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Abstract

The paper presents a model set adaptive filtering algorithm based on variational Bayesian approximation (MSA-VB)
for the target tracking system with the model and noise uncertainties. The Rényi information divergence, as a
criterion, is to choose the best match model that has the minimum divergence between candidate models and true
mode. Subsequently, the model-conditioned estimation based on variational Bayesian approximation is proposed to
estimate system state and measurement noise variances. To deal with the coupled noise intractability, the moments
matching technique is used to obtain the mixed statistics of measurement noise at the fusion stage. The proposed
algorithm is compared with the interacting multiple models (IMM) algorithm and the variational Bayesian-interacting
multiple models (IMM-VB) algorithm via two scenarios for maneuvering target tracking, and simulation results show
that the MSA-VB has improved estimation and tracking performance.

Keywords: Target tracking, Variational Bayesian, Model set adaptive, System model uncertainty, Rényi information
divergence

1 Introduction
Target tracking plays an important role in a variety of
practical applications, such as underwater sonar track-
ing [1], aircraft surveillance [2], and visual tracking [3, 4].
The objective is to accurately estimate the target state for
a sequence of observation sets in presence of noise. When
the systems are linear and noise are Gaussian, Kalman fil-
ter provides an optimal filtering technique to estimate the
target state [5]. Its variant have been studied under numer-
ous relaxed assumptions [6–9]. Of course, this limitation
in these filters is that it assumes a complete prior knowl-
edge of the dynamic and measurement model parameters,
including the noise statistics. In many practical situa-
tions, model uncertainty is caused by unknown dynamic
model parameters, and noise uncertainty is caused by
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unknown noise statistics; both violate the abovemen-
tioned assumption.
The model uncertainty is due to the fact that the tar-

get dynamics cannot be properly modeled by a single state
space model (SSM) [10]. For example, in the maneuver-
ing target tracking, the target has different maneuvering
behaviors, such as constant velocity, acceleration, and
turning with different angular velocity. Thus, the inter-
acting multiple models (IMM) algorithm was proposed in
[11], where the multiple models are used to match the dif-
ferent maneuvering behaviors and the transition among
different models is subject to a Markov process. Since
the state estimation of each model is parallel and inde-
pendent, the computational complexity of the algorithm
increases gradually as the number of models increases and
the conflict among the models are more significant. In
order to deal with the problem, Li and BarShalom [12]
proposed the variable structure multiple model methods
(VSMM), which adjusts their model sets in real time. In
VSMM, the core idea is the model set adaptation (MSA)
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that aims at finding the best model set for the state esti-
mation. Different implementations for MSA approaches
have been proposed. For instance, the expectedmode aug-
mentation (EMA) [13], the likely model set (LMS) [14],
the minimal sub model set (MSS) [15], and the best model
augmentation (BMA) [16].
In addition, the noise uncertainty also affects the per-

formance of the tracking system. Practically, the mea-
surement noise usually varies with interferences. To cope
with the noise uncertainty, the adaptive filtering method
is used to address the issue of state estimation in the case
of unknown noise statistics in [17]. The adaptive filtering
algorithms are classified into four categories: maximum
likelihood, correlation, covariancematching, and Bayesian
method. Among them, the Bayesian method can be seen
as a more general case of the other three algorithms.
However, most of the Bayesian algorithms are difficult
to get the analytical solution—because of the complexity
of the probability density function and the high dimen-
sional integral. These adaptive filters considered that the
sequence of state variable follows a first-order Markov
process. For the stationary random sequence (e.g., image
and video signal [18]), the denoising technique based on
the intersection of confidence intervals (ICI) rule was pre-
sented to provide a noise-free image or its best possible
estimate [19, 20].
Recently, the variational Bayesian approximation adap-

tive Kalman filter (VBAKF) proposed in [17] has been
introduced to estimate the target state under the case
without knowledge of measurement noise variances. Its
main idea is that the joint posterior of the target state
and measurement noise variances can be approximated
by a factored free-form distribution (for models in the
conjugate-exponential class). Unfortunately, linear system
and Gaussian distribution assumption do not really exist
in actual applications. The VBAKF cannot achieve the
demanding filtering performance. The nonlinear estima-
tion methods, such as unscented Kalman filter (UKF)
and cubature Kalman filter (CKF), were combined with
VB approximation method [21, 22]. Here, the measure-
ment noise variances are approximated by the variational
Bayesian approximation (VB) approach; thereafter, system
states are updated by these nonlinear estimationmethods.
Hu [23] proposed the robust version of VBAKF, which
models the measurement noise by using the Student t
distribution, and [23] was extended in [24] and [25].
However, the abovementioned algorithms considered

only one of these uncertainties. In real environment, the
model and noise uncertainties have to be considered
simultaneously. Several suggestions for dealing with this
problem can be found in literature. In [26], a novel esti-
mator was presented for the jump Markov linear systems
with unknown measurement noise variance parameters.
A merging scheme is adopted for the system noises in

