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Abstract

With increased degrees of freedom of the transmitter, coherent waveform-agile radar
system can change its transmission on-the-fly in response to target detection’s
requirement. This approach can provide better performance than a single waveform. In
this paper, we consider unimodular sequence set design (USSD) problem based on
summed range-Doppler ambiguity function (SRDAF) for coherent waveform-agile
radar system. We present two algorithms for constructing unimodular sequence sets
under the constant module constraint with desired minimized sidelobes on a
predefined area of range-Doppler plane. The proposed algorithms are constructed
based on singular value decomposition (SVD) and cyclic algorithm (CA), respectively.
Numerical examples show the effectiveness of the proposed algorithms.

Keywords: Unimodular sequence set, Coherent radar, Waveform agility, Sidelobes,
Optimization algorithm

1 Introduction
In the last decade, radar systems have been able to take full advantage of degrees of free-
dom of the receiver to improve performance. The emergence of prototype radar systems
equipped with highly agile, software-driven waveform generators has provided the ability
to change the transmit waveform at each time step to match environments and sensing
objectives, such as increased signal-to-noise ratio (SNR), reduced estimation errors, or
increased collection of information. Since there is an infinity of possible waveforms, it
becomes critical to select or optimize the transit waveform at each time step. In coher-
ent radar detection applications, the waveform-agile transmitter optimizes the waveform
on a pulse-to-pulse basis and the radar system can obtain the information by optimally
improving matched filter’s response of the target.
In the literature, extensive research has been investigated single waveform design from

the viewpoint of autocorrelation function and ambiguity function [1–25]. Some stud-
ies have also been focused on the choice of agile waveform in sensing. In the works
[26–33], the dynamic selection of waveforms for target tracking was considered and
the optimal waveform parameters were derived for tracking target motion using a lin-
ear/nonlinear observations model with detection in a clutter/clutter-free environment.
These approaches can provide performance improvements over waveform optimization
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or improved tracking algorithm. Agile waveform can also be designed from the view-
point of ambiguity function. The authors of [34] demonstrated that suitably transmitted
and processed radar waveforms based on Golay sequences provide new primitives for
adaptive waveform transmission. The adaptive transmission enables improved detec-
tion and finer resolution, while managing computational complexity at the receiver.
Actually, Golay complementary sequences [35] can be seen as the simplest sequences
in waveform-agile coherent radar system, and there is extensive literature because of
the importance of such sequences in communications, coding theory, cryptology, and
radar [36–41].
It should be noted that unimodular (i.e., constant modulus) sequences with good

autocorrelation properties are useful in several areas, including communications and
radar. The integrated sidelobe level (ISL) of the correlation function is often used to
express the goodness of the correlation properties of a given sequence. In the references
[3, 9, 25], several cyclic algorithms for the local minimization of ISL-related metrics are
presented. The power-like method are used for synthesizing sequence with good correla-
tion and can also be extended for synthesizing sequences with good autocorrelation and
cross-correlation functions in multiple-input multiple-output (MIMO) radar. However,
these methods can not be directly utilized for optimizing sequences in waveform-agile
coherent radar because they can only optimize range sidelobes level for correlation
function.
In the aforementioned works, we have only considered ambiguity function synthesis for

a single waveform, and little attention was paid to waveform design of coherent waveform-
agile radar based on summed range-Doppler ambiguity function (SRDAF). In addition,
sidelobe shape control has also not been considered. In this paper, we investigate sequence
set design problem with constant module, i.e., unimodular sequence set design (USSD)
problem by SRDAF mathematical tool. Furthermore, we also consider that minimizing
sidelobes on range-Doppler plane around the origin can improve the detection perfor-
mance for closely spaced targets. We present two algorithms for constructing unimodular
sequence sets under the constant module constraint with desired minimized sidelobes
on a predefined area of range-Doppler plane. The proposed algorithms are constructed
based on singular value decomposition (SVD) and cyclic algorithm (CA), respectively,
and can be convergent by several hundreds of iterations.
In [42–44], coordinate descent (CD) algorithm is an important search algorithm and

