.2225 0.0658 0.0192

Fig. 7 The simulation results for the bipolar δ noise in Example 4
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Fig. 8 The simulation results for the uniform noise in Example 4

Fig. 9 The simulation results for the Gaussian noise in Example 4
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Remarks 2 The results of the Fourier truncation method
in [9] are not good since the condition ||η||L2 ≤ δ is not
satisfied here. In this paper, the condition on the samples
|η(nh)| ≤ δ is much weaker. The condition to apply the
regularization method in [16] is the same, so the result is
better than the Fourier truncation method, but it is not as
good as the regularized sampling algorithm in this paper.
This is just for band-limited signals. The Tikhonov regular-
ization method is a general method for ill-posed problems.
It may be better for other signals such as non-band-limited
signals. For the Tikhonov regularization method in [16],
one must solve a system of linear equations. The amount of
computation is of the order O(N3) to compute the deriva-
tive of N points. For each t, the amount of computation of
(9) is of the order O(N). Then, for N points, the amount of
computation of (9) is of the order O(N2).

Example 5 In this example, we show how the square
error depends on the regularization parameter α and give
the optimal α. We choose the function in example 1 and
the bipolar δ noise. The results are in the Fig. 10. For the
first derivative, the optimal α = 0.0590. For the second
derivative, the optimal α = 0.0650.

Remarks 3 By the proof of Theorem 1 and 3, the error
bound depends on the exact signal fE which is not known.

So it is not easy to find an optimized α. However, there
are some methods in which α can be determined such
as discrepancy principle ([26]), the GCV and L-curve
([27], [28]). And by Example 4, we can see that the reg-
ularization parameter α should be a little larger in the
computation of the second derivative than in the first
derivative. This means higher derivatives are more sen-
sitive to noise. So a larger regularization parameter α is
required.

6 Conclusion
The interpolation formula obtained by differentiating the
formula of the Shannon sampling theorem is not sta-
ble. The presence of noise can give rise to the unreliable
results. For certain kind of noise, the error can even
approach infinity. So, this is a highly ill-posed problem.
The regularization method is an effective method for
ill-posed problems. The derivative interpolation by regu-
larized sampling algorithm is presented and the method
is extended to high order derivative interpolation. The
convergence property is proved and tested by some
examples. The numerical results show that the deriva-
tive interpolation by regularized sampling algorithm
is more effective in reducing noise for band-limited
signals.

Fig. 10 The results the Square error as a function of α in Example 5
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Appendix
Lemma 3 If f is band-limited and f̂ ∈ L∞(R), then

d(t) :=
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)f (nh)

− [
Kα(t)f (t)

]′
∣∣∣∣∣ = O(α

1
2 ),

where O(α
1
2 ) means O(α

1
2 ) ≤ C · α

1
2 , C = const. > 0.

Proof

d(t) =
∣∣∣∣∣

[ ∞∑

n=−∞
sinc�(t − nh)Kα(nh)f (nh) − Kα(t)f (t)

]′∣∣∣∣∣

=
∣∣∣∣

[
1
2π

∫ ∞

−∞
(eiωt)p[−�,�] f̂W (ω)dω − Kα(t)f (t)

]′∣∣∣∣

=
∣∣∣∣

[
1
2π

∫ ∞

−∞
(eiωt)p[−�,�] f̂W (ω)dω

− 1
2π

∫ ∞

−∞
eiωt f̂W (ω)dω

]′∣∣∣∣

=
∣∣∣∣
1
2π

∫ ∞

−∞
[ (eiωt)p[−�,�] − eiωt]′ f̂W (ω)dω

∣∣∣∣ .

We will see that this improper integral is uniformly con-
vergent, so we can interchange the order of the differenti-
ation and integration.

d(t) =
∣∣∣∣
1
2π

∫

|ω|≥�

[ (iωeiωt)p[−�,�] − iωeiωt] f̂W (ω)dω

∣∣∣∣

≤ 1
π

∫

|ω|≥�

|ωf̂W (ω)|dω = 1
π

∫

ω≥�

|ωf̂W (ω)|dω

+ 1
π

∫

ω≤−�

|ωf̂W (ω)|dω

where

f̂W (ω) = 1
4πaα

∫ �

−�

f̂ (u)e−a|u−ω|du.

Assume |f̂ (ω)| ≤ M whereM is a positive constant.

In the case ω ≥ �,

|f̂W (ω)| =
∣∣∣∣

1
4πaα

∫ �

−�

f̂ (u)ea(u−ω)du
∣∣∣∣ ≤ M

4πaα
e−aω

∫ �

−�

eaudu

= M
4πa2α

e−aω(ea� − e−a�) ≤ M
4πa2α

e−aωea�.

In the case ω ≤ −�, |f̂W (ω)| =
∣∣∣ 1
4πaα

∫ �

−�
f̂ (u)ea(ω−u)du

∣∣∣,
we have the similar inequality.