the fusion stage of the IMM approach and a fix recursive
form is used to estimate the noise variance parameters.
Based on the literature [26], Hong [27] presented a robust
variational Bayesian-interacting multiple model (IMM-
VB), which models the glint noise by using Gaussian
mixture distribution. Gao [28] proposed an interacting
multiple model estimation-based adaptive robust UKF,
which establishes an adaptive fading UKF for the case of
process model uncertainty and a robust UKF for the case
of measurement model uncertainty. These approaches
have obtained better performance for the problem of the
absence of model and noise uncertainties, but they have
a very high burden of time complexity. That is because
more models have been designed in IMM algorithm for
demanding results.
In this paper, we present a model set adaptive filtering

algorithm based on variational Bayesian approximation
to address the state estimation problem under the sit-
uation with dual uncertainties. The Rényi information
divergence, as a criterion, is used to computing the diver-
gence between the true mode and the candidate models.
Subsequently, it develops a model-conditioned estimation
based on variational Bayesian approximation to fuse the
state and measurement noise variances. Two simulation
experiments are provided to illustrate the effectiveness of
the proposed algorithm.
The rest of paper is organized as follows. In Section 2,

the state estimation problem with unknown noise statis-
tics is formulated and the variational Bayesian method
is briefly reviewed. The proposed algorithm is described
in Section 3. In Section 4, the simulation results are
presented to prove the effectiveness of the proposed algo-
rithms. Finally, the conclusions are given in Section 5.

2 Methods/experimental
The main drawbacks of the interacting multiple model
method for target tracking system are the high compu-
tational complexity and poor performance. A model set
adaptive filtering algorithm based on variational Bayesian
approximation is proposed in this paper. The proposed
method is designed based on the idea of the VSMM and
VBmethods. The Rényi information divergence measures
the “closeness” of two probability density functions. It has
additional flexibility in that in allows for emphasis to be
placed on specific portions of the support of the densities
to be compared. Hence, the Rényi information divergence
is as a criterion to choose the best match model that has
the minimum divergence between candidate models and
true mode. And the moments matching technique is used
to obtain the mixed statistics of measurement noise and
system state at the fusion stage.
The paper performs Monte Carlo simulation using

MATLAB software to examine the behavior of the
proposed method. The root mean square errors (RMSEs)
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are used to evaluate the estimation accuracy. We compare
our method with IMM-VB and IMM in two different sce-
narios. The parameters in the experiments are introduced
in Section 5.
This paper does not contain any studies with human

participants or animals performed by any of the authors.

3 Variational Bayesian approximation
3.1 Problem formulation
Consider the following state space model:

{
xk = Frk

k xk−1 + wrk
k−1

zk = Hrk
k xk + vk

(1)

where xk ∈ Rn and zk ∈ Rd are the target state and the
measurement vectors, respectively. rk denotes the system
mode which is described by a discrete-time homogenous
Markov chain. The process noise wrk

k−1 corresponding
to mode rk and the measurement noise vk are assumed
to be mutually independent zero-mean Gaussian ran-
dom processes with the covariance matrices Qrk

k−1 and
�k , respectively. Here, we denote the diagonal covari-
ance matrix comprising of these variances by �k =
diag{σ 2

k,1, σ
2
k,2 . . . σ 2

k,d}. Due to the fact that the inverse
Wishart distribution is the conjugate prior distribution for
the variance of the Gaussian distribution [29]. For this rea-
son, a product of inverse Wishart models is adopted to
approximate the posterior distribution �k . That is

p(�k) = IW (�k ; κk ,�k) (2)

where the notation IW (�k ; κk ,�k) represents the inverse
Wishart distribution for the variable �k with the degree
of freedom κk , and the symmetric positive definite
matrix �k .

Remark 1 Since the inverse gamma distribution is a
special case of the inverse wishart distribution in one-
dimensional space, the discussed model in this paper is
much more general and thus more information can be uti-
lized for filter design. Interested readers are referred to [30]
and [31] for a detailed introduction.

However, �k is unknown in most cases, which requires
to joint estimate the posterior distribution of the target
state and the measurement noise covariance. Assume that
the dynamic model of the state and the covariance matrix
are independent for any mode rk , that is

p(xk ,�k|xk−1,�k−1, rk) = p(xk|xk−1, rk)p(�k|�k−1, rk)
(3)

The predicted joint distribution of the state and
measurement noise are calculated by the Chapman-
Kolmogorov equation.

p(xk ,�k |rk ,Zk−1) =
∫

p(xk |xk−1, rk)p(�k |�k−1, rk)

× p(xk−1,�k−1|rk ,Zk−1) dxk−1 d�k−1

(4)

When the measurement zk is available, the joint posterior
distribution is given by the Bays rule.

p(xk ,�k |rk ,Zk) = p(Zk |xk ,�k , rk ,Zk−1)p(xk ,�k |rk ,Zk−1)∫
p(Zk |xk ,�k , rk)p(xk ,�k |rk) dxk−1 d�k−1

(5)

where p(Zk|xk ,�k , rk ,Zk−1) denotes the likelihood func-
tion which is related with �k .
Notice that the two main problems need to be solved.