can solve optimization problems by successively performing approximate minimization
along coordinate directions or coordinate hyperplanes. It has been used in applications
for many years, and their popularity continues to grow because of their usefulness in data
analysis, machine learning, and other areas of current interest. CD approach has been
successfully applied for discrete-phase sequence design and minimum ISL code sequence
design. In this paper, the performance of CD approach is compared with the proposed
algorithms.
The rest of this work is organized as follows. Section 2 discusses the mathematical

model and ambiguity function of coherent waveform-agile radar system. Section 3 pro-
poses two optimization algorithms for optimizing the shape of SRDAF based on SVD and
CA, i.e., SVD-USSD and CA-USSD algorithms. Several numerical examples are presented
in Section 4. Finally, concluding remarks and directions for future research are presented
in Section 5.
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2 Mathematical model and ambiguity function
A radar system transmits a coherent pulse train consisting of N pulses, which can be
expressed as the following general form:

s(t) =
N−1∑

n=0
sn(t − nTr), (1)

where sn(t) is the complex envelope of nth transmitted pulse and Tr is the pulse repetition
interval (PRI). We assume that sn(t) = 0,∀t �[ 0,T], where T is the pulse duration. sn(t)
is modulated by the following way

sn(t) =
M−1∑

m=0
x(n,m)pm(t), 0 ≤ t ≤ T , (2)

where M is the subpluse length, x(n,m), n = 0, 1, ...,N − 1,m = 0, 1, ...,M − 1 is the
modulating code sequence that is to be designed, and

pm(t) =
{ 1√

tp
, mtp ≤ t ≤ (m + 1)tp

0, elsewhere,
(3)

is an ideal rectangular shaping pulse of time length tp ( and thus T = Mtp). It is usually
desired to transmit unimodular sequences

x(n,m) = ejφn,m , (4)

where {φn,m} are the phases. In common pulsed Doppler radar, the pulses with the same
modulation, i.e., sn(t) = s0(t),∀n, are transmitted consecutively in coherent process-
ing interval (CPI). In this paper, we investigate the ambiguity function properties of
waveform-agile pulsed Doppler radar.
The first processing step of pulsed Doppler is to implement matched filtering of the

received echo. For a point target for nth pulse, the matched filter output can be given by

χn(τ , ν) =
∫ T

0
sn(t)sn(t − τ)ej2πν(t−nTr)dt

= e−j2πνnTr
M−1∑

k=0

M−1∑

l=0
x∗(n, k)

·
(∫ T

0
pk(t)pl(t − τ)ej2πνtdt

)
x(n, l),

(5)

where τ and ν are time delay and Doppler frequency shift of the target, respectively. We
show that if, for all relevant Doppler frequency shift−1/2Tr ≤ ν ≤ 1/2Tr , the pulse dura-
tion T is small enough such that |2πνT | < π/5, which suggests T ≤ Tr/5, then the phase
change in the received echo that is caused by the Doppler frequency of target motion can
be neglected. Additionally, consider the time grid τ = ptp, p = −(M− 1), ..., 0, ..., (M− 1)
whose points are integer multiples of the subpulse length tp. It is not difficult to calculate
χn(τ , ν) at τ = ptp, which can be expressed as

χn(ptp, ν) =ejπνtpe−j2πνnTr
sin(πνtp)

πνtp

·
M−1∑

m=0
x∗(n,m)x(n,m − p).

(6)



Zhang et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:31 Page 4 of 17

Note that Tr � tp, and the Doppler unambiguity constraint −1/2Tr ≤ ν ≤ 1/2Tr , we
obtain

χn(ptp, ν) ≈ e−j2πνnTr
M−1∑

m=0
x∗(n,m)x(n,m − p). (7)

The second step for pulsed Doppler radar is to process the coherent pulse train, which
is based on discrete Fourier transformation (DFT). To perform coherent processing of a
particular delay, we must collect N samples at a certain delay from last N pulses. There-
fore, we construct a two dimensional (2M − 1) × N array of matched filter output: first
dimension is the delay, second dimension is the pulse number. The IDFT operation is
then performed on N samples of a row of the matched filter output, corresponding to a
certain delay. The pth IDFT processor output can be expressed as

ξ(p, v) = 1
N

N−1∑

n=0
ej2πvnTrχn(ptp, ν). (8)

Consider the frequency grid v = q/NTr , where q = 0, 1, ...,N − 1. For convenience of
expression, we ignore the constant in (8) and rewrite (8) as

