
EURASIP Journal on Advances
in Signal Processing

Laaziri et al. EURASIP Journal on Advances in Signal
Processing         (2020) 2020:15 
https://doi.org/10.1186/s13634-020-00671-w

RESEARCH Open Access

Regularized supervised Bayesian
approach for image deconvolution with
regularization parameter estimation
Bouchra Laaziri*, Said Raghay and Abdelilah Hakim

Abstract

Image deconvolution consists in restoring a blurred and noisy image knowing its point spread function (PSF). This
inverse problem is ill-posed and needs prior information to obtain a satisfactory solution. Bayesian inference approach
with appropriate prior on the image, in particular with a Gaussian prior, has been used successfully. Supervised
Bayesian approach with maximum a posteriori (MAP) estimation, a method that has been considered recently, is
unstable and suffers from serious ringing artifacts in many applications. To overcome these drawbacks, we propose a
regularized version where we minimize an energy functional combined by the mean square error with H1

regularization term, and we consider the generalized cross validation (GCV) method, a widely used and very
successful predictive approach, for choosing the smoothing parameter. Theoretically, we study the convergence
behavior of the method and we give numerical tests to show its effectiveness.
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1 Introduction
Images are indispensable in science and everyday life. Mir-
roring the capabilities of our human visual system, it is
natural to display observations of the world in graphical
form. Images are obtained in areas ranging from every-
day photography to astronomy, medical imaging, remote
sensing, andmicroscopy. In each case, there is an underly-
ing object we wish to observe, which is the original or true
image. Indeed, this true image is the ideal representation
of the observed scene.
Yet, the observation process is never ideal: there is

uncertainty in the measurements, such as blur, noise, and
other types of degradation. Image restoration aims to
recover an estimate of the true image from the degraded
observations. The key to being able to solve this prob-
lem is proper incorporation of prior knowledge about the
original image into the restoration process.
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Classical image restoration seeks an estimate of the true
image f (x, y) when the point spread function (PSF) h(x, y)
is known a priori, so it is assumed that the observed image
g(x, y) is the output of a linear spatially invariant system

g(x, y) = h(x, y) ∗ f (x, y) + ε(x, y), (1)

where * represents the convolution operation and ε(x, y)
the errors. Therefore, it becomes a non-blind deconvolu-
tion problem.
The discretized version of model (1) is given by

g = Hf + ε, (2)

where H represents the 2D convolution matrix obtained
from the PSF of the imaging system. For more details on
this discretization refer to the paper [1].
Image deconvolution is an ill-posed problem. The solu-

tion may not depend continuously on the data, may not
be unique, or it may not even exist, this means that, in
practice, the data g alone is not sufficient to define a
unique and satisfactory solution. Practical approaches as
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regularization theory and Bayesian inversion have been
successful for this task [2–8].
The earliest classical methods for non-blind image

deconvolution include the Wiener filter [9, 10] and the
Richardson-Lucy algorithm [11, 12]. The Wiener filter
works in the frequency domain, attempting to minimize
the impact of deconvolved noise at frequencies. It has
widespread use as the frequency spectrum of most visual
images is fairly well behaved and may be estimated easily.
It is simple and effective for some special images. How-
ever, it is not stable, has serious ringing artifacts in many
applications, and its restoration quality is still limited
(results often too blurred in the case of gaussian blurred
images in which the kernel is dense).
The Richardson-Lucy algorithm maximizes the likeli-

hood that the resulting image, when convolved with the
PSF, is an instance of the blurred image, assuming Poisson
noise statistics. A key limitation of this iterative method
is the considerable computation it takes to obtain a (visu-
ally) stable solution due to the low convergence speed of
this type of algorithm.
Also, increasing the number of iterations not only slows

down the computational process but also magnifies noise
and introduces waves near sharp edges.
Another popular regularization method for denoising