One is the dynamic model of the measurement noise
covariance p(�k|�k−1, rk) is unknown. The other is that
the posterior density is difficult to achieve due to the
involved intractable integrals. To calculate the posterior
density with the unknown noise covariance, the vari-
ational Bayesian approximation method, which uses a
simple free-from distribution to approximate the joint
posterior density, is proposed.

3.2 Variational Bayesian approximation
Assume that the state vector and measurement noise
covariance are independent, and the joint posterior den-
sity can be approximated by a free-form factored distribu-
tion as follows

p(xk ,�k|rk ,Zk) ≈ Qx(xk)Q�(�k) (6)

where the probability densities Qx(xk) and Q�(�k) are
Gaussian distribution and inverse wishart distribution,
respectively. The non-negative KL divergence represents
the measure of the dissimilarity of the approximation and
the true posterior, that can be expressed as

KL
[
Qx(xk)Q�(�k)‖p(xk ,�k|rk ,Zk)

]
=
∫

Qx(xk)Q�(�k) log
Qx(xk)Q�(�k)

p(xk ,�k|rk ,Zk)
dxk d�k

(7)

The optimal approximation of the joint posterior den-
sity can be obtained byminimizing the KL divergence, and
the mean field approximation is used to solve the calcula-
tion problem of multiple hidden variables [29]. The results
are given as

Qx(xk) = N(xk ; x̂k ,Pk) (8)

Q�(�k) =
d∏

u=1
IW

(
σ 2
k−1,u; κ

i
k−1,u,�

i
k−1,u

)
(9)
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4 Model set adaptive diltering algorithm based
on variational Bayesian approximation

In this section, a model set adaptive filtering algorithm
is proposed. The model set adaptive approach is used to
select the best model set for multiple model estimation.
Moreover, the noise statistics and state of each model are
estimated by the model set conditioned estimation based
on variational Bayesian approximation.

4.1 Model-set adaptation
To address the problem of the model uncertainty, IMM-
VB needs a lot of models to improve the algorithm per-
formance. This has two obvious defects [13]. First, the
computation load grows with the increase of the num-
ber of the models. Second, the competition among these
models lead to performance decrease greatly.
To overcome this problem, a MSA algorithm based on

Rényi divergence is proposed. Rényi information diver-
gence is a distance measure between two densities (the
test density f and the reference density f0) [32]. The order
α Rényi information divergence of f and f0 is defined as

Dα(f ‖f0) = − 1
1 − α

ln
∫

f α(x)f 1−α
0 (x) dx (10)

For any order α, the Rényi information divergence takes
on its minimum value if and only f = f0. In our appli-
cation, we wish to compute the divergence between the
true mode sk and candidate model rjk ∈ Mc at the time k.
That is

Dz
(
sk , r

j
k

)
�= D

(
p (zk|sk) ‖p

(
zk|rjk

))
= − 1

1 − α
ln
∫

pα(zk|sk)p1−α
(
zk|rjk

)
dzk

(11)

where p(zk|sk) and p
(
zk|rjk

)
are the probability density

functions of zk conditioned on sk and rjk , respectively. Due
to the true mode sk of the system is unknown at the time
k [16], it is assumed that the best online estimates of
the probability density function of zk for the true mode
sk can be approximated as p(zk|Mk−1, sk ,�sk ,Zk−1) ≈
p(zk|Mk−1,Mk ,�k ,Zk−1).
Let p(zk|sk) = N

(
zk ; z̄sk ,�sk

)
and p

(
zk|rjk

)
=

N
(
zk ; z̄

j
k ,�

j
k

)
be the Gaussian densities with vector

means z̄sk , z̄jk and positive definite covariance matri-
ces �sk , �

j
k . The Rényi information divergence between

p(zk|sk) and p
(
zk|rjk

)
is

Dz
(
sk , r

j
k

)
= − 1/2

1 − α
ln

∣∣∣�j
k

∣∣∣α ∣∣�sk
∣∣1−α

∣∣∣α�
j
k + (1 − α)�sk

∣∣∣
+ α

2
�T

(
α�

j
k + (1 − α)�sk

)−1 �
(12)

where � = z̄sk − z̄jk . These means and covariance matrices
of the Gaussian densities can be calculated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z̄sk = E
[
zk|Mk−1,Mk ,Zk−1

]
�sk = E

[(
zk − z̄sk

) (
zk − z̄sk

)T |Mk−1,Mk ,Zk−1
]

z̄jk = E
[
zk|rjk , xjk|k−1,P

j
k−1

]
�

j
k = E

[(
zk − z̄jk

) (
zk − z̄jk

)T |rjk , xjk|k−1,P
j
k−1

]
(13)

Remark 2 Different selections of the parameter α allow
for different parts of these distributions to be emphasized.
In the limiting case of α → 1 the Rényi information diver-
gence becomes the Kullback-Liebler divergence. The effect
of the order to the Rényi information divergence is detailed
and analyzed in [33–35]. The results show that α = 0.5
emphasizes the tails of the distribution and allows for the
maximum discrimination between two similar distribu-
tions. Therefore, we can obtain a better performance by
choosing α = 0.5 for tracking applications [36, 37].

