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Abstract
Recently, compressed sensing (CS) has aroused much attention for that sparse signals
can be retrieved from a small set of linear samples. Algorithms for CS reconstruction
can be roughly classified into two categories: (1) optimization-based algorithms and (2)
greedy search ones. In this paper, we propose an algorithm called the preconditioned
generalized orthogonal matching pursuit (Pre-gOMP) to promote the recovery
performance. We provide a sufficient condition for exact recovery via the Pre-gOMP
algorithm, which says that if the mutual coherence of the preconditioned sampling
matrix � satisfies

μ(�) <
1

SK − S + 1
,

then the Pre-gOMP algorithm exactly recovers any K-sparse signals from the
compressed samples, where S (> 1) is the number of indices selected in each iteration
of Pre-gOMP. We also apply the Pre-gOMP algorithm to the application of ghost
imaging. Our experimental results demonstrate that the Pre-gOMP can largely
improve the imaging quality of ghost imaging, while boosting the imaging speed.

Keywords: Compressed sensing, Preconditioning, Generalized orthogonal matching
pursuit, Ghost imaging, Mutual coherence

1 Introduction
Recently, compressed sensing (CS) has gained a lot of interests and promoted the appli-
cations of many fields, such as the imaging signal processing, applied mathematics, and
statistics [1–5]. The main goal of CS is to estimate a high dimensional K-sparse signal
vector x ∈ Rn ((‖x||0 = K � n)) from a small number of linear samples:

y0 = �x, (1)

where � ∈ Rm×n is often called the sampling matrix. Although the Eq. 1 is underdeter-
mined, owing to the sparsity prior, x can be accurately recovered from its samples y0 by
solving the �0-minimization problem:

min
x

‖x‖0 subject to y0 = �x. (2)

There has been much effort in solving (2), which can be roughly classified into two
categories: (i) those relying on optimization and (ii) those using greedy search. The

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-020-00680-9&domain=pdf
mailto: jian_wang@fudan.edu.cn
http://creativecommons.org/licenses/by/4.0/


Tong et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:21 Page 2 of 14

optimization-based approaches relaxes the �0-norm to the �1-norm and solves the convex
optimization problem:

min
x

‖x‖1 subject to y0 = �x. (3)

A well-known algorithm solving (3) is called basis pursuit (BP) [2] which can reliably
recover sparse signals under appropriate constraints on the sampling matrix [2]. On the
other hand, greedy search algorithms have received considerable attention due to their
computational simplicity. Examples includes the matching pursuit (MP) [6], orthogonal
matching pursuit (OMP) [7], and orthogonal least squares (OLS) [8]. To improve the com-
putational efficiency and recovery performance, there have also been many studies on the
modification of OMP. As a representative variant, generalized OMP (gOMP) [9] chooses
S columns of � that are maximally correlated with the residual vector at each iteration,
which exhibits computational advantages over the conventional OMP algorithm.
As mentioned, the property of sampling matrix has a great influence on the recovery

performance. To evaluate the property of � , the mutual coherence property has been
widely used [10], which is defined as

μ(�) = max
1≤i�=j≤n

| 〈� i,� j
〉 |

‖� i‖2
∥∥� j

∥∥
2
. (4)

Generally speaking, a smallerμ contributes to better performance on signal recovery. One
way to reduce the mutual coherence is to multiply a matrix P on both sides of (2), i.e.,

min
x

‖x‖0 subject to Py0 = P�x. (5)

In doing so, we wish μ(P�) to be smaller than that of the original one. This operation is
commonly referred to as preconditioning in numerical linear algebra, where the matrix
P is called preconditioner [11]. There has been much evidence that preconditioning is
useful to promote the recovery quality of sparse signals.
In this paper, we propose a preconditioned gOMP (Pre-gOMP) algorithm for the recov-

ery of sparse signals. As shown in Algorithm 1, the Pre-gOMP algorithm consists of (i)
a preconditioning step and (ii) a conventional signal reconstruction step. The primary
contributions of this paper are summarized as follows:

1. Based on the mutual coherence framework, we develop a sufficient condition for
the Pre-gOMP algorithm. Specifically, we show that

μ(P�) <
1

SK − S + 1

is sufficient for Pre-gOMP to exactly recover any K-sparse vector in K iterations.
2. To evaluate the recovery performance of the Pre-gOMP algorithm. We apply it to

imaging objects in the application of ghost imaging (GI). Our experimental results
reveal that Pre-gOMP algorithm can largely improve the imaging quality compared
to the existing methods.