and deblurring is the total variation (TV) method. It
was introduced to image denoising by Rudin, Osher, and
Fatemi [13] and then applied to deconvolution by Rudin
and Osher [14]. It preserves edges well but has sometimes
undesirable staircase effect, namely, the transformation of
smooth regions into piecewise constant regions (stairs),
which implied that the finer details in the original image
may not be recovered satisfactorily.
Based on the spirit of TV regularization and bilateral fil-

tering, Elad et al. [15, 16] proposed a bilateral TV (BTV)
as a new regularization term that is computationally cheap
to implement and preserves edges. This term is more
robust to noise and can preserve more details, but it tends
to remove texture, create flat intensity regions, and new
contours that lead to cartoon-like images.
As well as this regularization theory, the supervised

Bayesian approach is a method that has been used suc-
cessfully [17–22]. In order to increase stability and over-
come some limitations of this method (ringing effect),
we propose a novel regularized version for image decon-
volution. We consider H1 regularization term incorpo-
rating the non-negative constraint of the restored image
and the well-known generalized cross validation (GCV)
method for choosing suitable regularization parame-
ters. Experiments show that the proposed approach is
superior to the Wiener filter, the Richardson-Lucy algo-
rithm, the TV method, and the BTV approach, widely
used in literature, in terms of restoration quality and
stability.

The remaining of this article is organized as follows. In
Section 2, we review the supervised Bayesian approach
and then propose our deconvolution variational model.
We give the experimental tests and discuss the obtained
results in Section 3. The Section 4 concludes the paper.

2 Methods
2.1 Bayesian approach
From this point, the main objective is to infer on f given
the forward model (2). In the classical reconstruction
problems with the known blur kernel h, we mean to use
the Bayes rule:

p(f |g) = p(g|f )p(f )
p(g)

∝ p(g|f )p(f ) (3)

to obtain what is called the posterior law p(f |g) from the
likelihood p(g|f ) and the prior p(f ), and we can infer on f
using this law.

2.1.1 Bayesian estimationwith simple prior
The Bayesian inference approach is based on the posterior
law:

p(f |g, θ1, θ2) = p(g|f , θ1)p(f |θ2)
p(g|θ1, θ2) ∝ p(g|f , θ1)p(f |θ2)

(4)

where the term p(g|f , θ1) is the likelihood, p(f |θ2) is the
prior model, θ = (θ1, θ2) are their corresponding param-
eters (often called the hyper-parameters of the problem)
and p(g|θ1, θ2) is called the evidence of the model. This
relation is showed in the following scheme:

2.1.2 Assigning the likelihood p(g|f) and the prior p(f)
We consider the forward model (2) and suppose that we
have some prior knowledge about the error term ε. In fact,
if we can assign a probability law p(ε), then we can deduce
the likelihood term p(g|f ).
To account for possible non-stationarity of the noise, we

propose to use

p(ε|vε) = N (ε|0,Vε) with Vε = Dg(vε), (5)

where vε =[ vε1 , · · · , vεM ]T contains the unknown vari-
ances of the non-stationary noise and Dg is a diagonal
matrix whose entries are the M elements of vector vε .
From this, we can define the expression of the likeli-

hood:

p(g|f , vε) = N (g|Hf ,Vε). (6)
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To be able to estimate the unknown variances, we assign
an Inverse Gamma conjugate prior on vεi :

p(vε) =
∏

i
p(vεi) with p(vεi) = IG(vεi |αεi ,βεi),∀i,

(7)

where αεi and βεi are two positive parameters. The shape
parameter αεi controls the height of the probability den-
sity function of the Inverse Gamma distribution, and the
scale parameter βεi controls the spread [23].
The next step is to assign a prior to the unknown f. Here

too, different approaches can be used, we may have some
prior information such as the mean and the variance of
the unknown quantity. The objective is to assign a prior
law p(f |θ2) in such a way to translate our incomplete prior
knowledge on f.
We propose

p(f |vf ) = N (f |0,Vf ) with Vf = Dg(vf ). (8)