ξ(p, q) =
N−1∑

n=0
ej

2π
N nqχn(ptp, ν). (9)

It is no surprising that an ideal ambiguity function should have a high narrow peak in
the origin and zero sidelobes everywhere else. Note that the target Doppler frequency ν

only affect the high peak position in Doppler frequency axis, and the sidelobe energy is
constant with all relevant ν; thus, we can set ν = 0 and define a range-Doppler ambiguity
function of pulse train, i.e. SRDAF, as

ξ(p, q) =
N−1∑

n=0

M−1∑

m=0
ej

2π
N nqx∗(n,m)x(n,m − p)

=
N−1∑

n=0
ej

2π
N nqρn(p),

(10)

where ρn(p) = ∑M−1
m=0 x∗(n,m)x(n,m − p) denotes the auto-correlation coefficient of the

modulation code of the nth pulse.
It is easy to verify ρn(0) = M,∀n. Thus, we have ξ(0, 0) = NM, and ξ(0, q) = 0, q �= 0.

Note that the shape of ξ(p, q) is uncorrelated with the modulation codes {x(n,m)} and
ξ(0, 0), which indicates the peak value of SRDAF, is determined by the modulation code
energy. Additionally, for p �= 0, the shape of ξ(p, q) is determined by the modulation
codes {x(n,m)} of N pulses. Therefore, we can control the sidelobe of a a predefined area
on range-Doppler plane by optimizing the modulation codes {x(n,m)}. For instance, the
range and Doppler frequency of the observed target are a prior known by prescan or a
prior information, and we can minimize the sidelobe of ξ(p, q) in that area. Assume I	 is
a subset including the positions of (p, q) on range-Doppler plane for minimizing sidelobe
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and excluding positions on zero delay (i.e., p = 0), the partial sidelobe minimization of
ξ(p, q) can be described by

min{x(n,m)}
∑

(p,q)⊂I	

|ξ(p, q)|2

s.t. |x(n,m)| = 1,

n = 0, 1, ...,N − 1,m = 0, 1, ...,M − 1.

(11)

Considering the objective function in (11) is a quartic form, which is difficult to tackle,
we try to transform the above minimization problem into a quadratic form.

3 Optimizationmethod
The optimization problem requires N transmitted waveform {sn(t)} to be optimized. It
is hard for us to optimize them simultaneously. By utilizing the alternating direction
method, we can optimize the nth waveform sn(t) or its modulation code {x(n,m)}M−1

m=0
while the others are fixed. Hence, the optimization problem in (11) can be transformed to
N optimization problems, and the nth problem can be given by

Pn : minxn
∑

(p,q)⊂I	

|ξ(p, q)|2

s.t. |x(n,m)| = 1,

m = 0, 1, ...,M − 1.

(12)

where xn =[ x(n, 0) x(n, 1) ... x(n,M−1)]T , and (·)T denotes the transpose operation
of a vector/matrix. In the following subsection, we will introduce an unimodular sequence
set design method based on singular eigenvalue decomposition, namely SVD-USSD.

3.1 SVD-USSDmethod

By substituting (10) into (12), we optimize (12) by its autocorrelation coefficient {ρn(p)}
instead of xn. The corresponding optimization problem can be written as

P̃n : min
ρn

∑

(p,q)⊂I	

|ξ(p, q)|2. (13)

Suppose that the sidelobe of AF shape on a region of range-Doppler plane is to be
minimized, and q(p) ⊂[ qp,min, qp,max], where qp,min and qp,max denote the bounds of the
selected Doppler bins of the pth range bin.
By further utilizing alternating direction method, the optimization problem P̃n can be

split into multiple minimization problems, and the pth sub optimization problem can be
described by

P̃(p)
n :

min
ρn(p)

∥∥apρn(p) − bp
∥∥2 , (14)

where ap = [
ej2πnqp,min/N ... ej2πnqp,max/N

]T , and bp = −[
∑N−1

k=0,k �=n e
j2πkqp,min/N

ρk(p) ...
∑N−1

k=0,k �=n e
j2πkqp,max/Nρk(p)]T , ‖ · ‖2 denotes the Frobenius matrix norm.