The rest of this paper is organized as follows. In Section 2, we introduce the Pre-gOMP
algorithm and analyze it under the mutual coherence framework. Section 3 provides sim-
ulation and the setup of GI. Section 4 presents simulated results and experimental results
for the propose algorithm. We conclude our work in Section 5.
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Algorithm 1 The Pre-gOMP Algorithm
Input: sampling matrix � ∈ Rm×n, sampling vector y0 ∈ Rm, sparsity level K, residual

tolerant ε, and number of indices for each selection S ≤ min{K , mK }.
Output: the support of estimated signal T̂ = argmin

S:|S|=K
‖xk − xkS‖2, the estimated signal x̂

satisfying x̂
�\T̂ = 0 and x̂T̂ = �

†
T̂
y.

1: function PRE-GOMP(� , y0,K , ε, S)
2: preconditioning matrix P ← �T(

��T)−1,
3: preconditioned samples y ← Py0.
4: preconditioned sampling matrix � ← P� .
5: iteration count k ← 0,
6: estimated support �0 ← ∅,
7: residual vector r0 ← y.
8: while ‖rk‖2 > ε and k < min{K , mK } do
9: k = k + 1.

10: (Identification) Select indices {φ(i)}i=1,2,··· ,S, corresponding to S largest
entries (in magnitude) in �Trk−1.

11: (Augmentation) �k = �k−1 ∪ S .
12: (Estimation) xk = argmin

u:supp(u)=�k

‖y − �u‖2.
13: (Residual Update) rk = y − �xk .
14: end while
15: return the support of estimated signal T̂ = argmin

S:|S|=K
‖xk − xkS‖2, the estimated

signal x̂ satisfying x̂
�\T̂ = 0 and x̂T̂ = �

†
T̂
y.

16: end function

2 Method
2.1 Notations

Let � = {1, · · · , n}. T = supp(x) = {i|i ∈ �, xi �= 0} is the support set of x. S ⊆ � is
the set of selected indices in each iteration and |S| is the cardinality of S . T\S = {i|i ∈
T\S}. �k = �k−1 ∪ S is the estimated support set at the kth iteration of Pre-gOMP.
xS ∈ R|S| is the subset of x indexed by S . Similarly, �S ∈ Rm×|S| is a submatrix of
� that contains columns of � indexed by S . If �S has full column rank, then �

†
S =

(�T
S�S)−1�T

S is the pseudoinverse of �S . span(�S) is the span of columns in �S . PS =
�S�

†
S is the projection matrix onto span(�S). P⊥

S = I − PS is the projection matrix
onto the orthogonal complement of span(�S) where I is the identity matrix.

2.2 The pre-gOMP algorithm

As mentioned, the Pre-gOMP algorithm consists of two parts: (i) the preconditioning
operation and (ii) the signal reconstruction step. The preconditioning operation aims to
reduce themutual coherence of the samplingmatrix. In this paper, we adopt the operation
in [12], in which the preconditioner P is given in closed-form as

P = �T(
��T)−1, (6)
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which has been shown to very effective in improving the mutual coherence. Interested
readers are referred to [12] for a detailed description and theoretical analysis of the
preconditioner. A similar treatment has also been proposed in [13].
In the signal reconstruction step, the gOMP algorithm is used, where the precondi-

tioned samples y = Py0 and the preconditioned sampling matrix� = P� are the inputs.
We would like to mention two advantages of the Pre-gOMP algorithm. Firstly, the pre-
conditioning operation leads to a reduction of the mutual coherence, which is useful for
promoting the recovery accuracy. Secondly, the signal reconstruction step can be very
efficient because the gOMP algorithm essentially carries out a parallel processing to iden-
tify support indices of x, as pointed out in [9]. The computationally benefit is no doubt
helpful in the application of GI.
The analysis of Pre-gOMP algorithm consists of two parts: (i) the reduction on the

mutual coherence after preconditioning and (ii) the sufficient condition analysis for
Pre-gOMP in terms of mutual coherence.

2.3 The reduction onμ after preconditioning

Lemma 1 (Preconditioning [12]) Given a sampling matrix � ∈ Rm×n with m ≤ n. The
preconditioned matrix P� with P = �T(��T)−1 is a Parseval tight frame.

