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Abstract

Sparse representation based on classification and collaborative representation based classification with regularized
least square has been successfully used in face recognition. The over-completed dictionary is crucial for the
approaches based on sparse representation or collaborative representation because it directly determines
recognition accuracy and recognition time. In this paper, we proposed an algorithm of adaptive dictionary learning
according to the inputting testing image. First, nearest neighbors of the testing image are labeled in local
configuration pattern (LCP) subspace employing statistical similarity and configuration similarity defined in this paper.
Then the face images labeled as nearest neighbors are used as atoms to build the adaptive representation dictionary,
which means all atoms of this dictionary are nearest neighbors and they are more similar to the testing image in
structure. Finally, the testing image is collaboratively represented and classified class by class with this proposed
adaptive over-completed compact dictionary. Nearest neighbors are labeled by local binary pattern and microscopic
feature in the very low dimension LCP subspace, so the labeling is very fast. The number of nearest neighbors is
changeable for the different testing samples and is much less than that of all training samples generally, which
significantly reduces the computational cost. In addition, atoms of this proposed dictionary are these high dimension
face image vectors but not lower dimension LCP feature vectors, which ensures not only that the information
included in face image is not lost but also that the atoms are more similar to the testing image in structure, which
greatly increases the recognition accuracy. We also use the Fisher ratio to assess the robustness of this proposed
dictionary. The extensive experiments on representative face databases with variations of lighting, expression, pose,
and occlusion demonstrate that the proposed approach is superior both in recognition time and in accuracy.

Keywords: Collaborative representation classification, Nearest neighbors, Local configuration pattern (LCP), Statistical
similarity, Configuration similarity

1 Introduction
As a biological feature, the human face has been paid
more attention because it can be easily captured with a
common camera even without cooperation of the sub-
ject. Yet the performance of face recognition is affected
by the expression, illumination, occlusion, pose, age
change, and so on. There are still some challenges in the
field of unrestricted face recognition.

Facial images are very high dimensional, which is bad
for classification. So dimension reduction is carried out
before classification. Principle component analysis (PCA)
[1–4] has become the classic reducing dimension ap-
proach and has been used widely in image processing
and pattern recognition fields. All training images make
up covariance matrix, and these eigenvectors corre-
sponding to the bigger eigenvalues of covariance matrix
span the linear feature subspace. Through projecting
high-dimensional original face images onto the low di-
mensional linear feature subspace, PCA performs the di-
mension reduction and preserves the global structure of
an image.
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Designed as a texture descriptor originally, local binary
patterns (LBP) [5] is a simple and efficient algorithm, it
can capture the local structural features that are very im-
portant for human texture perception. Researches show
that LBP is discriminative and robust to illumination, ex-
pression, pose, misalignment, and so on. LBP has been a
popular feature extraction approach and has been used
successfully in face recognition [6–8]. Up to now, some
improved approaches based on LBP have been pre-
sented, such as complete LBP (CLBP) [9], local Gabor
LBP [10], multi-scale LBP [11], and so on. Because the
intensity of the central pixel is independent to its LBP
value, the information embodying the relationship be-
tween pixels in the same neighborhood is lost. Guo et al.
[12] proposed the local configuration pattern (LCP) in-
cluding both local structural and microscopic features.
The local structural features are represented by the pat-
tern occurrence histograms, just as LBP, and the micro-
scopic features are described by optimal model
parameters. The microscopic configuration features re-
veal the pixel-wise interaction relationships. It has been
proved LCP is an excellent feature descriptor. In this
paper, we use LCP to measure the similarities between
face images and finally to find neighbors of testing
image.
Many researches confirmed that sparse representation

and collaborative representation are good at image pro-
cessing, such as image reconstruction, image representa-
tion, and image classification. Li et al proposed an
effective approach called patch matching-based multi-
temporal group sparse representation to restore the
missing information that should be contained in remote
sensing images [13] (Patch Matching-Based Multitem-
poral Group Sparse Representation for the Missing In-
formation Reconstruction of Remote-Sensing Images).
Yang et al. [14] regarded face recognition as a globally
sparse representation problem and proposed the face
recognition (FR) approach known sparse representation
based on classification (SRC), in which the over-
complete dictionary is formed by training face images.
Subsequently, To improve the recognition accuracy with
occlusion, Wright et al. [15] subsequently introduced an
identity matrix to code the outlier pixels that were oc-
cluded. Yang et al. [16] viewed the sparse coding as a
sparsity constrained robust regression problem and pro-
posed the robust sparse coding method. It is more ro-
bust to detect outliers than SRC. In 2010, Yang et al.
[17] introduced Gabor features into SRC; they projected
firstly the high-dimension facial images into the lower
dimension Gabor-feature space and then used SRC to
classify. This approach greatly decreased the size of the
occlusion dictionary compare with that of SRC. As a re-
sult, recognition-time is reduced. Ou et al. proposed an
approach of face recognition with occlusion named