The optimal model r̂k in the candidate model set Mc

can be selected as the one with the minimum Rényi
information divergence.

r̂k = arg min
rjk∈Mc

Dz
(
sk , r

j
k

)
(14)

Thus, the adapted model set is the basic model set Mb

combine with the model r̂k at the time k.

Mk = Mb
⋃

r̂k (15)

4.2 Model-set conditioned estimation based variational
Bayesian approximation

Suppose that the posterior probability density function of
model i at the time k-1 is described as below

p
(
xk−1,�k−1|rik−1

) = N
(
xk−1; x̂ik−1|k−1,P

i
k−1|k−1

)

×
d∏

u=1
IW

(
σ 2
k−1,u; κ

i
k−1,u,�

i
k−1,u

)
(16)

Note that Eq. (16) can be seen as a product of a
Gaussian distribution and an inverse Wishart distri-
bution. rik−1 means the event that model i matches
the system model in effect at time k − 1, rik−1 ∈
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Mk−1. The notation N
(
xk−1; x̂ik−1|k−1,P

i
k−1|k−1

)
rep-

resents the Gaussian probability density function with
mean x̂ik−1|k−1 and covariance Pik−1|k−1. The notation

IW
(
σ 2
k−1,u; κ

i
k−1,u,�

i
k−1,u

)
represents an inverse Wishart

distribution with parameters κ i
k−1,u and �i

k−1,u. By using
the total probability theorem, one has

p(xk ,�k|Zk) =
Mk−1∑
j=1

p
(
xk ,�k|rjk ,Zk

)
p
(
rjk|Zk

)
(17)

In themodel set conditional reinitialization stage, the joint
probability density function is described as

p
(
xk−1,�k−1|rjk ,Zk−1

)

=
Mk−1∑
i=1

p
(
xk−1,�k−1|rik−1,Zk−1

)
p
(
rik−1|rjk ,Mk−1

)

=
Mk−1∑
i=1

μ
i|j
k−1N

(
xk−1; x̂ik−1|k−1,P

i
k−1|k−1

)
d∏

u=1
IW

(
σ 2
k−1,u; κ

i
k−1,u,�

i
k−1,u

)
(18)

where μ
i|j
k−1 denotes the conditional probability that

model j transfers tomodel i at the time k. It is calculated by

μ
i|j
k−1 =

p
(
rjk|rik−1

)
p
(
rik−1|Zk−1

)
p
(
rjk|Zk−1

) = πijμ
i
k−1

μ̂
j
k|k−1

(19)

where μ̂
j
k|k−1 is the normalization coefficient. Based on

the model set Mk , the output of each filter is merged in
the fusion stage [13]. Therefore, we aim to approximate
the sum term in (18) by a single one, that is

p
(
xk−1,�k−1|rjk

)
= N

(
xk−1; x̂

0j
k−1|k−1,P

0j
k−1|k−1

)

×
d∏

u=1
IW

(
σ
0j
k−1,u; κ

0j
k−1,u,�

0j
k−1,u

)
(20)

where x̂0jk−1|k−1 and P0jk−1|k−1 are mixed state and covari-
ance matrix of the model j, respectively.

x̂0jk−1|k−1 =
Mk−1∑
i=1

μ
i|j
k−1x̂

i
k−1|k−1 (21)

P0jk−1|k−1 =
Mk−1∑
i=1

μ
i|j
k−1P

i
k−1|k−1

+
Mk−1∑
i=1

μ
i|j
k−1

(
x̂ik−1|k−1 − x̂0jk−1|k−1

)
(·)T

(22)

On the basis of the moment matching theory [26], the first
and second moments of the variable σ

0j
k−1,u in (20) can be

obtained as follows

E
[
σ
0j
k−1,u

]
= �

0j
k−1,u

κ
0j
k−1,u − d − 1

(23)

Var
[
σ
0j
k−1,u

]
=

2
(
�

0j
k−1,u

)2
(
κ
0j
k−1,u − d − 1

)2 (
κ
0j
k−1,u − d − 3

)
(24)

The mean and variance of the inverse Wishart sum distri-
bution in (18) are given by