We also assign an Inverse Gamma conjugate prior on vfj :

p(vf ) =
∏

j
p(vfj) with p(vfj) = IG(vfj |αfj ,βfj),∀j. (9)

2.1.3 Supervised Bayesian approach
We consider ε, vε and vf are known. We can define the
expression of the likelihood as

p(g|f , vε) = N (g|Hf , vεI). (10)

We propose the prior for f :

p(f |vf ) = N (f |0, vf I), (11)

with the supposes of the parameters and hyper-
parameters, the joint posterior of all the unknowns
becomes

p(f |g, vε , vf ) ∝ p(g|f , vε)p(f |vf ) (12)

We can obtain the estimate of f as below:

f̂ = argmax
f

{
p(f |g, vε , vf )

}

= argmax
f

{
exp(− 1

2vε

‖ g − Hf ‖22)exp(−
1
2vf

‖ f ‖22)
}

= argmin
f

{
1
2vε

‖ g − Hf ‖22 + 1
2vf

‖ f ‖22
}
. (13)

So the criterion to be optimized is a quadratic one:

J(f ) = 1
2vε

‖ g − Hf ‖22 + 1
2vf

‖ f ‖22
∝ ‖ g − Hf ‖22 +λf ‖ f ‖22 (14)

where λf = vε
vf . If we work it out directly, this criterion has

a solution:

f̂ = (HTH + λf I)−1HTg (15)

Using the singular value decomposition (SVD) of H by
assuming H, the Fourier transform of H, to be circular
bloc-circulant (CBC), it can be shown that f̂ in (15) can
be computed using the Fourier transform. The result is
comparable to the Wiener filter:

F̂ = HG
HH + λf

, (16)

where F and G denote the Fourier transforms of f and g,
respectively.

2.2 The proposedmethod
In the situation where ε, vε and vf are known, we can
use the MAP estimation. As mentioned, this estimation
is unstable and suffers from serious ringing artifacts.
To overcome these drawbacks, we propose a regularized
MAP method where we minimize an energy functional
combined by the mean square error with H1 regulariza-
tion term:

argmin
f

{‖ g − Hf ‖22 +λf ‖ f ‖22 +λ ‖ ∇f ‖22
}
, (17)

where ∇ = (∇h,∇v) is the gradient operator combined by
difference operators along horizontal and vertical direc-
tions. The last two terms are regularization terms which
ask that f should be smooth in H1 sense.
The staircase effect is partly due to the fact that

the used norms are not biased against discontinuous
nor continuous functions (e.g., TV-norm). The term ‖
∇f ‖22 has a strong bias against discontinuous func-
tions, so this model substantially reduces the staircase
effect and recover the smooth region’s value in the
image.
We use the Neumann boundary condition, a natural

choice in image processing [24], to discretize the gradi-
ent by a finite difference scheme. This type of boundary
condition requires that λf �= 0 in the aim to prove the
coercivity of the proposed functional in the space H1(�),
� is a bounded Lipschitz domain in R

2, and then the
existence of a solution of the minimization problem (17).
Numerically, this choice avoids remarkably the apparition
of a blurring effect in the resulting images instead of fix-
ing λf at 0, using an empirical reduction rule to set it from
large to small. We will give more details on this in the next
section.
Solving the problem using Fourier properties results in

a simple algorithm, that is easier to implement and takes a
very short time to converge.

2.2.1 The convergence behavior
Let E be a Banach space, F : E −→ R, and consider the
minimization problem

inf
u∈E

F(u) (18)
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Theorem 1 Let E be a reflexive Banach space and F :
E −→ R a sequentially weakly lower semi-continuous and
coercive function, then the problem (18) has a solution.
Furthermore, if F is strictly convex, then this solution is
unique.