structured sparse representation based classification
[18]. In which, occlusion dictionary is not an identity
matrix, but is learned from data and is smaller than that
of SRC. In addition, the occlusion dictionary is inde-
pendent of the training sample as possible, so the occlu-
sion is sparsely represented by the learned occlusion
dictionary and can be separated from the occluded
image. The testing image is classified by the recovered
non-occluded image. Ou also provided another occlu-
sion dictionary learning algorithm named discriminative
nonnegative dictionary learning, where the occlusions
were estimated adaptively by the reconstruction errors
and weights for different pixels were learned during it-
erative processing [19]
The resolution method of sparse representation vector

(or sparse solution) is another crucial issue for sparse rep-
resentation based on classification (SRC), which influences
the recognition accuracy and recognition time. The first
researchers, such as the above mentioned, hold the view
that “sparsity” of the sparse representation vector is the
most crucial for SRC and paid more attention to the
“sparsity” of sparse solution. Because l0_norm
minimization is NP-hard, they used l1_norm minimization
to replace l0_norm minimization as the optimal solution
(the sparsest solution). But l1_norm minimization is time-
consuming, which is bad for recognition especially in the
case of real-time identification. Ma et al [20] proposed a
discriminative low-rank dictionary learning, in which the
over-completed discriminative dictionary is composed of
series of sub-dictionaries. Atoms of each sub-dictionary
are training images from the same category, so they are
linearly correlated and all sub-dictionaries are low-rank
with a compact form. Zhang et al. [21] also regarded the
feature coding problem as the low-rank matrix learning
problem and researched local structure information
among features on the image-level. Using the similarities
among local features embraced in the same spatial neigh-
borhood, an exacting joint representation of these local
features w.r.t. the codebook was founded. Zhang et al [22]
analyzed the mechanism of SRC and found that “collabor-
ation representation” among categories is the crucial fac-
tor for SRC. He relaxed the demand on “sparsity” and
used l2-norm to replace l1-norm as the sparse constraint
condition and proposed the algorithm known collabora-
tive representation based on classification with regularized
least square (CRC_RLS). Gou et al investigated deeply
approaches based on collaborative representation-
classification and proposed several novel approaches of
classification based on collaborative representation
[23–26]. He proposed a two-phase probabilistic collab-
orative representation-based classification [25], in
which the nearest representative samples are chosen
first and then each testing sample is represented and
classified by those chosen nearest samples. In Ref.

Wei et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:20 Page 2 of 12

http://xueshu.baidu.com/s?wd=author%3A%28John%20Wright%29%20Dept.%20of%20Electrical%20and%20Computer%20Engineering%2C%20University%20of%20Illinois%20at%20Urbana-Champaign%2C%20USA&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson


[26], the locality of data is employed to constrain the
collaborative representation in order to represent
faithfully testing images with the nearest samples. In
this paper, we proposed a new and simple approach
based on sparse representation and LCP features. We
pay our attention to the over-completed compact dic-
tionary. Atoms of this proposed dictionary are all
nearest neighbors in LCP feature subspace, so struc-
tures of atoms are more similar to that of testing im-
ages and the atoms’ number is greatly decreased
compared with the training images, which will im-
prove the recognition accuracy and reduce the recog-
nition time.
This paper is organized as follows: related theories

about SRC and LCP were described in Section 2. The
proposed face recognition approach using a sparse
representation-based adaptive nearest dictionary was
described in Section 3. Experimental results were pro-
vided in Section 4 and conclusions were illustrated in
Section 5.

2 Related
2.1 Sparse representation based on classification
Assume there are M training face images from Q sub-

jects, each subject has mq images, M ¼ PQ
q¼1

mq . Let vq,

i ∈ℜ
d × 1 denote the d-dimension vector stretched by the

ith image from theqth class (subject) and yrepresent the
testing image vector. Let matrix Xq ¼ ½vq;1;⋯; vq;mq �
whose column vectors are the training images from the
qth class, X = [X1,⋯,Xq,⋯,XQ] ∈ℜ

d ×M is the set of all
training images.
Yang et al. [14] proved that face recognition can be

regarded as sparse representation based on classification
(SRC) if there were enough training face images (the
number of training face images M should be greater
than the dimension of image, i.e., d <M). In this case,
the testing imagey can be as the sparse linear combin-
ation of all training images, i.e.,

y ¼ Xβ ð1Þ

where β ¼ ½β1;1; β1;;2;⋯; βT1;m;…;βQ;1;⋯;βQ;mQ
�∈ℜ

M�1 is the

representation coefficient vector.
Sparse representation classification firstly encodes the