E
[
σ i
k−1,u

] =
Mk−1∑
i=1

μ
i|j
k−1

�i
k−1,u

κ i
k−1,u − d − 1

(25)

Var
[
σ i
k−1,u

] =
Mk−1∑
i=1

μ
i|j
k−1

2
(
�i

k−1,u

)2
(
κ i
k−1,u − d − 1

)2 (
κ i
k−1,u − d − 3

)

+
Mk−1∑
i=1

μ
i|j
k−1

�i
k−1,u

κ i
k−1,u − d − 1

− E
[
σ i
k−1,u

]2
(26)

By solving Eqs. (23) and (24), the parameters κ
0j
k−1,u and

�
0j
k−1,u are calculated as follows

κ
0j
k−1,u =

2
(
E
[
σ i
k−1,u

])2
Var

[
σ i
k−1,u

] + d + 3 (27)

�
0j
k−1,u =

⎛
⎜⎝2

(
E
[
σ i
k−1,u

])2
Var

[
σ i
k−1,u

] + 2

⎞
⎟⎠E

[
σ i
k−1,u

]
(28)

Remark 3 In the proposed algorithm, the key feature
is that the Gaussian sum distribution for the estimated
state is approximated by a single Gaussian distribution.
Similarly, the inverse Wishart sum distribution for the
measurement noise covariance matrix�k is approximated
by a single inverse Wishart distribution by matching the
first and second moments.
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Then, the mixed target state and measurement noise
covariance are taken as the filter input. The predict den-
sity is computed from Eq. (3).

p
(
xk ,�k |rjk ,Zk−1

)
=
∫

p
(
xk |xk−1, r

j
k

)
p
(
�k |�k−1, r

j
k

)
p
(
xk−1,�k−1|rjk ,Zk−1

)
dxk−1d�k−1

= N
(
xk ; x̂

j
k|k−1,P

j
k|k−1

) d∏
u=1

IW
(
σ 2
k−1,u; κ

j−
k−1,u,�

j−
k−1,u

)

(29)

where, taking account into the time variation of the
parameters, a forgetting factor ρ is introduced, ρ ∈ (0, 1].
Note that the closer ρ is to 0, the more instability the
parameters will be in terms of time-fluctuations [38]. The
system state, covariance matrix, and the parameters of the
inverse wishart distribution are predicted by

x̂jk|k−1 = Fj
k−1x

0j
k−1|k−1 (30)

Pjk|k−1 = Fj
k−1P

0j
k−1|k−1(F

j
k−1)

T + Qj
k−1 (31)

κ
j−
k−1,u = ρκ

0j
k−1,u (32)

�
j−
k−1,u = ρ�

0j
k−1,u (33)

After receiving the measurement zk , VB approximation
method can be used to obtain a free-form factored
approximate distribution for p

(
xk ,�k|rjk ,Zk

)
[38], the

analytical expression of the joint posterior probability
density function is given by

p
(
xk ,�k|rjk ,Zk

)
∝ p

(
zk|xk ,�k , r

j
k

)
p
(
xk−1,�k−1|rjk ,Zk

)
= N

(
zk ;H

j
kx

j
k|k−1,�k

)
N
(
xjk ; x̂

j
k|k−1,P

j
k|k−1

)
d∏

u=1
IW

(
σ 2
k−1,u; κ

j−
k−1,u,�

j−
k−1,u

)
(34)

To calculate the distributions of state and measurement
noise covariance of the ith model, VB assumes that the
joint posterior distribution in (34) can be factorized as the
product of q

(
xjk
)
and q

(
�

j
k

)
. The logarithm of q

(
xjk
)

can be computed by fixing the q
(
�

j
k

)
.

log
(
q
(
xjk
))

∝ −1
2

(
zk − Hj

kx̂
j
k|k−1

)T(
�

j
k

)−1 (
zk − Hj

kx̂
j
k|k−1

)
− 1

2

(
xjk − x̂jk|k−1

)T(
Pjk|k−1

)−1 (
xjk − x̂jk|k−1

)
(35)

Through the simplified formula, p
(
xk−1,�k−1|rjk ,Zk

)
is

approximated by

q
(
xjk
)

= N
(
xjk ; x̂

j
k|k−1,P

j
k

)
(36)

The mean and covariance of the Gaussian distribution
are derived by the VB approximation as follows

x̂jk|k = x̂jk|k−1

+ Pjk|k−1H
j
k

(
�

j
k +

(
Hj
k

)T(
Pjk|k−1

)−1
Hj
k

)−1 (
zk − Hj

kx̂
j
k|k−1

)
(37)

Pjk =
((

Pjk|k−1

)−1 +
(
Hj
k

)T(
�

j
k

)−1
Hj
k

)−1
(38)