Proof Proving the existence of a solution of problem (18)
is usually achieved by the following steps, which constitute
the direct method of the calculus of variations:

• Step 1: One constructs a minimizing sequence un ∈ E,
i.e., a sequence satisfying lim

n−→+∞ F(un) = inf
u∈E

F(u).

• Step 2: F is coercive
(

lim‖u‖E−→+∞ F(u) = +∞
)
, one

can obtain a uniform bound ‖ un ‖E≤ C, C > 0. E is
reflexive, then by the theorem of weak sequential
compactness [25] one deduces the existence of
u0 ∈ E and of a subsequence denoted also as (un)n
such that un ⇀

E
u0.

• Step 3: F is sequentially weakly lower
semi-continuous (for all sequence xn ⇀

E
x we have

lim
xn⇀x

F(xn) ≥ F(x)), so lim
un⇀u0

F(un) ≥ F(u0), which

obviously implies that F(u0) = inf
u∈E

F(u).

F is strictly convex (F(λx+(1−λ)y) < λF(x)+(1−λ)F(y),
for all x �= y ∈ E and λ ∈ ]0; 1[); therefore, the minimum
is unique.

So, we have

F : H1(�) → R

f 
→ ‖ g − Hf ‖22 +λf ‖ f ‖22 +λ ‖ ∇f ‖22
(19)

Existence:
•H1(�) is a Hilbert Banach reflexive space.
•F is coercive :

F(f ) ≥ λf ‖ f ‖22 +λ ‖ ∇f ‖22
≥ min(λf , λ)(‖ f ‖22 + ‖ ∇f ‖22)
≥ α ‖ f ‖2H1 , (20)

where α = min(λf , λ) > 0.
•F is sequentially weakly lower semi-continuous.
Let fn −→ f in H1, then ‖ fn ‖22−→‖ f ‖22 and

‖ ∇fn ‖22−→‖ ∇f ‖22.
Furthermore, g −Hf n = g −H(fn − f )−Hf , as fn −→ f

in H1, fn − f −→ 0 in H1 =⇒ g − Hf n −→ g − Hf in H1,
finally ‖ g − Hf n ‖22−→‖ g − Hf ‖22.
So, the problem admits a solution.
Uniqueness:

The function F is strictly convex, then the solution is
unique.

In the Fourier domain, our model (17) is equivalent to

argmin
F

{‖ G − HF ‖22 +λf ‖ F ‖22 +λ ‖ DF ‖22
}
,

(21)

whereD = (Dh,Dv) denotes the Fourier transform of ∇ =
(∇h,∇v), and

‖ DF ‖22=‖ DhF ‖22 + ‖ DvF ‖22 . (22)

By taking the Wirtinger derivative of functional in (21)
with respect to F and setting the result to be 0, we get the
optimal condition of F as follows:

−HG + |H|2F + λfF + λ|D|2F = 0, (23)

where |D|2 = |Dh|2 + |Dv|2. The above equality gives the
solution of F

F̂ = HG
|H|2 + λf + λ|D|2 (24)

We use the inverse Fourier transform to get the estima-
tion.

2.2.2 A parameter selectionmethod for H1 regularization
We now consider a parameter choice method. An appro-
priate selection of the regularization parameters λf and λ

is important in the regularization. The well-known meth-
ods for this purpose are the L-curve [26] and the GCV
method [27, 28]; here, we consider the GCV one. It is
a widely used and very successful predictive method for
choosing the smoothing parameter. The basic idea is that,
if one datum point is dropped, then a good value of
the regularization parameter should predict the missing
datum value fairly well. In our case, the regularization
parameter λf is first selected by the empirical reduction
rule, then λ is chosen to minimize the GCV function

GCV(λ) =
‖

(
I − HH−1

λ HT
)
g ‖22

[
tr

(
I − HH−1

λ HT
)]2 , (25)

where Hλ = HTH + λf I + λDTD. This function can be
simplified using the Generalized Singular Value Decom-
positions (GSVD) [29] of the pair (H,D). Thus, there exist
orthonormal matrices U ,V and invertible matrix X such
that