The optimal solution ρn(p) of P̃1(p)
n can be easily given by the least square (LS) method:

ρn(p) =
(
aHp ap

)(−1)
aHp bp = 1

Np
aHp bp, (15)
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where (·)H denotes the conjugate transpose operation, Np is the number of the selected
Doppler bins of the pth range bin.
Let

Xn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(n, 0)
...

. . .
x(n,M − 1) x(n, 0)

. . .
...

x(n,M − 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2M−1)×M

. (16)

With the obtained ρn(p), we can construct a matrix, which is given by

Gn =

⎛

⎜⎜⎜⎜⎜⎝

ρn(0) ρ∗
n(1) · · · ρ∗

n(M − 1)

ρn(1) ρn(0)
. . .

...
...

. . . . . . ρ∗
n(1)

ρn(M − 1) · · · ρn(1) ρn(0)

⎞

⎟⎟⎟⎟⎟⎠

M×M

. (17)

Because XH
n Xn = Gn indicates that the modulation code {x(n,m)}M−1

m=0 is the optimal
solution for (14), we can think of designing {x(n,m)}M−1

m=0 by minimizing the following
criterion

∥∥XH
n Xn − Gn

∥∥2 (18)

over the set of unimodular sequences. This optimization problem can be approximated
by a simpler criterion

∥∥Xn − UG1/2
n

∥∥2 , (19)

where U is a (2M − 1) ×M unitary matrix, i.e., UHU = I. The design problem associated
with (19) can be stated as follows

P̃2n :

min
{x(n,m)}M−1

m=0 ;U
∥∥Xn − UG1/2

n
∥∥2

s.t. UHU = I,

|x(n,m)| = 1, m = 0, 1, ...,M − 1.

(20)

Regarding the minimization problem in (20), we note the following facts. For given Xn,
let

XnG−1/2
n = U1
UH

2 (21)

denotes the SVD of XnG−1/2
n , where U1 is a (2M − 1) × M semi-unitary matrix, U2 is a

M × M unitary matrix, and 
 is a M × M diagonal matrix. Then, the solution of U for
fixed Xn is given by

U = U1UH
2 . (22)

Let V = UG1/2
n , and {vm}M−1

m=0 are the elements of the matrix V whose positions are the
same as the positions of x(n,m) in Xn. Then, it follows from (20) that the generic form of
the minimization problem with respect to the elements of {x(n,m)}M−1

m=0 is

min
x(n,m)

M−1∑

m=0
|x(n,m) − vm|2. (23)
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Considering the unimodular constraint, the minimizer of (20) can be given by

x(n,m) = ejφn,m , φn,m = arg
(M−1∑

m=0
vm

)
. (24)

The SVD-USSD method is summarized in Table 1.

Remark 1 In SVD-USSD optimization procedure, iterations are required to be per-
formed and convergence can be obtained after a number of iterations. Note that eigenvalue
decomposition (EVD) and SVD operations are performed once in every iteration step and
hence the computational complexity of this algorithm is a little higher than expected. In
practical occasions, where low complexity algorithms are more popular, algorithms with-
out EVD and SVD operations can be preferable by radar system designer. In the next
subsection, we will introduce a low complexity algorithm, i.e., CA-USSD algorithm.

3.2 CA-USSDmethod

The objective function in (12) is a quartic form, which is relatively difficult to obtain
the global optimum by the analytical expression or the optimization method. In this
section, we expect to find the local optimum for the problem in (28) and propose a
computationally efficient approach.
Let U(n)

p,q = ej2πnq/NTp, where Tp is aM × M shift matrix and defined as

Tp(k, l) =
{
1, l = k + p;
0, elsewhere.

(25)

Table 1 The SVD-USSD algorithm

Step 1: set k = 0, initialize modulation codes {x(n,m)},
n = 0, 1, ...,N − 1,m = 0, 1, ...,M − 1 using randomly generate
codes;

Step 2:

for n=0:N-1

Step 2.1: solve P̃1
(p)
n by ρn(p) = 1

Np
aHpbp ;

construct thematrixGn ;

Step 2.2: solve P̃2n ;

for fixedXn, perform SVD operation onXnG
−1/2
n = U1
UH

2 ;

calculate thematrixU = U1UH
2 ;

calculate the correspondingmatrixV = UG1/2
n ;

for fixedV, calculate themodulation code by

x(n,m) = ejφn,m , φn,m = arg
(∑M−1

m=0 vm
)
;

end

Step 3: set k = k + 1, repeat the Step (2) until a certain stop
criterion,

e.g.
∑N−1

n=0
∑M−1

m=0 ‖x(n,m)(k+1) − x(n,m)(k)‖2 ≤ ε ,

where ε is a predefined value.
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The objective function in (11) can be expressed as