Similarly, the logarithm of q
(
�

j
k

)
can be calculated by

keeping q
(
xjk
)
fixed such as

log
(
q
(
�

j
k

))
∝ −κ + d + 2

2
log

(
�

j
k

)
+
(
Hj
k

)T
PjkH

j
k�

−1
k

− 1
2
tr
(

�
j
k +

(
zk − Hj

kx̂
j
k|k−1

)T (
zk − Hj

kx̂
j
k|k−1

))
(39)

Here, q
(
�

j
k

)
is approximated as

q
(
�

j
k

)
= IW

(
σ 2
k,u; κ

j
k,u,�

j
k,u

)
(40)

where

κ
j
k,u = κ

j−
k−1,u + d

2
(41)

�
j
k,u = �

j−
k−1,u +

(
zk − Hj

kx̂
j
k|k
)2
u

+
((

Hj
k

)T
PjkH

j
k

)
uu

(42)

where u = 1, 2 . . . d, and

�̂
j
k = diag

(
�

j
k,1

κ
j
k,1 − d − 1

, . . . ,
�

j
k,d

κ
j
k,d − d − 1

)

Note that Eqs. (37), (38), (41), and (42) are coupled. The
fixed-point algorithm is used to proceeded alternatively
the state and noise parameters until the convergence is
reached. It has been proved that VB converge very fast and
most of the time, only a few iterations in [17].
By using the Bayes rule, the probability of each model is

updated

μ
j
k = p

(
rjk|Mk ,Zk

)
=

p
(
rjk|zk

)
p
(
zk|rik , zk−1

)
p(zk|zk−1)

= μ̂
j
k−1L

j
k∑Mk

i=1 μ̂i
k−1L

i
k

(43)
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Here, the likelihood function Ljk of model j is calculated

Ljk = p
(
zk|rjk ,Mk−1,Zk−1

)
= N

(
zk ;H

j
kx̂

j
k|k−1,

(
Hj
k

)T
PjkH

j
k + �̂

j
k

) (44)

Finally, based on the mixed equation, the state and the
covariance in the fusion stage are shown as

x̂k|k = E [xk|Mk , zk] =
Mk∑
j=1

μ
j
k x̂

j
k (45)

Pk|k = E
[(
xk − x̂k|k

) (
xk − x̂k|k

)T |Mk , zk
]

=
Mk∑
j=1

μ
j
k

(
Pjk +

(
x̂k|k − x̂jk

) (
x̂k|k − x̂jk

)T) (46)

The computational complexity of the model set adaptive
filter is O

(
ln3
)
, where n is the dimension of the state

and l is the number of the model set adaptive filter. The
estimation of the measurement noise in VB step involves
the following parameters: O(ld + l) for the posteriors of
the means, and O

(
ld2 + l

)
for the posteriors of preci-

sion, where d is the dimension of the measurement. So
the computational complexity of the proposed algorithm
is O

(
Nt
[
ln3 + l + ld + l + ld2

]) = O
(
Nt
[
ln3 + ld2

])
,

where Nt is the total number of VB iterations. A descrip-
tion of the proposed algorithm is summarized in the
following:

Algorithm 1 The MSA-VB algorithm
Input: Measurement data zk , the basic model setMb, the

candidate model set for activation Mc, process noise
covariance Q, prior variational parameters κ0,u and
�0,u, state prior parameters x0, P0, and the number of
VB fixed-point iterations Nt

Output: System state xk , measurement noise covariance
parameters κk,u, �k,u

1: Initialize the posterior variational parameters
2: for k = 1 : N do
3: if k = 1 then
4: Mk = Mb, the system state xk is estimated by

the MSA-VB based onMk .
5: else
6: Calculate the Rényi information divergence

Eq. (12) for r̂k ∈ Mc. The optimal model r̂k−1 is
replaced with the optimal model at the time k. The
system state xk is estimated by using the MSA-VB
based on the new model setMk .

7: end if
8: end for

5 Simulation results
In this section, numerical simulations are carried out in
order to compare the performance of the five algorithms:
IMM3 (3 basic models), IMM11 (3 basic models and 8 CT
models), IMM3-VB (3 basic models), IMM11-VB (3 basic
models and 8 CT models), and MSA-VB (3 basic models
and 8 CT models as the candidate models) with unknown
measurement noise and system model. The reference sys-
tem dynamic can be described by the following state space
model

xk+1 =

⎡
⎢⎢⎢⎢⎢⎣
1

sin(ωt)
ω

0
cos(ωt) − 1

ω
0 cos(ωt) 0 − sin(ωt)

0
1 − cos(ωt)

ω
1

sin(ωt)
ω

0 sin(ωt) 0 cos(ωt)

⎤
⎥⎥⎥⎥⎥⎦ xk + wk

(47)

where xk = [
φk φ̇k ϕk ϕ̇k

]T , φk and φ̇k are the tar-
get position and velocity in the X-directions, respectively.
ϕk and ϕ̇k are the target position and velocity in the Y -
directions, respectively. ω denotes the turn rate. t is the
sampling time, and t = 1s. The root mean square error
(RMSE) of position and velocity are used to evaluate the
performance of the proposed algorithm.
For the proposed algorithm, the system state is esti-

mated based on the model set with the basic model set
Mb and the candidate model set Mc. The number of
Mb and Mc are 3 and 8, respectively. Those models in
the model set are constant turn (CT) models [1]. These
models differ only in the turn rate ωi, which belongs to
the basic model set Mb that consists of the initial mod-
els of the IMM algorithm and the candidate model set
Mc that consists of these models with different structures
compared with the basic models.