UTHX = C = Dg(c1, ..., cN ), ci ≥ 0, (26)

VTDX = S = Dg(s1, ..., sN ), si ≥ 0, (27)
where N = mn. Therefore, the GCV function when used
with this regularization can be simplified to

GCV (λ) =
∑N

i=1
(
s2i g̃i/

(
c2i + λs2i + λf

))2
(∑N

i=1 s2i /
(
c2i + λs2i + λf

))2 , (28)
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with g̃ = UTg. For the particular case where the matrix
D reduces to the identity I, the GSVD of the pair (H, I)
reduces to the SVD of the matrixH and the expression of
GCV is given by the following formula

GCV(λ) =
∑N

i=1(g̃i/(σ 2
i + λ + λf ))

2

(
∑N

i=1 1/(σ 2
i + λ + λf ))2

, (29)

where σi is the ith singular value of the matrixH.
GCV (λ) in this case is a continuous function, so we

use the MATLAB function fminbnd, which is based on a
combination of golden section search and quadratic inter-
polation search, to find the value of λ at which GCV (λ) is
minimized.
Beginning with an initial image, the following sequence

defines our algorithm:

Algorithm 1MAP-H1 in Fourier domain
Compute the regularization operator D = (Dh,Dv).
1. Fourier transform of g to obtain G.
2. Fourier transform of h to obtainH.
3. Estimate the regularization parameter λf to calculate λ

using (28).
4. Compute F̂ using (24).
5. Inverse Fourier transform of F̂ to obtain f̂ .

3 Results and discussion
This section presents a culmination of all the numer-
ical tests we performed of the proposed approach for
solving image deconvolution problem, and compares it
with the Wiener filter, the Richardson-Lucy deconvolu-
tion [30], the TV approach, and the BTV method. We
consider the problem (2), the blurring matrix H is deter-
mined from the PSF h [31] of the imaging system which
defines how each pixel is blurred. We use three dif-
ferent types of blur kernel: binary blur kernel of size
21 × 21 and normalized elements to sum 1 (Fig. 1) and
Gaussian blur kernel of size 20 × 20 and standard devi-
ation 3 and a Motion blur kernel of length 15, generated
by MATLAB routine fspecial(‘gaussian’, 20, 3) and fspe-
cial(‘motion’, 15), respectively. This choice is for showing
the effectiveness of our approach against different types of
degradation.
For comparison, it is hard to determine whether one

method is better than the others just by looking at the
images; therefore, it is necessary to compute the peak
signal-to-noise ratio (PSNR), which is defined as

PSNR(f̂ , f ) = 10 log 10
(

2552
1
st ‖ f̂ − f ‖22

)

Fig. 1 First kernel of convolution. The first kernel used to blur images

where s and t are numbers of row and column of
the image. Note that PSNR is a standard image qual-
ity measure that is widely used in comparing image
restoration results. We also use the Structural Simi-
larity Index Measure (SSIM), an image quality metric
that assesses the visual impact of three characteris-
tics of an image: luminance, contrast, and structure
[32].
A crucial issue in solving the problem is the deter-

mination of the regularization parameters λf and λ.
A good selection of the parameters will result in
a promising deblurring result, whereas a bad choice
may lead to slow convergence as well as the exis-
tence of severe artifacts in the results. Bigger val-
ues lead to smoother deblurred images and more
stability of the algorithm. However, too big λf and
λ will over smooth the image details and decrease
the restoration quality. Generally, when the degrada-
tion in the blurry image is significant, the values
need to be set large, to reduce the blur as much
as possible. However, in the continuing iterations, the
blurry effect is decreased gradually. In this case, small
values are required since large values will damage
the fine details in the image. By considering these
effects, a direct implementation is to set λf from
large to small according to an empirical reduction rule
[33–35]