∑

(p,q)⊂I	

|ξ(p, q)|2 =
∑

(p,q)⊂I	

∣∣∣∣∣

N−1∑

n=0
xHn U(n)

p,qxn

∣∣∣∣∣

2

=
∑

(p,q)⊂I	

∣∣∣∣∣∣
xHn U(n)

p,qxn +
N−1∑

k=0,k �=n
xHk U

(k)
p,qxk

∣∣∣∣∣∣

2

= xHn Qnxn,

(26)

where

Qn =
∑

(p,q)⊂I	

(
U(n)H
p,q + γ (n)

p,q IM
)H

xnxHn
(
U(n)H
p,q + γ (n)

p,q IM
)
, (27)

and

γ (n)
p,q = 1

M

N−1∑

k=0,k �=n
xHk U

(k)
p,qxk . (28)

The optimization problem in (12) can be transformed to

Pn : minxn xHn Qnxn
s.t. |x(n,m)| = 1, m = 0, 1, ...,M − 1,

(29)

where theM × M Hermitian matrixQn is positive definite.
Considering that the diagonal loading does not change the optimum solution of (29),

this minimization problem can also be transformed to

Pn : minxn xHn Q̃nxn
s.t. |x(n,m)| = 1, m = 0, 1, ...,M − 1,

(30)

where Q̃n = Qn − λcIM is a negative definite matrix if λc > λmax(Qn) + 1. Here, λmax(·)
denotes the largest eigenvalue, and we have Q̃n < −I.
In the following, we try to optimize (29) in a cyclic way. Let x(t)

n and Q̃(t)
n be the obtained

sequence and matrix at the tth iteration.

Lemma 1 The following two inequalities

x(t+1)H
n Q̃(t+1)

n x(t+1)
n < x(t)H

n Q̃(t+1)
n x(t)

n

x(t+1)H
n Q̃(t)

n x(t+1)
n < x(t)H

n Q̃(t)
n x(t)

n
(31)

can be obtained if the following condition is satisfied

Re
[
x(t+1)H
n Q̃(t+1)

n x(t)
n

]
< x(t)H

n Q̃(t+1)
n x(t)

n ,

Re
[
x(t+1)H
n Q̃(t)

n x(t)
n

]
< x(t)H

n Q̃(t)
n x(t)

n .
(32)

The proof of Lemma can be seen in [13].

Proof Because of the negative definiteness of the matrices Q̃(t)
n and Q̃(t+1)

n , we can have
(
x(t+1)
n − x(t)

n

)H
Q̃(t+1)

n

(
x(t+1)
n − x(t)

n

)
< 0, (33)

and
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(
x(t+1)
n − x(t)

n

)H
Q̃(t)

n

(
x(t+1)
n − x(t)

n

)
< 0. (34)

With the above two inequalities, we can obtain

x(t+1)H
n Q̃(t+1)

n x(t+1)
n

< 2Re
{
x(t+1)H
n Q̃(t+1)

n x(t)
n

}
− x(t)H

n Q̃(t+1)
n x(t)

n ,
(35)

and

x(t+1)H
n Q̃(t)

n x(t+1)
n

< 2Re
{
x(t+1)H
n Q̃(t)

n x(t)
n

}
− x(t)H

n Q̃(t)
m x(t)

n .
(36)

If Re
[
x(t+1)H
n Q̃(t+1)

n x(t)
n

]
< x(t)H

n Q̃(t+1)
n x(t)

n and Re
[
x(t+1)H
n Q̃(t)

n x(t)
n

]
< x(t)H

n Q̃(t)
n x(t)

n are
satisfied at the same time, we can have

x(t+1)H
n Q̃(t+1)

n x(t+1)
n < x(t)H

n Q̃(t+1)
n x(t)

n , (37)

and

x(t+1)H
n Q̃(t)

n x(t+1)
n < x(t)H

n Q̃(t)
n x(t)

n . (38)

Note that x(t)H
n Q̃(t+1)

n x(t)
n = x(t+1)H

n Q̃(t)
n x(t+1)

n , therefore we can conclude

x(t+1)H
n Q̃(t+1)

n x(t+1)
n < x(t)H

n Q̃(t)
n x(t)

n . (39)

Remark 2 Lemma 1 indicates the requirement for the two inequalities, and it also states
that the objective function xH(t)

n Q̃(t)
n x(t)

n is convergent and approaches the minimum value
if (32) is satisfied. In the next step, the relationship between the above two inequalities in
(31) is shown in Lemma 2.