So

d(t) ≤ 2
π

∫

ω≥�

ω
M

4πa2α
e−aωea�dω

= ea�

2π2a2α

∫

ω≥�

ωe−aωdω

= 1
2π2a3α

(� + 1
a
) = �

2π2α

(
2πα

1 + 2πα

) 3
2

+ 1
2π2α

(
2πα

1 + 2πα

)2
= O(α1/2)

where the last equality uses the definition of a in lemma
3.1.

Proof of Theorem 1
Suppose t ∈[−T ,T], using formula (7), we obtain

|f ′
α(t) − f ′

E(t)| =
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)[ fE(nh)

+η(nh)]−f ′
E(t)

∣∣

≤
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)fE(nh) − f ′

E(t)

∣∣∣∣∣

+
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)η(nh)

∣∣∣∣∣

≤
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)fE(nh)

− [
Kα(t)fE(t)

]′∣∣∣

+
∣∣∣
[
Kα(t)fE(t)

]′ − f ′
E(t)

∣∣∣ +
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)η(nh)

∣∣∣∣∣

By Lemma 3,

∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)fE(nh)

− [
Kα(t)fE(t)

]′
∣∣∣∣∣ = O(α

1
2 ).

Since −T ≤ t ≤ T ,
∣∣∣
[
Kα(t)fE(t)

]′ − f ′
E(t)

∣∣∣

=
∣∣∣∣∣
(2πα + 2παt2)(1 + 2πα + 2παt2)f ′

E(t) + 4παfE(t)
(1 + 2πα + 2παt2)2

∣∣∣∣∣ = O(α).

We can calculate
∫ ∞
0 Kα(t)dt = 1

2aα .
Since [sinc�(t − nh)]′ is bounded and

|Kα(nh)η(nh)| ≤ δ

h

∫ nh

(n−1)h
Kα(t)dt (n > 0),
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we have
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)η(nh)

∣∣∣∣∣

≤
∣∣∣∣[sinc�t]′

η(0)
1 + 2πα

∣∣∣∣

+
∣∣∣∣∣∣

∑

n�=0
[sinc�(t − nh)]′ Kα(nh)η(nh)

∣∣∣∣∣∣

= O(δ) + O
(

δ

∫ ∞

0
Kα(t)dt

)
= O(δ) + O(δ/

√
α),

By the estimates above, we have

||f ′
α(t) − f ′

E(t)||C[−T ,T] ≤ O(α
1
2 ) + O(δ/

√
α).

Proof of Theorem 2
By the proof of Theorem 1, we can see that

|Ef ′
α(t) − f ′

E(t)| =
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)]′ Kα(nh)fE(nh)

−f ′
E(t)

∣∣∣∣∣ = O(α
1
2 ) → 0

as σ → 0.

Var[ f ′
α(t) − f ′

E(t)]=
∞∑

n=−∞
{[sinc�(t − nh)]′ Kα(nh)}2Var[ η(nh)]

≤ [
(sinc�t)′

]2 σ 2

(1 + 2πα)2
+

∑

n �=0
{[sinc�(t − nh)]′ Kα(nh)}2σ 2

= O(σ 2) + O
(

σ 2
∫ ∞

0
[Kα(t)]2 dt

)
.

Since [Kα(t)]2 ≤ |Kα(t)|,

Var[ f ′
α(t) − f ′

E(t)] = O
(
σ 2) + O

(
σ 2

∫ ∞

0
Kα(t)dt

)

= O
(
σ 2) + O

(
σ 2/

√
α
)
.

Lemma 4

Ik :=
∫

ω≥�

ωke−aωdω =
k∑

l=0

Al
k

al+1�k−le−a�

where Al
k = ∏l

j=1(k − j + 1) and A0
k = 1.

Proof We can prove it by integration by parts:

Ik = 1
a
�ke−a� + k

v
6k − 1 = A0

k
a

�ke−a� + k
a
Ik−1

= A0
k
a

�ke−a� + k
a

(
1
a
�k−1e−a� + k − 1

a
Ik−2

)

= A0
k
a

�ke−a� + A1
k

a2
�k−1e−a� + k(k − 1)

a2
Ik−2

= ...... =
k∑

l=0

Al
k

al+1�k−le−a�.

Lemma 5 If f is band-limited, then

d(t) :=
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)](k) Kα(nh)f (nh)

− [
Kα(t)f (t)

](k)
∣∣∣∣∣ = O

(
α

1
2
)
.