5.1 Experiment 1
In this case, a single target moves in a 2-D scenario
with [−100, 100]m×[−100, 100]m surveillance region.
The turn rate in different time periods is shown in Table 1.
The measurement equation is expressed as

zk =
[
1 0 0 0
0 0 1 0

]
xk + vk (48)

Table 1 The turn rate in different time periods

Time periods (s) ω (rad/s)

1–50 1e− 5

51–100 0.0116

101–140 1e− 5

141–200 − 0.0116

201–225 0.0314

226–250 − 0.0314
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Fig. 1 RMSEs in X position of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 1

Fig. 2 RMSEs in Y position of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 1
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Fig. 3 RMSEs in X Velocity of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 1

Fig. 4 RMSEs in Y Velocity of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 1
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Fig. 5 RMSEs in position with different values of the forgetting factor

where measurement noise vk is the zero-mean Gaussian
distribution with the unknown covariance matrix �k . The
initial degree of freedom and symmetric positive definite
matrix are κ0,i = 5(i = 1, 2), �0 = diag{20, 20}. The turn
rates ωi, ωj belong to the following set

ωi ∈ (−6.67 × 10−4, 0, 6.67 × 10−4) ωi ∈ Mb

ωj ∈ π × 10−3 × (±4.2,±5.6,±8.3,±16.7) ωj ∈ Mc

The transition probability matrix (TPM) of the IMM11
�11 = (π11

i,j )11×11 is extended from the TPM of the basic
models set. The TPM �3

b = (π3
i,j)3×3 is shown as

�3
b =

⎡
⎣ 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎤
⎦ (49)

π11
i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
π3
i,j − a i = j

π3
i,j i �= j i ≤ 3, j ≤ 3

a/8 i ≤ 3, j > 3
1 − 10b i = j i > 3
b i �= j i > 3

(50)

where i, j = 1, . . . , 11, and a = b = 0.01.
As can be seen from the RMSEs of position in Figs. 1

and 2. The RMSE of MSA-VB is lower than that of IMM3-
VB. Note that the IMM3 and IMM11 perform a bit better
than the IMM3-VB, IMM11-VB, and MSA-VB at the
beginning (t < 25). The reason for this is VB eliminates

the error between initial noise variance and true noise
variance by using the iterative computation. The RMSEs
of velocity in Figs. 3 and 4. From these figures it can
be observed that the RMSEs of velocity of the IMM11-
VB, MSA-VB outperform that of the IMM3, IMM11, and
IMM3-VB. During the maneuver, MSA also outperforms
the other four algorithms.
In [29] and [23], the forgetting factor ρ is chosen empir-

ically. The average RMSEs of the state versus different
value of ρ are shown in Fig. 5. Simulation results show that
the proposed algorithm performs better when ρ = 0.92.
The RMSEs of the five algorithms are given in Table 2

with different measurement noise variance parameters.
The variance parameters are chosen as 5, 10, 20, and 50,
respectively. From Table 2, with increasing levels of noise
variance parameters, the proposed algorithm and the

Table 2 Average RMSEs in position with different measurement
noise variance parameters for the Experiment 1

Measurement noise variance parameters

Methods 5 10 20 50

MSA-VB 12.5276 21.0012 34.4979 59.5699

IMM3-VB 14.7016 22.8626 39.6366 70.3219

IMM11-VB 13.3429 19.2559 36.3398 63.2457

IMM3 95.3203 96.4174 98.8328 107.2918

IMM11 47.6672 48.2740 52.5462 63.7677
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Table 3 Relative computational times for the Experiment 1

IMM3 IMM11 IMM3-VB IMM11-VB MSA-VB

1 4.544 4.507 16.992 5.558

IMM11-VB have smaller RMSEs among these algorithms
for all measurement noise variance parameters. Com-
pared with the IMM3, IMM3-VB, IMM11, and IMM11-
VB, the average RMSEs of the IMM3 and IMM3-VB are
larger than that of the IMM11 and IMM11-VB. That is
because more models are adapted for maneuvering target
tracking. Due to VB effectively estimating the noise vari-
ance parameters, the average RMSEs of the IMM3-VB and
IMM11-VB is smaller than that of the IMM3 and IMM11,
respectively.
The comparison of relative computational times are

shown in Table 3. The CPU time needed for IMM11-VB
is three times the CPU time of MSA-VB.