One can interpret from Lemma 1 that the preconditioned sampling matrix P� has
identical non-zero singular values. As stated in [14], the larger the smallest non-zero sin-
gular value of a matrix is, the smaller mutual coherence of the matrix is. Therefore, the
preconditionor P can be useful in improving the mutual coherence.
To test the effectiveness of the preconditioning method, we perform simulation and

experiment. In our simulation, random negative exponential sampling matrices, which
are commonly used in GI [15], is considered. The entries of random negative exponential
sampling matrix � are drawn independently from the negative exponential distribution
p(x) ∼ 1

x exp
(− x

x
)
. The size of the sampling matrix is m × n with fixed n = 256 and m

ranges from 10 to 256. For each sampling number, 500 independent trials are performed,
and the mean mutual coherence of the matrix is calculated. In Fig. 1, we plot the mutual
coherence as a function of the sampling rate r, which is defined as r = m/n, where the
blue pentagram line describes μ(�) as a function of the sampling rate r, while the red
circle line represents μ(�) (denoted as optimized matrix in Fig. 1) as a function of the
sampling rate r. It is observed that the μ decreases as the sampling rate r increases. In
particular, the μ(�) is uniformly smaller than μ(�) for all region of sampling rate, which
clearly validates the effectiveness of our preconditioning method.

2.4 Sufficient condition for pre-gOMP based onμ

Theorem 1 Let � ∈ Rm×n be the preconditioned sampling matrix. Then, Pre-gOMP
exactly recovers any K-sparse signal x ∈ Rn from its preconditioned samples y = �x
under

μ <

{
1

2K−1 , when S = 1,
1

(K−1)S+1 , when S ≥ 2,
(7)

where S (≥ 1) is the number of indices selected in each selection in Pre-gOMP algorithm.
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Fig. 1 μ comparsion. Mutual coherence as a function of sampling rate

Remark 1 When S = 1, the sufficient condition for Pre-gOMP algorithm is the same
as that for OMP algorithm [16]. When S ≥ 2, the bound in (7) decreases monotonically
in S. Namely, the larger S is, the more restrictive the requirement on the preconditioned
sampling matrix � would be. Nevertheless, the large S can largely reduce the number of
iterations, which is useful for improving the computational complexity of the algorithm.

2.5 Proof of Theorem 1

Before proving Theorem 1, we give some lemmas that are useful in the proof.

Lemma 2 (norm inequality [17]) For matrices A, B ∈ Rm×n, and u ∈ Rm, the following
inequalities hold:

|‖A‖2 − ‖B‖2| ≤ ‖A + B‖2 ≤ ‖A‖2 + ‖B‖2, (8a)
‖u‖1√

m
≤ ‖u‖2 ≤ √

m‖u‖∞. (8b)

Lemma 3 (Lemma 6 in [12]) For two disjoint sets I1, I2 ⊂ {1, 2, . . . , n} and �I1 ,�I2 are
the corresponding subsets of � , then

‖�T
I1�I2‖2 ≤ μ

√|I1||I2|, (9)

where μ is the mutual coherence of � .
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Lemma 4 (Consequences of RIP [18, 19]) : Let S ⊆ �, if δ|S| ∈[ 0, 1), then for any vector
u ∈ R|S|,

(
1 − δ|S|

)‖u‖2 ≤ ‖�T
S�Su‖2 ≤ (

1 + δ|S|
)‖u‖2 (10a)

‖u‖2
1+δ|S|

≤ ‖(�T
S�S)−1u‖2 ≤ ‖u‖2

1−δ|S|
(10b)

δ|S| ≤ (|S| − 1)μ (10c)

Now, we proceed to prove Theorem 1 via mathematical induction, which is a similar
strategy as in [9, 20, 21] but with extension to the mutual coherence framework. Suppose
that the Pre-gOMP algorithm has performed k iterations successfully, i.e., �k contains at
least k correct indices. Then, in the kth iteration, the residual is

rk = P⊥
�k

�T\�kxT\�k .