Proof Since (sinc�t)(k)= 1
2�

∫ �

−�
(iω)(k)eiωtdω is bounded

on (−∞, ∞),
∞∑

n=−∞
[sinc�(t − nh)](k) Kα(nh)f (nh)

is uniformly convergent.

d(t) =
∣∣∣∣∣∣

[ ∞∑

n=−∞
sinc�(t − nh)Kα(nh)f (nh) − Kα(t)f (t)

](k)
∣∣∣∣∣∣

=
∣∣∣∣∣

[
1
2π

∫ ∞

−∞
(
eiωt

)
p[−�,�] f̂W (ω)dω − Kα(t)f (t)

](k)
∣∣∣∣∣

=
∣∣∣∣∣

[
1
2π

∫ ∞

−∞
(
eiωt

)
p[−�,�] f̂W (ω)dω − 1

2π

∫ ∞

−∞
eiωt f̂W (ω)dω

](k)
∣∣∣∣∣

=
∣∣∣∣
1
2π

∫ ∞

−∞
[ (eiωt)p[−�,�] − eiωt](k) f̂W (ω)dω

∣∣∣∣

=
∣∣∣∣
1
2π

∫

|ω|≥�

[ (iω)keiωt)p[−�,�] − (iω)keiωt] f̂W (ω)dω

∣∣∣∣

≤ 2
2π

∫

|ω|≥�

|ωk f̂W (ω)|dω ≤ 2
π

∫

ω≥�

ωk M
4πa2α

e−aωea�dω

= ea�

2π2a2α

∫

ω≥�

ωke−aωdω

= ea�

2π2a2α

k∑

l=0

Al
k

al+1 �k−le−a� = 1
2π2a2α

k∑

l=0

Al
k

al+1 �k−l =O
(
α1/2) .

where Al
k = ∏l

j=1(k − j + 1) and A0
k = 1 by lemma 4

Lemma 6 For t ∈[−T ,T], if k is even

[Kα(t)](k) = 1
2πα

[
1

a2 + t2

](k)
= O

(
αk/2

)
,

and if k is odd

[Kα(t)](k) = 1
2πα

[
1

a2 + t2

](k)
= O

(
α(k+1)/2

)
,

as α → 0.
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Proof

1
2πα

[
1

a2 + t2

](k)
= 1

2πα

1
2ai

[
1

t − ai
− 1

t + ai

](k)

= 1
2πα

(−1)k

2ai

[
k!

(t − ai)k+1 − k!
(t + ai)k+1

]

= (−1)kk! [ (t + ai)k+1 − (t − ai)k+1]
4παai (t2 + a2)k+1

= (−1)kk! {[ (ai)k+1+ k(ai)kt+ ...]−[ (−ai)k+1+ k(−ai)kt + ...)] }
4παai (t2 + a2)k+1 .

If k is even, this is of the order O
(

ak+1

αaa2k+2

)
= O

(
αk/2).

If k is odd, this is of the order O
(

ak
αaa2k+2

)
=

O
(
α(k+1)/2).

Lemma 7 For t ∈[−T ,T],
[
Kα(t)fE(t)

](k) − f (k)
E (t) = O(α).

Proof
[
Kα(t)fE(t)

](k) − f (k)
E (t) = Kα(t)f (k)

E (t)

+
k∑

l=1
(kl ) [Kα(t)](l) f (k−l)

E (t) − f (k)
E (t)

= −
[

2πα + 2παt2

1 + 2πα + 2παt2

]
f (k)
E (t)

+
k∑

l=1
(kl ) [Kα(t)](l) f (k−l)

E (t) = O(α)

by Lemma 6.

Proof of Theorem 3

|f (k)
α (t)−f (k)

E (t)|=
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t−nh)](k) Kα(nh)[ fE(nh)+η(nh)]−f (k)

E (t)

∣∣∣∣∣

≤
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t−nh)](k) Kα(nh)fE(nh)−f (k)

E (t)

∣∣∣∣∣

+
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t−nh)](k) Kα(nh)η(nh)

∣∣∣∣∣

≤
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t−nh)](k) Kα(nh)fE(nh)−[

Kα(t)fE(t)
](k)

∣∣∣∣∣

+
∣∣∣
[
Kα(t)fE(t)

](k) − f (k)
E (t)

∣∣∣

+
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)](k) Kα(nh)η(nh)

∣∣∣∣∣

where∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)](k) Kα(nh)fE(nh)

− [
Kα(t)fE(t)

](k)
∣∣∣∣∣ = O(α

1
2 )

by lemma 5,
∣∣∣
[
Kα(t)fE(t)

](k) − f (k)
E (t)

∣∣∣ = O(α)

by lemma 7, and
∣∣∣∣∣

∞∑

n=−∞
[sinc�(t − nh)](k) Kα(nh)η(nh)

∣∣∣∣∣

≤
∣∣∣∣[sinc�t](k)

η(0)
1 + 2πα

∣∣∣∣

+
∣∣∣∣∣∣

∑

n�=0
[sinc�(t − nh)](k) Kα(nh)η(nh)

∣∣∣∣∣∣

= O(δ) + O
(

δ

∫ ∞

0
Kα(t)dt

)
= O(δ) + O(δ/

√
α).

This implies

||f (k)
α (t) − f (k)

E (t)||C[−T ,T] ≤ O(α
1
2 ) + O(δ/

√
α).
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