testing image by all training images according to Eq. (1)
and then classifies class-by-class. Specifically, if the
testing image y comes from the qth subject (class),
entries of its β should be zero except for those

associated with theqth class ideally, i.e. β ¼
½0;⋯; 0; βq;1; βq;2;⋯; βq;mq

; 0;⋯; 0�T (T is transpose op-

eration). In fact, any entry of βcan be very small non-
zero, so the identity of y is determined by the residual

between yt and its reconstruction by each class. Let βq

¼ ½βq;1; βq;2;⋯; βq;mq
�T be the representation coefficient

associated with the qth class. The reconstruction of the
test image by the qth class training samples denotes
byyq, yq =Xqβq, the residual rq = ‖y − yq‖2 = ‖y −Xqβq‖2.
The testing image is classified to the qth class if rq is the
minimum residual, i.e.,

identity yð Þ ¼ arg min
q

rq ð2Þ

How to get the representation coefficient vector from
Eq. (1) is crucial for sparse representation. Sparse repre-
sentation requires the dictionary to satisfyd <M, so Eq.
(1) has more than one solution. The sparest solution is
generally considered as the optimal solution for classifi-

cation. The optimal solution expressed β̂ is the solution
of Eq. (3), while it is a NP-hard problem.

β̂ ¼ arg min
β

βk k0 s:t: Xβ ¼ y ð3Þ

Theories of sparse representation and compressed
sensing reveal that l0-norm minimization solution and
l1-norm minimization solution were nearly equivalent
when the solution is sparse enough. So Yang [14]

Fig. 1 Flowchart of this proposed algorithm (CRC_NLCP)
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employed l1-norm to replace l0-norm and estimated the
optimal representation vector by Eq. (4)

β̂ ¼ arg min
β

βk k1 s:t: Xβ−yk k2≤ε ð4Þ

where εdenotes the error term including noisy and
model error, and this is the well-known sparse represen-
tation based on classification (SRC).
Zhang employed l2-norm as the sparse constraint

condition to solve representation vector using regular-
ized least square and proposed CRC_RLS algorithm
[22], in which the representation vector can be ob-
tained by Eq. (5)

β̂ ¼ arg min
β

y−Xβk k22 þ λ βk k22
� � ð5Þ

With regularized least squares method, the unique so-

lution of Eq. (5) can be easily educed as β̂ ¼
ðXTXþ λIjÞ−1XTy, where λ is a regularization parameter
given experientially.
AssumeP = (XTX + λI| )−1XT, it is clear that P is inde-

pendent of y, so P can be seen as a projection matrix de-
cided only by training images. Just projecting y onto P,

β̂ can be solved easily, β̂=Py.
According to sparse representation theory, the over-

completed dictionary should be satisfied that the num-
ber of features is greater than that of an atom. However,
face recognition is a typical small-size-sample task and
matrix X made directly by face images could not be an
over-completed dictionary. Generally, dimension reduc-
tion was performed before a sparse representation.

2.2 Local configuration pattern
In essence, LBP feature is the histogram build by LBP
value of all pixels in an image. LBP of the given pixel is
defined as follows [5]:

LBPP;R ¼
XP‐1
p¼0

u gp−gc
� �

2p; u xð Þ ¼ 1; a≥0
0; a < 0

�

ð6Þ
where R is the radius of the circle neighborhood cen-
tered at the given pixel, P is the number of neighboring
samples spaced at regular intervals on this circle, gcis
gray of the center pixel, and gp (p = 0, 1,⋯P − 1) denotes
gray of its neighboring.
Regard the LBP as a circular binary string with P bits,

the number of two bitwise transitions 0 and 1 is defined
as U. If U ≤ 2, then the LBP are defined as a uniform
pattern, notated LBPu2P;R . Ojala et al. [5] defined the

rotation-invariant uniform patterns LBPriu2P;R :

LBPriu2
P;R ¼

XP‐1
p¼0

u gp−gc
� �

; U LBPP;R
� �

≤2

P þ 1; otherwise

8><
>: ð7Þ

LetNk denotes the occurrence of the k-pattern in-

cluded in LBP,Nk ¼
Pw
i¼1

Ph
j¼1

δðLBPriu2
P;R ði; jÞ; kÞ; ðk ¼ 0; 1;

⋯; 2PÞ, where δ(x, y) is the Dirac function. Histogram H
expresses the LBP feature vector of the image.

H ¼ N1;⋯Nk ;⋯;NS½ � ð8Þ
where S is the maximum value of LBP pattern.
Although the LBP feature vector can capture the stat-

istical feature of the image and is robust for illumination,
it neglects the relationship between neighboring pixels,
which leads to wrong classification results when images
have the same LBP feature but the different gray varia-
tions between the center pixel and its neighboring pixels.
Guo et.al [12]. introduced the microscopic feature (MiC)
information into LBP and proposed a local configuration
pattern (LCP).