λt+1
f = max

(
λtf .r, λ

min
f

)
;
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Fig. 2 Set of seven images used in the tests. This is a set of seven images used as an original image in the tests

which depends on the initial value λ0f , the minimal value
λmin
f and the reduction factor r ∈ (0, 1). We choose

r = 0.5. This setting ensures the improvement of the con-
vergence speed of the algorithm. We compute the other
regularization parameter λ using the estimated value of λf
and the GCV function (28).
A projection on the convex set C is required to impose

the image constraint

C := {f |0 ≤ f (n) ≤ 1,∀n}

For fair comparison, in Wiener filter [36], < |b̂|2 >

denotes the spectral of |b̂|2 which can be estimated from
the noise level. < |b̂|2 >= α

variance(g) , we look for the
optimal α that gives us the best result in each case. Fur-
thermore, we consider the number of iterations as the
stopping criterion in the Richardson-Lucy algorithm.
The output image in both methods exhibits ringing

introduced by the discrete Fourier transforms used, so to
reduce this effect, we use the function edgetaper before
the processing.

In TV and BTV-based image restoration methods, the
computations are too intensive to run until convergence
(even with a large tolerance). Instead, we run until a
specified reasonable maximum iteration.
We try to get the best result with each method and then

compare it with our approach.
We use seven images in our experiments which are the

standards for image processing (Fig. 2). They are of differ-
ent gray-level histogram. The blurry versions are obtained
by convolving the original images with the three PSFs
defined previously. We show the deconvolution results in
Figs. 3, 4, 5, 6, 7, 8, and 9, and PSNR and SSIM values in
Tables 1, 2, and 3.
By carefully observing these results, we find that the

edges and details are well recovered, and the ringing
artifacts are well suppressed too in each case using our
approach instead of the Wiener filter, the Richardson-
Lucy algorithm, the TV method, and the BTV approach
(slow convergencemethods). Also, more the structure and
details of the image are important more the degradation is
worse and the restoration quality is less. In terms of image
quality measures, the proposed MAP-H1 has the highest
PSNR and SSIM values among all, the BTV method is the
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Fig. 3 Deconvolution of Lena image. From left to right, the first column represents degradation by kernel 1, the second column for the degradation
by kernel 2, and by kernel 3 in the third column. From top to bottom, the order of the rows is as follows: blurred images using the three kernels
respectively, restored images using RL algorithm [11] (kernel 1 (iterations = 100), kernel 2 (iterations = 200) and kernel 3 (iterations = 40)), restored
images using Wiener filter [9], restored images using TV method [14], restored images using BTV approach [16], and finally the restored images using
our proposed MAP-H1 model
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Fig. 4 Deconvolution of Cameraman image. From left to right, the first column represents degradation by kernel 1, the second column for the
degradation by kernel 2, and by kernel 3 in the third column. From top to bottom, the order of the rows is as follows: blurred images using the three
kernels respectively, restored images using RL algorithm [11] (kernel 1 (iterations = 90), kernel 2 (iterations = 300), and kernel 3 (iterations = 200)),
restored images using Wiener filter [9], restored images using TV method [14], restored images using BTV approach [16], and finally the restored
images using our proposed MAP-H1 model
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Fig. 5 Deconvolution of House image. From left to right, the first column represents degradation by kernel 1, the second column for the
degradation by kernel 2, and by kernel 3 in the third column. From top to bottom, the order of the rows is as follows: blurred images using the three
kernels respectively, restored images using RL algorithm [11] (kernel 1 (iterations = 70), kernel 2 (iterations = 140), and kernel 3 (iterations = 40)),
restored images using Wiener filter [9], restored images using TV method [14], restored images using BTV approach [16], and finally the restored
images using our proposed MAP-H1 model
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Fig. 6 Deconvolution of Couple image. From left to right, the first column represents degradation by kernel 1, the second column for the
degradation by kernel 2, and by kernel 3 in the third column. From top to bottom, the order of the rows is as follows: blurred images using the three
kernels respectively, restored images using RL algorithm [11] (kernel 1 (iterations = 150), kernel 2 (iterations = 310), and kernel 3 (iterations = 90)),
restored images using Wiener filter [9], restored images using TV method [14], restored images using BTV approach [16], and finally the restored
images using our proposed MAP-H1 model
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Fig. 7 Deconvolution of Pirate image. From left to right, the first column represents degradation by kernel 1, the second column for the degradation
by kernel 2, and by kernel 3 in the third column. From top to bottom, the order of the rows is as follows: blurred images using the three kernels
respectively, restored images using RL algorithm [11] (kernel 1 (iterations = 130), kernel 2 (iterations = 230), and kernel 3 (iterations = 80)), restored
images using Wiener filter [9], restored images using TV method [14], restored images using BTV approach [16], and finally the restored images using
our proposed MAP-H1 model
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Fig. 8 Deconvolution of Boat image. From left to right, the first column represents degradation by kernel 1, the second column for the degradation
by kernel 2, and by kernel 3 in the third column. From top to bottom, the order of the rows is as follows: blurred images using the three kernels
respectively, restored images using RL algorithm [11] (kernel 1 (iterations = 150), kernel 2 (iterations = 330), and kernel 3 (iterations = 80)), restored
images using Wiener filter [9], restored images using TV method [14], restored images using BTV approach [16], and finally the restored images using
our proposed MAP-H1 model
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Fig. 9 Deconvolution of Fingerprint image. From left to right, the first column represents degradation by kernel 1, the second column for the
degradation by kernel 2, and by kernel 3 in the third column. From top to bottom, the order of the rows is as follows: blurred images using the three
kernels respectively, restored images using RL algorithm [11] (kernel 1 (iterations = 100), kernel 2 (iterations = 240), and kernel 3 (iterations = 90)),
restored images using Wiener filter [9], restored images using TV method [14], restored images using BTV approach [16], and finally the restored
images using our proposed MAP-H1 model
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Table 1 PSNR and SSIM values obtained by five methods for seven different images degraded by kernel 1