Lemma 2 The two inequalities x(t)H
n Q̃(t+1)

n x(t)
n < x(t)H

n Q̃(t)
n x(t)

n and x(t+1)H
n

Q̃(t+1)
n x(t+1)

n < x(t)H
n Q̃(t+1)

n x(t)
n establish simultaneously if the sequence x(t+1)

n can be
obtained by the following minimization problem

min
x(t+1)
n

∥∥∥x(t+1)
n + Q̃(t)

n x(t)
n

∥∥∥
2
. (40)

Proof By expanding the objective function in (40), we obtain
∥∥∥x(t+1)

n + Q̃(t)
n x(t)

n

∥∥∥
2 = c + 2Re

{
x(t+1)H
n Q̃(t)

n x(t)
n

}
, (41)

where c = M2 +
∥∥∥Q̃(t)

n x(t)
n

∥∥∥
2
is a constant value. x(t+1)

n is the minimizer of Re
{
x(t+1)H
n Q̃(t)

n x(t)
n

}
. Hence, the second requirement can be satisfied by solving the mini-

mization problem in (41). The solution for this problem can be easily given by

x(t+1)
n = −Q̃(t)

n x(t)
n . (42)

.
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Considering the solution x(t+1)
n = −Q̃(t)

n x(t)
n and Q̃(t)

n < −I, we can obtain

Re
[
x(t+1)H
n Q̃(t)

n x(t)
n

]
− x(t)H

n Q̃(t)
n x(t)

n

= −x(t)H
n Q̃(t)H

n Q̃(t)
n x(t)

n − x(t)H
n Q̃(t)

n x(t)
n

= x(t)H
n

(
−Q̃(t)H

n Q̃(t)
n − Q̃(t)

n

)
x(t)
n

= −x(t)H
n

(
Q̃(t)H

n + I
)
Q̃(t)

n x(t)
n < 0.

(43)

Considering the solution x(t+1)
n = −Q̃(t)

n x(t)
n and Q̃(t+1)

n < −I, we can also obtain

Re
[
x(t+1)H
n Q̃(t+1)

n x(t)
n

]
− x(t)H

n Q̃(t+1)
n x(t)

n

= −x(t)H
n Q̃(t)H

n Q̃(t+1)
n x(t)

n − x(t)H
n Q̃(t+1)

n x(t)
n

= −x(t)H
n

(
Q̃(t)H

n + I
)
Q̃(t+1)

n x(t)
n < 0.

(44)

Considering the constant modulus constraint, the following operation can be added
after (42)

x̃(t+1)
n = ejarg

(
x(t+1)
n

)

,

where arg(·) denotes the argument of a complex number. The obtained unimodular
sequence consists of different phase values, arbitrarily generated by [ 0, 2π), and it is a
suboptimal solution to (40).
The CA-USSD method is summarized in Table 2.
Convergence analysis:
The CA-USSD algorithm given in Table 2 is based on the general cyclic scheme; thus,

according to Section 3.2, we know that the sequence of objective values evaluated at gen-
erated by the algorithm is nonincreasing. And it is easy to see that the objective value is
bounded below by 0; thus, the sequence of objective values is guaranteed to converge to a
finite value.
In this part, we will further analyze the convergence property of the sequence generated

by the CA-USSD algorithm and show the convergence.
According to Lemma 1, x(t+1)H

n Q̃(t)
n x(t+1)

n < x(t)H
n Q̃(t)

n x(t)
n establishes if Re[

x(t+1)H
n Q̃(t)

n x(t)
n

]
< x(t)H

n Q̃(t)
n x(t)

n . Therefore, x(t+1)H
n Q̃(t)

n x(t+1)
n < x(t)H

n Q̃(t)
n x(t)

n also

established if the equality x(t+1)
n = −Q̃(t)

n x(t)
n is satisfied.