Fig. 2 Chi-BRD-distances and chi-BRD-similarities
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Let A = (a0,⋯, aP − 1) presents a parameter vector and
g = (g0,⋯, gP − 1)presents a neighboring vector of center

pixel. The central pixel can be reconstructed by
PP−1
p¼0

apgp ,

the reconstruction error j gc−
PP−1
p¼0

apgp jwill be minimum

when parameter vector A reaches optimum.

Assume there are NL pixels whose patterns are all
equal to L, let cLi ði ¼ 1;⋯;NLÞ denote the gray value of
the ith center pixel belonging to L pattern, these NL gray
values made up the matrix CL¼ðcL1; cL2 ; ⋯; cLNL

Þ . Vector
gLi ¼ ðgLi;0; gLi;1; ⋯; gLi;P−1Þ consists of the gray values of

neighboring pixels of cLi , matrix GL¼
gL1
⋯
gLNL

0
@

1
A ¼

gL1;0; ⋯; gL1;P−1
⋮

gLNL;0; ⋯; gLNL;P−1

0
@

1
A ,AL ¼ ðaL0 ;⋯; aLP−1Þrepresents the

optimal parameters corresponding to the L pattern. CL,
AL, and GL satisfy Eq. (9)

CL ¼ ALGL ð9Þ

With overwhelming probability NL > > P, hence the
matrix GL is over-determined and the optimal parameter
vector AL can be computed by the least squares.

AL ¼ CLGT
L GT

LGL
� �−1 ð10Þ

A small probability event (NL ≤ P)is regarded as
unreliable and its model parameters are set to zero. The

Fourier transform of AL isϕL(k), ϕLðkÞ ¼
PP−1
p¼0

aLpe
− j2πkp=P

ðk ¼ 0;⋯;P−1Þ . MiC features consist of the amplitude
of the Fourier transform (|ϕL(k)|), denoted by ΦL.

ΦL ¼ jϕL 0ð Þj;⋯; jϕL P−1ð Þjð Þ ð11Þ
Appending NL to ΦL, LCP feature corresponding to L

pattern can be obtained by the Eq. (12). The LCP feature
vector of an image can be obtained by concatenating all
S LCP features, it is denoted by FLCP.

FLCP¼ Φ1;N1;⋯;ΦS;NS½ � ð12Þ

3 Methods
According to sparse representation theories, the more
similar the atom is to the testing sample, the sparser the
representation vector is, and the greater recognition ac-
curacy of the dictionary is.
Let η =mq/Mdescribe the sparsity of the representa-

tion vector. If all classes have the same number of
training samples, thenη = 1/Q, else minq(mq)/M ≤ η ≤
maxq(mq)/M, where minq(mq) and maxq(mq) are the
minimum and the maximum number of training sam-
ples for each class. The representation vector is
sparser with the smallerη. Clearly, we want to make
ηsmall enough. There are two ways to make η
smaller. One is to augment categories and the other
is to reduce the sample size of each class. For the
former, it is difficult to ask more enough volunteers
to take face picture. So we use the second way to in-
crease the sparsity. A testing image may be not repre-
sented sufficiently if we discard randomly some
training images, which are bad for the recognition ac-
curacy. In this paper, we recommend to utilize the
nearest neighboring images of the testing image as
atoms to build a dictionary so that the testing image
can be represented sparsely and faithfully. SRC then

Table 1 The description on both face databases

Database name AR ORL

Number of class 100 40

Number of image per subject 14 10

Total number of image 1400 400

Number of training image per class 7 6

Total number of training-image 700 240

Number of testing image per class 7 4

Total number of testing image 700 160

Size of image 60 × 43 112 × 92

Fig. 3 One face image and its LCP feature vector. a Equalized image. b LBPriu28;1 spectrum. c LCP feature vector
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are performed on this proposed dictionary. We call
this proposed approach for FR as “Collaborative rep-
resentation classification based adaptive nearer-
neighbor-dictionary” (CRC_NLCP). Figure 1 shows
the flowchart of this proposed algorithm.
The proposed algorithm includes two stages, the

first is to learn adaptively the over-completed diction-
ary, and the second stage is the SRC process. Diction-
ary learning includes rough similarity measurement,
nearest neighbor criterion, and dictionary atom
selection.

3.1 Similarity measurement
As the aforementioned, the LCP feature includes the
statistical feature (LBP feature) described by the histo-
gram and the microscopic configuration feature de-
scribed by the parameter vector (MiC feature). So we
measure the similarity among images in these two fea-
ture subspaces respectively.