Image Size Measure Blurred Method

RL Wiener TV BTV MAP-H1

Lena 256 × 256 PSNR 23.15 30.73 31.01 32.75 33.17 33.95
SSIM 0.6731 0.8428 0.8647 0.9147 0.9202 0.9381

Cameraman 512 × 512 PSNR 24.66 34.90 35.22 36.27 36.37 37.67
SSIM 0.7824 0.9251 0.9249 0.9527 0.9546 0.9651

House 256 × 256 PSNR 25.09 31.97 32.00 35.59 35.94 36.13
SSIM 0.7379 0.8502 0.8569 0.9263 0.9292 0.9347

Couple 512 × 512 PSNR 24.17 33.48 33.77 34.11 34.49 34.89
SSIM 0.6127 0.9139 0.9158 0.9373 0.9397 0.9458

Pirate 512 × 512 PSNR 24.75 33.75 33.55 33.80 34.24 34.70
SSIM 0.6268 0.9114 0.9140 0.9231 0.9283 0.9365

Boat 512 × 512 PSNR 23.98 33.57 33.68 33.60 33.95 34.52
SSIM 0.6181 0.9044 0.9051 0.9151 0.9161 0.9276

Fingerprint 512 × 512 PSNR 17.54 26.84 26.98 28.56 28.66 29.27
SSIM 0.3292 0.9177 0.9189 0.9495 0.9507 0.9564

For each test setting, six results are provided: Blurred, Richardson-Lucy algorithm, Wiener filter, TV method, BTV approach, and our proposed model. Bold format: the best
score in each line

second best, in general, following by the TV approach, the
Wiener filter and finally the Richardson-Lucy algorithm.
Depending on the size of the image, the execution of the

main proposed algorithm requires an average of 2 to 20 s
on Intel(R) Celeron(R) CPU N2815 1.86 GHz computer,
making it faster than the other methods.