Table 2 The CA-USSD algorithm

Step 1: set k = 0, initialize modulation codes {x(n,m)},
n = 0, 1, ...,N − 1,m = 0, 1, ...,M − 1 using randomly generate codes;

Step 2:

for n=0:N-1

Step 2.1: calculate thematrix Q̃n by Eq. (27) and (28);

Step 2.2: solvePn by x
(t+1)
n = −Q̃(t)

n x(t)
n ;

Step 2.3: x̃(t+1)
n = ejarg(x

(t+1)
n ) .

end

Step 3: set k = k + 1, repeat the Step (2) until a certain stop criterion,

e.g.
∑N−1

n=0
∑M−1

m=0 ‖x(n,m)(k+1) − x(n,m)(k)‖2 ≤ ε ,

where ε is a predefined value.



Zhang et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:31 Page 11 of 17

We can further note that

x(t+1)H
n Q̃(t)

n x(t+1)
n − x(t)H

n Q̃(t)
n x(t)

n

= x(t)H
n Q̃(t+1)

n x(t)
n − x(t)H

n Q̃(t)
n x(t)

n < 0

= x(t)H
n

(
Q̃(t+1)

n − Q̃(t)
n

)
x(t)
n < 0,

(45)

and we have Q̃(t+1)
n < Q̃(t)

n < −I.
We can also note that

x(t+1)H
n Q̃(t+1)

n x(t+1)
n − x(t)H

n Q̃(t+1)
n x(t)

n

= x(t+1)H
n Q̃(t+1)

n x(t+1)
n − x(t+1)H

n Q̃(t)
n x(t+1)

n

= x(t)H
n

(
Q̃H(t)

n Q̃(t+1)
n Q̃(t)

n − Q̃H(t)
n Q̃(t)

n Q̃(t)
n

)
x(t)
n

= x(t)H
n Q̃H(t)

n

(
Q̃(t+1)

n − Q̃(t)
n

)
Q̃(t)

n x(t)
n ,

(46)

and verify the negative definiteness of the matrix Q̃H(t)
n

(
Q̃(t+1)

n − Q̃(t)
n

)
Q̃(t)

n by Q̃(t+1)
n <

Q̃(t)
n , thus x(t+1)H

n Q̃(t+1)
n x(t+1)

n < x(t)H
n Q̃(t+1)

n x(t)
n can also exists if x(t+1)

n = −Q̃(t)
n x(t)

n .
The results of (45) and (46) highlight that if the equality x(t+1)

n = −Q̃(t)
n x(t)

n is
satisfied, then the inequalities x(t+1)H

n Q̃(t)
n x(t+1)

n < x(t)H
n Q̃(t)

n x(t)
n and x(t+1)H

n Q̃(t+1)
n

x(t+1)
n < x(t)H

n Q̃(t+1)
n x(t)

n are correspondingly obtained. Therefore, the objective function
x(t)H
n Q̃(t)

n x(t)
n is convergent if the sequence satisfy x(t+1)

n = −Q̃(t)
n x(t)

n in iteration proce-
dure. Due to iterative calculations, the obtained sequence x(t)

n usually does not satisfy the
constant modulus constraint.

3.3 Computational complexity

In the SVD-USSD procedure, the computational complexity of G−1/2
n can be performed

by the eigenvalue decomposition (EVD) at complexity order ofO(26M3), and the compu-
tational complexity of U = U1UH

2 can be performed by the singular value decomposition
(SVD) at complexity order of O(4M(M − 1)2 + 22M3). Thus, the overall computational
complexity of the SVD-USSD algorithmO(K(26M3+4M(M−1)2+22M3+(6M−2)M2)),
where K is the total number of iterations. In the CA-USSD procedure, the overall com-
putational complexity isO(KL(4M2 + 2M)), where L is the number of the selected range
and Doppler bins. It is obvious that the computational complexity of CA-USSD algorithm
is obviously lower than that of SVD-USSD algorithm.