3.1.1 Statistical similarity
In essence, the LBP feature vector is a frequency histo-
gram, so the chi-square distance is a good measurement

to estimate the similarity between histograms. Hu et.al
[27] proved that the distance-based chi-square is not
robust for partial occlusion and they may lose the co-
occurrence relations that benefit to improve the recogni-
tion accuracy. Hence, he proposed a bin ratio-based
distance (BRD).

Assuming ~H
A ¼ ½uA1 ;⋯uAk ;⋯;uAQ�and ~H

B ¼ ½uB1 ;⋯uBk ;

⋯; uBQ� are respectively two unit histogram vectors corre-
sponding the image A and image B, BRD of these two
images are defined as Eq. (13):

dBRD
~H
A
; ~H

B
� �

¼
XQ
i¼1

XQ
j¼1

uBi u
A
j −u

B
j u

A
i

uAi þ uBi

 !2

ð13Þ

where the numerator term (uBi u
A
j −u

B
j u

A
i ) embodies the

ratio-relations and the differences of bins included in the
same histogram, and the denominator is the standard
term. He also proved the combination of BRD and chi-
square distance, notated as dχ2−BRD and defined by Eq.
(14), is superior to both them for classification.

Fig. 4 Scatter diagram of nearest neighbors of training images from ORL

Fig. 5 Scatter diagram of nearest neighbors of training images from AR
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dmsubsup ~H
A
; ~H

B
� �χ2 BRD ¼ dχ2

~H
A
; ~H

B
� �χ2

−2 ~H
A þ ~H

B
			 			2

2

XQ
i¼1

uAi −u
B
i

� �2
uAi u

B
i

uAi þ uBi
� �3

ð14Þ

where dχ2ð~H
A
; ~H

BÞχ
2

¼ 2
PQ
i¼1

ðuAi −uBi Þ
2

uAi þuBi
is a chi-square dis-

tance of ð~HA
; ~H

BÞ. For the unit length histograms, values

of dmsubsupχ
2
−BRDare all very small, for example, the max-

imum value is shown in Fig. 2 (red rhomb) is 0.025, and

differences dmsubsupχ
2
−BRD are even smaller, which means

dmsubsupχ
2
−BRD has less discrimination feature and is not

fit to measure the statistical similarity. We defined a new
statistical similarity measurement named “chi-square-
BRD-similarity” and notated as ξ to estimate the similar-
ity of images in the LBP feature subspace.

ξ A;Bð Þ ¼ − log dmsubsup ~H
A
; ~H

B
� �χ2−BRD �


ð15Þ

Clearly, Chi-square-BRD-similarity (ξ) is the minus

logarithm of dmsubsupχ
2
−BRD , it expands nonlinearly the

value range of dmsubsupχ
2
−BRD . Figure 2 shows the chi-

BRD-distance (dmsubsupχ
2
−BRD ) indicated by red rhombs

and Chi-square-BRD-similarity (ξ) denoted by blue stars
between one image and the others from the ORL face

database. Clearly, ξ is more discriminative than d

msubsupχ
2
−BRD . The larger ξ, the more similar two images

are. Chi-BRD-distance between the image and itself is
zeros while the chi-square-BRD-similarity is infinity.

3.1.2 Configuration similarity
In the MiC feature subspace, we use Euclidean distance
to measure the configuration similarity between two
imagesx1andx2, notatingρ(x1, x2).

ρ x1; x2ð Þ ¼ Φ x1ð Þ−Φ x2ð Þk k2 ð16Þ

Clearly, two images are more similar if their Euclidean
distance is smaller.

3.2 Neighboring images selection criteria
According to Eq.(7)~(11), we can obtain unit histogram
~Hq;i and Mic feature ~Φq;i from training imagevq, i, and
~Hy (unit histogram of testing image) and ~Φy(MiC feature
of testing image). Let ξq, i andρq, idescribe respectively
the statistical similarity and configuration similarity be-
tween testing image y andvq, i,ξq;i ¼ ξð~Hy; ~Hq;iÞ can be
obtained by Eq. (13) ~(15); ρq, i = ‖Φy −Φq, i‖2 can be
computed according to Eq. (16).