Let β1 be themaximal absolute inner product of the residual signal rk and correct atoms
� i, i ∈ T . Let αi, i = 1, 2, · · · , S be the S largest absolute inner product of the residual
signal rk and incorrect atoms � i, i ∈ Tc. We arrange αi ,i = 1, 2, · · · , S, according to their
magnitude in the descending order (α1 ≥ α2 · · · ≥ αS). Following the strategy in [12], we
build the sufficient condition by showing that

β1 > αS, (11)

which guarantees at least one correct atom selected at the (k + 1)-th iteration of Pre-
gOMP.
In the (k + 1)-th (0 ≤ k ≤ K − 1) iteration, one has

β1 = ‖�T
T\�k

rk‖∞

(8b)≥ ‖�T
T\�k

rk‖2√|T\�k |

= ‖�T
T\�k

P⊥
�k

�T\�k xT\�k ‖2√|T\�k |
(8a)≥ ‖�T

T\�k
�T\�k xT\�k ‖2−‖�T

T\�k
P�k�T\�k xT\�k ‖2√|T\�k | ,

(12)

where

∥∥∥�T
T\�k

�T\�k xT\�k

∥∥∥
2

(10a),(10c)≥ (1 − (|T\�k| − 1) μ)
∥∥xT\�k

∥∥
2 , (13)
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and
∥∥∥�T

T\�k
P�k�T\�kxT\�k

∥∥∥
2

=
∥∥∥∥�T

T\�k
��k

(
�T

�k
��k

)−1
�T

�k
�T\�kxT\�k

∥∥∥∥
2

(9)≤ μ
√|T\�k| |�k|

∥∥∥∥
(
�T

�k
��k

)−1
�T

�k
�T\�kxT\�k

∥∥∥∥
2

(10b),(10c)≤ μ
√|T\�k| |�k|

1 − (|�k| − 1) μ

∥∥∥�T
�k

�T\�kxT\�k

∥∥∥
2

(9)≤ μ
√|T\�k| |�k|

1 − (|�k| − 1) μ

√|T\�k| |�k|
∥∥xT\�k

∥∥
2

= |T\�k| |�k| μ
1 − (|�k| − 1) μ

∥∥xT\�k

∥∥
2. (14)

Combining (13) with (14), we can get

β1 ≥ 1√|T\�k|
(
1 − (|T\�k| − 1) μ − |T\�k| |�k| μ

1 − (|�k| − 1) μ

)

· ∥∥xT\�k

∥∥
2 . (15)

Our next job is to calculate αS. Before doing so, we observe that
∥∥∥�T

Uk
rk

∥∥∥
2

=
∥∥∥�T

Uk

(
I − P�k

)
�T\�kxT\�k

∥∥∥
2

≤
∥∥∥�T

Uk
�T\�kxT\�k

∥∥∥
2
+

∥∥∥�T
Uk
P�k�T\�kxT\�k

∥∥∥
2
, (16)

where Uk := argmax
s⊂�\(T∪�k),|s|=S

∥∥∥φT
s rk

∥∥∥
1
. The first and second term on the right-hand side

of (16) can be rewritten as

∥∥∥�T
Uk

�T\�kxT\�k

∥∥∥
2

(9)≤ μ
√|Uk| |T\�k|

∥∥xT\�k

∥∥
2

= μ
√
S |T\�k|

∥∥xT\�k

∥∥
2, (17)

and
∥∥∥�T

Uk
P�k�T\�kxT\�k

∥∥∥
2

=
∥∥∥∥�T

Uk
��k

(
�T

�k
��k

)−1
�T

�k
�T\�kxT\�k

∥∥∥∥
2

(9)≤ μ
√|Uk| |�k|

∥∥∥∥
(
�T

�k
��k

)−1
�T

�k
�T\�kxT\�k

∥∥∥∥
2

(10b),(10c)≤ μ
√|Uk| |�k|

1 − (|�k| − 1) μ

∥∥∥�T
�k

�T\�kxT\�k

∥∥∥
2

(9)≤ μ
√|Uk| |�k|

1 − (|�k| − 1) μ
μ

√|T\�k| |�k|
∥∥xT\�k

∥∥
2

= |�k| √|Uk| |T\�k|μ2

1 − (|�k| − 1) μ

∥∥xT\�k

∥∥
2, (18)
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respectively. Combining (17) with (18), one gets
∥∥∥�T

Uk
rk

∥∥∥
2

≤
(
μ

√
S |T\�k|+|�k| √S |T\�k|μ2

1 − (|�k| − 1) μ

)

· ∥∥xT\�k

∥∥
2 . (19)

On the other hand,
∥∥∥�T

Uk
rk

∥∥∥
2

≥ 1√
S

∥∥∥�T
Uk
rk

∥∥∥
1

≥ 1√
S
SαS

≥ √
SαS. (20)