5.2 Experiment 2
In this scenario, a bearings-only tracking (BOT) problem
is considered. The target located at coordinate [ 0, 0]m.
The initial position of observation platform is [500m,
20m/s, 800m, 10m/s]. First, the observation platform
moves in constant velocity (CV) model for 100 s, then
moves in CT model with duration 50 s and the turn rate
ω = −0.0232(rad/s), and finally moves in CV model for
100 s. The measurement model at the time k is

ϑk = tan−1
(

φo
k − φt

k
ϕo
k − ϕt

k

)
+ vk (51)

The turn rates of the basic model set Mb and the
candidate model setMc are

ωi ∈ π × 10−3 × (−1, 0, 1) ωi ∈ Mb

ωj ∈ π × 10−4 × (±0.5,±0.667,±1,±2) ωj ∈ Mc

The TPMs are shown in Eqs. (49) and (50).
The RMSEs of X and Y position and velocity over 200

Monte Carlo runs are shown in Figs. 6, 7, 8 and 9, respec-
tively. It can be observed that the proposed algorithm
performs a bit better than the other four algorithms, and
the RMSEs of IMM11 and IMM11-VB become larger
around the time steps where the true measurement noise
variances are jump changes. As can be seen from Fig. 7,
the RMSE of IMM11 is shocked in the noise varying pro-
cess. The reason is that the number of dimensions of
measurement vector is lower than that of state vector.
The result of variance estimation is shown in the Fig. 10.
We can see that the proposed algorithm is effective in
the estimation of the measurement noise statistics with
some penalty of time delay. This is because the old noise
value will be contained in part from the prior time step
to the next time step. The RMSEs of the five algorithms
are given in Table 4 with different measurement noise

Fig. 6 RMSEs in X position of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 2
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Fig. 7 RMSEs in Y position of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 2

Fig. 8 RMSEs in X velocity of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 2
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Fig. 9 RMSEs in Y velocity of the proposed algorithm, IMM3, IMM11, IMM3-VB, and IMM11-VB in scenario 2

Fig. 10 Estimation result of �k
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Table 4 Average RMSEs in position with different measurement
noise variance parameters for the experiment 2

Measurement noise variance parameters

Methods 0.0001 0.0005 0.001 0.01

MSA-VB 77.8138 108.6454 236.6716 341.4275

IMM3-VB 135.4686 241.3172 288.0869 391.6982

IMM11-VB 126.4245 192.4053 272.2413 369.2875

IMM3 288.3541 290.9831 353.0082 421.0007

IMM11 350.9934 371.9373 424.6710 465.0060

variance parameters. The variance parameters are cho-
sen as 0.0001, 0.0005, 0.001, and 0.01, respectively. It can
be seen from Table 4 that the average RMSEs increase as
the noise variance parameters increase. Compared to the
IMM3, IMM3-VB, IMM11, and IMM11-VB, the proposed
algorithm has higher tracking accuracy.
The comparison of relative computational times are

shown in Table 5. The CPU time of the IMM3 denotes a
unit. It is obvious that MSA-VB needs less computational
time than IMM11-VB.

6 Discussion
We have shown that the proposed algorithm can mit-
igates the effects of system model and noise statistics
uncertainties in the target track system. We found that
the proposed algorithm can effectively estimate the tar-
get state, as demonstrated in the numerical simulations.
The estimation accuracy was examined by comparing
the proposed algorithm, the IMM-VB and IMM meth-
ods. The average RMSEs of the positions and velocities
of the proposed algorithm are smaller than that of the
other algorithms. Our results show an improved estima-
tion and tracking performance compared to the IMM-VB
and IMMmethods. In addition, we found that the compu-
tational complexity of the proposed method is relatively
higher than the IMM3-VB and IMMmethods. The reason
is that most of its computational time is spent on recon-
structing the adapted model set and calculating the noise
parameters by using the VB method. It should be noted
that this study concentrates on only the single sensor tar-
get tracking with measurement noise uncertainty. Hence,
we currently focus on extending it to multi-sensor target
tracking with unknown measurement and process noise.

7 Conclusions
In this paper, we present an adaptively robust filter to
address the performance degradation of the IMM-VB in

Table 5 Relative computational times for the experiment 2

IMM3 IMM11 IMM3-VB IMM11-VB MSA-VB

1 4.312 2.062 7.562 5.375

the presence of system model and noise statistics uncer-
tainties. The main contribution of this paper is that
a MSA method is designed to choose the best match
model by calculating the divergence between the candi-
date models and true mode. Based on the chosen model,
the model-conditioned estimation based on variational
Bayesian approximation is proposed to estimate the sys-
tem state and noise parameters. The performance of the
MSA-VB is evaluated over the different target tracking
scenes. The RMSE for the positions and velocities are pre-
sented which shows higher accuracy compared with the
IMM-VB and IMMmethods.
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