Fig. 6 Cumulative distribution function (CDF) and probability density function (PDF)of the nearer-neighbor-number. a ORL database. b
AR database

Fig. 7 The number of nearest neighbors in each category
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Define ξq ¼ 1
mq

Pmq

i¼1
ξq;i as “class-average-statistical simi-

larity.” If ξq;i≥ξq , then the training imagevq, iis labeled as
statistical neighboring. Similarly, define ‘class-average-

configuration similarity’ as ρq ¼ 1
mq

Pmq

i¼1
ρq;i . vq, iis labeled

as configuration neighboring if ρq;i≤ρq .
There are two criteria to label the nearest neighbor-

ing samples. One, named criterion-A, is that the nearest
neighboring image should be labeled as both statistical
neighboring and configuration neighboring. The other,
named criterion-B, is that the nearest neighboring
image was labeled as either statistical neighboring or
configuration neighboring. Whatever criterion is used,
there must be enough training samples in each class to
be labeled as the nearest neighbor. If not, the comple-
mentary criterion, named criterion-C, must be per-
formed. In this paper, the complementary criterion
(criterion-C) is to sort respectively the training images
in LBP and MiC subspace, and then keep labeling the
closer ones in both two subspaces until the quantity of
the nearest neighbor in each class reaches the require-
ment. Generally, the number of the nearest neighbor in
each class should be between 2 and half of the number
of training images in each class. The algorithm of
labeling the nearest neighbor is summarized as the
algorithm 1.

3.3 Building an adaptive dictionary
For this proposed approach, it is crucial to fast find and
label these training samples that are more similar to the
inputting testing image. So we compute the similarity in
the lower-dimension LCP feature subspace. However,

compared to the face image, LCP feature vector loses
much information, which are bad for SRC. We employ
the original face image as an atom to make up the dic-
tionary, which means all atoms of the dictionary are
these face-image-vectors labeled in the LCP subspace,
but not LCP-feature-vectors. That is to say, sparse repre-
sentation and classification are performed in face image
space but not in feature subspace. The experimental re-
sults shown in the later section also verify that SRC
based on image vector is better than based on the LCP
feature vector.

Use these training images labeled the nearest neighbor
as the atoms to build the over-completed dictionary. In
order not to be confused with the ordinary dictionary
notated by X (defined in Section 2.1), we use R to notate
this proposed adaptive nearest neighbor dictionary.R = [
R1,⋯,Rq,⋯,RQ], where Rq ¼ ½vq; j1 ; vq; j;…;vq; js �∈ℜd�κq (1 ≤

j1, j2,⋯, js ≤mq}, whose column vectors are the nearest
neighbors selected from the qth subject’s training im-
ages. Integer κq indicates that there are κqnearest neigh-
bor images are chosen in the qth class. Usually,
κ1 ≠ κ2 ≠ , ⋯, ≠ κQ.

3.4 Assessment of the adaptive dictionary
The over-completed dictionary greatly affects the per-
formance of SRC. We employ Fisher’s ratio as the criter-
ion to quantitatively evaluate the validity of the
dictionary. Using the within-class scatter and the
between-class scatter, Fisher’s ratio directly assesses the
class separation performance. For the q-class and p-class,
their Fisher’s ratio along the l-principal component vec-
tor direction Fq, p, l is defined

Fp;q;l ¼ wT
l Sbwl

wT
l Swwl

ð17Þ

where Sb = (μp − μq)(μp − μq)
T is the between-class

scatter matrix of the class p and class q, μpis the p-class

mean, μqis the q-class mean; Sw ¼ 1
2

P
j¼p;qð 1

mj

Pmj

i¼1
ðx j;i−μ j

Þðx j;i−μ jÞT Þ is the within-class scatter matrix for the

Fig. 8 Fish-ratios of dictionaries for one testing image. a Fisher’s ratio along the different components. b Cumulative sum of fisher-ratio
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class p and class q, xj, i is the ith image from the jth
class, mj is the number of the images in the class j; wl

is the eigenvector corresponding to the eigenvalue λl,
wl

Texpress the transposition of wl. The coefficients 1/2
and mj remove the interference brought by the different
sample size of each class.
From Eq. (17), we can see that Fp, q, l=Fq, p, l. For the

whole dictionary, the fisher ratio along l-principal com-
ponent is defined as the mean of Fp, q, l , notated Fl:

Fl ¼ 2
Q Q−1ð Þ

XQ
i¼1

XQ
j¼iþ1

Fp;q;l

 !
ð18Þ

Integer Q, defined in Section2.1, represents the num-
ber of class included in the dictionary.

4 Results and discussion
In this section, the performance of the proposed algo-
rithm is verified based on two standard face databases,
AR [28] and ORL [29]. Both face databases involve some
changes in gender, illumination, pose, expression, glass,
and time. The detailed data used in this paper are list in
Table 1.
This proposed adaptive dictionary is different for dif-

ferent testing images, so different sets of training

samples have a little influence on experimental results.
We randomly selected training samples to repeat the
proposed algorithm for multiple times and presented the
average result in the later of this section. All algorithms
are coded by MATLAB 2015 and performed on the
same computer with 2.6GHz CPU and 8G RAM. In this
paper, we never use any parallel computing or GPU.