From (19) and (20), one further has

αS ≤
(

μ
√|T\�k| + |�k| √|T\�k|μ2

1 − (|�k| − 1) μ

)

· ∥∥xT\�k

∥∥
2. (21)

By combining (15) with (21), we obtain the sufficient condition of (11) as

1√|T\�k|
(
1 − (|T\�k| − 1) μ − |T\�k| |�k| μ2

1 − (|�k| − 1) μ

)

> μ
√|T\�k| + |�k| √|T\�k|μ2

1 − (|�k| − 1) μ
, (22)

which can be simplified as

|T\�k| <
1
2

(
1 + 1

μ
− |�k|

)
. (23)

Since |T\�k| ≤ K − k and |�k| = Sk, to guarantee (23) holds, it requires

K <
1
2

(
1 + 1

μ

)
−

(
S
2

− 1
)
k. (24)

When S = 1, sufficient condition of (24) becomes

K <
1
2

(
1 + 1

μ

)
+ 1

2
k. (25)

Since 0 ≤ k ≤ K − 1, (25) is guaranteed by

K <
1
2

(
1 + 1

μ

)
, (26)

or equivalently,

μ <
1

2K − 1
. (27)

When S ≥ 2, the sufficient condition of (24) can be given by

K <
1
2

(
1 + 1

μ

)
−

(
S
2

− 1
)

(K − 1) , (28)

that is,

μ <
1

S(K − 1) + 1
. (29)
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Finally, by combining (27) with (29), the sufficient condition for Pre-gOMP can be
given by

μ <

{
1

2K−1 , S = 1,
1

(K−1)S+1 , S ≥ 2.
(30)

3 Experiments
In this section, we carry out simulation and experiment to test the performance of Pre-
gOMP.We also apply the Pre-gOMP algorithm to recover image signals in the application
of GI.

3.1 Simulation experiments

In the simulation, we use the testing strategy in [22, 23] which measures the effective-
ness of recovery algorithms by checking the empirical frequency of exact reconstruction
in the noiseless case. For comparsion, we adopt the OMP, iterative hard thresholding
(IHT) [24], iterative soft thresholding (IST) [25], BP, gOMP, and Pre-gOMP algorithm to
recover signals. In each trial, we construct m × n (m = 128 and n = 256) random nega-
tive exponential sampling matrix � with entries drawn independently from the negative
exponential distribution exp (1). Moreover, we generate K-sparse vector x whose sup-
port is chosen at random. Three types of sparse signals are taken into account: (i) sparse
Gaussian signals, (ii) sparse pulse amplitude modulation (PAM) signals, and (iii) sparse
two-valued signals, whose non-zeros elements are selected from N (0, 1), {±1,±3}, and
{0, 255}, respectively.

3.2 Setup of GI

Figure 2 presents a typical schematic of computational ghost imaging [26]. A light-
emitting diode (LED) with wavelength λ = 532nm is used as the light source. The light
beam is uniformly projected on the digital micromirror device (DMD) by the means of
Köhler illumination through the Köhler illumination lens. Here, a series of desired ran-
dom coded patterns is prebuilt by the DMD, which controls the direction of light by the
micro mirrors and the gray value of the light pattern is achieved by controlling the inte-
gration time of the DMD. Then, the coded patterns are projected on the object through

Fig. 2 The experimental schematic of ghost imaging via DMD
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the emission lens and photons transmitted through the object are gathered by a bucket
detector through a conventional imaging lens.
In the GI system, the DMD consists of 1024 × 786 pixels and the size of each pixel is

13um, and only 252×252 pixels on the center of the DMD are used to generate the coded
pattern. The size of object is 9mm×9mm. The object’s imageOGI(xr , yr) can be retrieved
via conventional the GI and CS algorithm, respectively. In the GI algorithm, OGI(xr , yr) is
retrieved from the correlation between test arm light intensity Bs and the reference arm
light intensity Isr(xr , yr) [27]:

OGI(xr , yr) = 1
m

m∑

s=1
Isr(xr , yr) − 〈

Isr(xr , yr)
〉
Bs, (31)

where s denotes the sth sampling, m is the total sampling number, and
〈
Isr(xr , yr)

〉 =
m∑

s=1
Isr(xr , yr)/m represents the ensemble average of Isr(xr , yr).