4 Conclusions
In this work, we have extended the supervised Bayesian
approach by adding H1 regularization term in an energy

formulation and by proposing a method for choosing
the regularization parameter. Numerical results show
that the proposed algorithm is stable and can sup-
press ringing artifacts successfully using the proposed
techniques instead of the Wiener filter, the Richardson-
Lucy algorithm, the TV method, and the BTV approach,
robust methods used in literature, for different types
of the blur kernel. Future works will be focused
more on using other blur kernels and tests on real
images.

Table 2 PSNR and SSIM values obtained by five methods for seven different images degraded by kernel 2

Image Size Measure Blurred Method

RL Wiener TV BTV MAP-H1

Lena 256 × 256 PSNR 23.14 26.52 26.45 26.91 26.94 27.88
SSIM 0.6794 0.7720 0.7824 0.7943 0.7967 0.8410

Cameraman 512 × 512 PSNR 24.38 31.24 30.76 30.29 30.38 31.58
SSIM 0.7737 0.8959 0.8987 0.8895 0.8910 0.9153

House 256 × 256 PSNR 24.74 28.93 28.60 29.18 29.26 30.73
SSIM 0.7264 0.7861 0.7860 0.7982 0.8011 0.8469

Couple 512 × 512 PSNR 23.60 26.83 26.97 26.75 26.77 27.44
SSIM 0.5625 0.7341 0.7431 0.7292 0.7293 0.7653

Pirate 512 × 512 PSNR 24.67 28.10 28.06 28.09 28.16 28.83
SSIM 0.6282 0.7778 0.7852 0.7739 0.7766 0.8068

Boat 512 × 512 PSNR 23.63 27.31 27.39 27.08 27.10 27.81
SSIM 0.5939 0.7546 0.7623 0.7454 0.7457 0.7774

Fingerprint 512 × 512 PSNR 18.07 25.64 25.96 26.23 26.37 27.40
SSIM 0.3938 0.8568 0.8642 0.8660 0.8683 0.8959

For each test setting, six results are provided: blurred, Richardson-Lucy algorithm, Wiener filter, TV method, BTV approach, and our proposed model. Bold format: the best
score in each line
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Table 3 PSNR and SSIM values obtained by five methods for seven different images degraded by kernel 3

Image Size Measure Blurred Method

RL Wiener TV BTV MAP-H1

Lena 256 × 256 PSNR 21.56 28.02 28.33 31.85 32.17 32.21
SSIM 0.6006 0.8049 0.8281 0.8892 0.8948 0.9070

Cameraman 512 × 512 PSNR 23.12 36.80 36.42 34.83 34.95 39.97
SSIM 0.7824 0.9513 0.9446 0.9362 0.9386 0.9698

House 256 × 256 PSNR 24.79 32.03 32.01 35.74 35.92 36.65
SSIM 0.7639 0.8919 0.8937 0.9367 0.9392 0.9510

Couple 512 × 512 PSNR 23.68 31.71 32.59 33.89 33.75 34.43
SSIM 0.6191 0.9109 0.9296 0.9387 0.9367 0.9475

Pirate 512 × 512 PSNR 24.04 33.01 33.26 34.37 34.68 36.06
SSIM 0.6217 0.9145 0.9197 0.9274 0.9308 0.9492

Boat 512 × 512 PSNR 23.32 31.07 31.67 33.12 33.30 34.33
SSIM 0.6408 0.8927 0.9026 0.9169 0.9174 0.9395

Fingerprint 512 × 512 PSNR 17.57 26.67 26.78 28.55 28.55 29.15
SSIM 0.3930 0.9352 0.9348 0.9558 0.9561 0.9580

For each test setting, six results are provided: blurred, Richardson-Lucy algorithm, Wiener filter, TV method, BTV approach, and our proposed model. Bold format: the best
score in each line
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