4.1 Nearest neighbor image selection based on LCP
features
In order to reduce computation while retaining neigh-
bor attribution, we employ the rotation-invariant uni-
form pattern to compute the similarities between
images. Set P = 8, R = 1, and the length of the LCP
feature vector is 90. Figure 3 presents an example
about one face image and its LCP feature vector,
where (a) is the equalized image, (b) is the rotation-
invariant uniform LBP pattern spectrum for P = 8
and R = 1, and (c) is the LCP feature vector corre-
sponding to (c). The ten groups of red vertical line ‘ ’
denote the ten normalized MiC feature vectors re-
spectively, the ten black solid vertical lines describe
the frequencies of all patterns in LBP.
In this paper, all images were equalized in advance

to reduce the effects of illumination. The number of

Fig. 9 The curve of recognition accuracy with feature-dimension

Fig. 10 Solving times for a different number of atoms
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nearest neighbors is different for different testing im-
ages. Figure 4 represents the scatter diagrams of the
nearer-neighbor-number for the face database ORL.
The numbers of nearest neighbor both on criterion-A
and on criterion-B (given in algorithm 1) are reason-
able. It is unnecessary to perform criterion-C.
Figure 5 represents the scatter diagrams of the

nearer-neighbor-number for the face database AR. For
some images, its numbers of nearest neighbor labeled
by criterion-A are relatively small to the number of
classes. So the number labeled criterion-C is shown
in Fig. 5.
For clarity, we presented the Cumulative Distribution

Function (CDF) and Probability Density Function (PDF)
of the nearer-neighbor-number for AR and ORL in
Fig.6, where EA and VA are mean and variance respect-
ively of the numbers. Obviously, the number of nearest
neighbor labeled by criterion-A is mainly between 130
and150 in AR database, it is much less than the total
number of training images.
For each image in the database ORL, the number of its

nearest neighbors in each class is shown in Fig. 7. It is
clear that the number of nearest neighbors labeled by our
method is almost half of that of training samples and the
nearest neighbor images are distributed in all categories.
So the number of categories is not reduced, but the num-
ber of atoms in each category is reduced, which reduces
the dictionary thickness and improves the sparsity.

4.2 Adaptive dictionary
Face image is a high dimension with lots of discrim-
inative information. But the LCP feature dimension is
90 and LBP feature dimension is only 10 in this
paper. So much information is missed in the LCP or
LBP feature subspace, which leads to classify wrong.

We use fish-ratio defined by Eq. (17) to measure the
discrimination of the dictionary. In order to compare,
three dictionaries are created. As baseline, the first
dictionary, denoted by D-O, is composed by all train-
ing original facial images and is stationary for all test-
ing images; the second dictionary proposed in this
paper and denoted by D-p is composed by the nearest
neighbor facial images, and the third dictionary de-
noted by D-f is composed by the nearest neighbor
LCP feature vectors. Atom feature dimensions of both
t D-O and D-p are equal to the size of the facial
image and are much larger than the atoms’ number,
but for the dictionary D-f, the atom feature dimension
is dependent on the type of LBP.
According to Eq. (18), fish-ratio is defined independ-

ently along each principal component vector direction.
We compute the fish-ratios of the three dictionaries
along the bigger principal component vector directions.
As an example, Fig. 8 presents the fish-ratios of different
dictionaries for the same testing images from ORL. The
length of the LCP feature vector is 90, so we compute
the fish-ratio of the first 90 principal component direc-
tions for the D-f, and for the other dictionaries, the prin-
cipal component is less than the number of the atom.
Figure 7b shows the cumulative sum of fish-ratio from
the first-principal component to the given-principal
component. We can conclude that the classification
performance of the proposed dictionary in the paper is
superior to the other two dictionaries.
Since the sparse dictionary requires the number of

atoms to be greater than the feature number of atoms,
the feature number of atoms is the image resolution,
and the image resolution is far greater than the number
of images; PCA dimensionality reduction is required to
calculate the sparse coefficient.

4.3 Recognition accuracy
The testing image is first collaboratively represented
with its neighbors labeled in the LCP feature subspace,

Table 2 Recognition accuracy on ORL

Best recognition rate Optimal number of features

PCA 0.900 100

SRC 0.920 100

CRC_RLS 0.931 95

CRC_ LBP 0.706 10

CRC_NLCP 0.975 95

Table 3 Recognition accuracy without occlusion on AR

Feature dimension 10 54 120 300

PCA – 0.680 0.70.1 0.713

SRC – 0.833 0.895 0.933

CRC_RLS – 0.805 0.900 0.938

CRC_ LBP 0.57.0 – – –

CRC_NLCP – 0.838 0.943 0.950

Table 4 Recognition accuracy with occlusion on AR

Algorithm Wears glasses Wears scarf

PCA 0.400 0.147

SRC 0.480 0.543

CRC_RLS 0.530 0.777

CRC_NLCP 0.735 0.826

Table 5 Time to solve one SRV on database ORL(s)

Method Number of atoms

240 150 120

ℓ1~ℓs 0.2674 0.1775 0.1463

RLS 0.0077 0.0027 0.0015
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and then it is classified using its over-completed com-
pact dictionary. In this paper, we use the recognition ac-
curacy to measure the recognition performance.