In the CS algorithm, OGI(xr , yr) is recovered by solving the problem,

min
O

‖O‖0 subject to y = �O, (32)

where y =
[
B1 · · · Bs · · · Bm

]T ∈ Rm denotes the sampling vector, the object O is
reshaped into a column vector, and the � is related to the coded patterns Isr(xr , yr), s =
1, · · · ,m.

4 Results and discussion
In Fig. 3, we perform 500 independent trials for each sparsity and plot the empirical fre-
quency of exact reconstruction as a function of the sparsity level. In the gOMP algorithm,
we choose S = 3, 5 in our simulation. As observed, Fig. 3a, b, and c tell the recovery
performance for recovering sparse Gaussian signals, sparse PAM signals, and sparse two-
valued signals, respectively. The results reveal that the critical sparsity of the Pre-gOMP
algorithm is larger than that of the gOMP algorithm, which implies the precondition-
ing method indeed promotes the recovery performance. It can also be observed that the
Pre-gOMP algorithm outperforms the OMP and the thresholding algorithms. Even when
compared with BP, the Pre-gOMP still shows quite competitive recovery performance.
Overall, we observe that the Pre-gOMP is effective for recovering all three types of sparse
signals.

Fig. 3 Frequency of exact recovery of sparse signals as a function of K for the random negative exponential
sampling matrix
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Fig. 4 Experimental results (the middle column) for GI, PGI, DGI, gOMP, GPSR, BP, and Pre-gOMP
reconstruction algorithms. Objects are shown as the right one and the sampling rate selected to
reconstruction are shown as the left one. Different objects are imaged and compared at different rows

In the GI imaging experiment, we adopt GI, differential GI (DGI) [27], pseudo-inverse
GI (PGI) [28], gOMP, gradient projection for sparse reconstruction (GPSR) [29], BP, and
Pre-gOMP algorithms to recover the image of object and compare their performances.
The reconstruction results of different objects via different reconstruction algorithms are
shown in Fig. 4. In Fig. 4, some results at some specific sampling rate are selected and
the sampling rate is labeled in the left column. The reconstruction results are shown in
the middle column, the original objects are in the right column, and the reconstruction
results via different algorithms are compared in adjacent columns. It is observed that the
reconstruction results of GI is significantly improved by the Pre-gOMP algorithm.
Figure 5 shows the recovery performance with respect to different sampling rates. To

quantitatively measure the recovery quality, the peak signal noise rate (PSNR) is adopted,

which is defined as PSNR = 10 log
(

MAXI
2

MSE

)
, where the MAXI is the maximum value in

the reconstructed image and theMSE is themean square error between the reconstructed
image and the original object. Larger PSNR generally implies better recovery quality. As
observed in Fig. 5, the PSNR increases with the sampling rate. The Pre-gOMP algorithm
indeed improves the recovery quality of GI compared with other algorithms. In particu-
lar, the recovery quality via Pre-gOMP is slightly better than that via BP within a range
of sampling rate. The recovery quality via Pre-gOMP is improved over 2 dB to that via
gOMP.
Figure 6 represents the running time via different recovery algorithms. The running

time is measured by using the MATLAB program under quad-core 64-bit processor and
Windows 10 environment. In Fig. 6, the result of GI algorithm is not included because
the computational complexity of GI is similar to that of DGI. Overall, it is observed that
the running time of the DGI and PGI is smaller than that of CS algorithms, and the
Pre-gOMP(S=2) algorithm is faster than the BP, gOMP(S=3), and GPSR algorithm. Both
simulation and experimental results demonstrate that the Pre-gOMP algorithm exhibits
competitive performance in the signal reconstruction, while with fast running time.

5 Conclusion
In this paper, we have proposed an algorithm called the Pre-gOMP algorithm for the
recovery of sparse signals. Using the mutual coherence framework, we have developed a
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Fig. 5 The reconstruction performance as a function of the sampling rate is shown. Different reconstruction
algorithms are compared

Fig. 6 Running time as a function of sampling rate. Different reconstruction algorithms are compared
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sufficient condition for Pre-gOMP to exact reconstruct any K-sparse signal. It is shown
that if the μ of the preconditioned sampling matrix satisfies μ < 1/(KS − S + 1), (S > 1),
then the Pre-gOMP algorithm perfectly recovers any K-sparse signals from its precon-
ditioned samples. Furthermore, we apply the Pre-gOMP algorithm to recover the image
signal in the application of GI. Our experimental results demonstrate that the Pre-gOMP
can largely improve the imaging quality of GI, while boosting the recovery speed.
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