Recognition acuracy ¼ Number of the testing samples classified correctly
Total number of testing samples

ð19Þ

Figure 9 shows the curve between the right recogni-
tion rate and feature-dimension for different dictionaries
on ORL. In which, PCA, SRC, and CRC_RLS have the
same fixed dictionary D-O; CRC_NLCP and SRC_NLCP
have the same proposed adaptive dictionary D-p, and the
difference between them is the former used collaborative
representation while the later used sparse representation.
CRC_LBP-riu2 and CRC_LBP-u2 employ the dictionary
D-f, and they employed different kinds of LBP.
To be clearer, we listed the best recognition rate and

the corresponding optimal feature number in Table 2.
The proposed algorithm has the greatest recognition ac-
curacy reached 97.5% and a relatively small number of
features 95. CRC_LBP has the least recognition accuracy
rate because the number of features is too small.
Table 3 shows the recognition accuracy of the OR

database for different numbers of feature. Obviously, the
proposed algorithm is the best one for any dimension,
and the recognition rate was improved by 0.5–4.3%
compared with the second best. The robustness of this
proposed method to occlusion (wears glasses or scarf) is
authenticated on AR database and the results are pre-
sented in Table 4. Our algorithm recognition accuracy is
increased by 20.5% for glass and by 4.9% for scarf. Each
algorithm has different requirements for feature dimen-
sion, and the classification will not be performed if fea-
ture dimension is not satisfactory.

4.4 Recognition time
For those approaches based on the sparse representa-
tion, recognition time consists of a solution to represen-
tation vector (SRV) and pattern matching. In this paper,
we employ the nearest neighbor classifier, which is the
simplest and fast, to classify. The recognition time was

mainly decided by SRV. Neither ℓ1~ℓs used in SRC nor
regularized least squares (RLS) used in CRC_RLS, the
time to solve SRV is mainly determined both by the
number of dictionary atoms and by feature dimension.
Any increase in either of the two numbers will make the
solution time longer. Figure 10 provided the curve of the
time spent on one SRV with the number of atoms and
feature dimensions on the database ORL.
For ORL, when feature dimension equals to 95, the

time to solve one SRV with different numbers of atoms
and different methods is listed in Table 5. For database
AR, the time is given in Table 6. Experiment results
show that the recognition time is greatly reduced as the
number of atoms decreases and that the RLS method is
much faster thanℓ1~ℓs.
In addition, the number of atoms must be greater than

the feature dimension, if not, there will be no solution.

5 Conclusion
Over-complete dictionaries are very important for sparse
representation based on classification. In this paper, we
presented an adaptive dictionary learning approach. We
choose separately the training images that are closer to
the testing image from each class as the atoms to adap-
tively make up the over-complete dictionary. The pro-
posed dictionary changes with the different testing
images. The closer training images are called nearest
neighbors labeled class by class in the LCP feature sub-
space, so atoms are more similar to the testing in struc-
ture, which increases the recognition accuracy. In
addition, the number of nearest neighboring images is
much smaller than that of total training images, which
greatly reduced the recognition time. Fisher’s ratio also
shows the proposed adaptive dictionary is more discrim-
inatory. Experiment results also show that collaborative
representation classification based on this proposed
adaptive nearest neighbor dictionary is excellent in rec-
ognition accuracy and in recognition time.
To accurately and quickly identify the input testing

images, we pay more attention to build an adaptive dic-
tionary. The main idea is to find the nearest neighbors
of testing images in each class. If the number of training
samples is small for certain classes, then the advantages
of this proposed algorithm will disappear. In addition,
only Euclidean distance is selected to measure MiC simi-
larity, and we did not investigate other distance formulas
such as “cosine coefficient distance.” We also did not
consider the image noise. In the next work, we will em-
ploy different distances such as “Jeffreys and Matusita
distance,” “cosine coefficient distance,” “Canberra dis-
tance,” and “generalized Dice coefficients” to find simi-
larity between images and investigate influence brought
by noise.

Table 6 Time to solve one SRV on database AR (s)

Method Feature
dimension

Number of atoms

700 500 300 200

ℓ1~ℓs 100 0.4974 0.3345 0.2362 0.1982

200 0.5482 0.3844 0.2542 --

300 0.6890 0.4834 -- --

400 0.8241 0.5921 -- --

RLS 290 0.0804 0.0408 0.0173 --

450 0.0870 0.0420 -- --
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