4 Simulation results
In this section, we provide several simulation examples to demonstrate the performance
of the proposed methods, SVD-USSD and CA-USSD. In the following examples, it is
assumed that the radar pulse width T is 10 us, and the PRI equals to 1 ms to ensure
the Doppler frequency insensitivity of the transmit waveform. The coherent radar system
transmitsN = 64 pulses in a CPI andM = 100 subpulses in a pulse. To evaluate the shape
of SRDAF of the waveform-agile radar system, a point-like target is considered in the sim-
ulations. In SRDAF image, the time delay axis is normalized by subpulse duration tp, and
the Doppler frequency shift axis is normalized by Tr . The convergence of the proposed
algorithms will be tested by using randomly generated sequences in the initialization.
In this example, the shape of SRDAF is desired to have sidelobes in an interested area as

low as possible. Therefore, we suppose that 	 = {(p, q)||q| ≤ N/4, (p, q) �= (0, 0)} is the
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area on range-Doppler plane, which is close to the origin but excludes the origin. With
randomly generated sequences in the initialization, the proposed algorithms in Section 3
is utilized to minimized the ISL of the SRDAF of the synthesized sequences.
The shape of SRDAF of sequence set optimized by SVD-USSD and CA-USSD algo-

rithms are shown in Fig. 1a and b. The sidelobes of the SRDAFs of the sequence sets
synthesized by SVD-USSD and CA-USSD algorithms are suppressed to about − 50 dB
in the interested area on range-Doppler plane . In Fig. 1c, the curves of the objective
functions vs. iteration number in SVD-USSD and CA-USSD algorithms are given. The
convergence performance of these two algorithms are almost the same and can con-
verge to a stable point after 300 iterations. However, SVD-USSD algorithm shows faster
convergence speed.
To evaluate the sidelobe synthesis performances of the proposed SVD-USSD and CA-

USSD algorithms , we define the average sidelobe level and peak sidelobe level by

ASL = 20log10
ξ(0, 0)

√
1
N	

∑
(p,q)⊂I	 |ξ(p, q)|2

(dB)

, and

PSL = 20log10
ξ(0, 0)

max(p,q)⊂I	 |ξ(p, q)| (dB)

Figure 2 plots the curves of average sidelobe level vs. sequence length and sequence
number of the sequence set optimized by SVD-USSD and CA-USSD algorithms after
200 iterations, i.e., average sidelobe level vs. sequence lengthM, average sidelobe level vs.
sequence number N, peak sidelobe level vs. sequence length M, and peak sidelobe level
vs. sequence number N, respectively. As sequence lengthM increases from 20 to 100 and
sequence numberN equals to 64, ASL is decreased from− 40 dB to− 48 dB for CA-USSD
algorithm and decreased from − 44 dB to − 51 dB for SVD-USSD algorithm. Meanwhile,
PSL is decreased from − 57 dB to − 68 dB for CA-USSD algorithm and decreased from
− 62 dB to − 75 dB for SVD-USSD algorithm.
As sequence numberM increases from 10 to 130 and sequence lengthM equals to 100,

ASL is decreased from− 36 dB to− 48 dB for CA-USSD algorithm, and ASL is decreased
from − 40 dB to − 55 dB for SVD-USSD algorithm. Meanwhile, PSL is decreased from
− 52 dB to − 72 dB for CA-USSD algorithm and decreased from − 59 dB to − 79 dB for
SVD-USSD algorithm.
In the simulation result of Fig. 2, CD approach is utilized for synthesizing unimodular

sequence set with 4PSK, 16PSK, and 64PSK modulation when the difference of objective
function between two adjacent iterations is small enough. In the iteration process, the
parameter ε is set to be 10−4. Due to the limited number of discrete phases, the ISL and
PSL performance of CD-4PSK, CD-16PSK, and CD-64PSK is higher than that of SVD-
USSD and CA-USSD algorithms. However, with increased number of discrete phases,
the ISL and PSL performance is improved. The performance of CD-64PSK is close to
that of SVD-USSD and CA-USSD algorithms. In Fig. 2b and d, we can also find that the
performance of CD-64PSK is even better with small sequence number N.
In Tables 3 and 4, runtime of SVD-USSD and CA-USSD is given after 200 iterations.

Runtime of the CD-USSD algorithm is also given with 16PSK modulation. CA-USSD
algorithm has the shortest running time, CD-USSD has the longest running time and
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(a)

(b)

(c)
Fig. 1 The shape of SRDAF of sequence set optimized by SVD-USSD and CA-USSD algorithms, a SVD-USSD
algorithm, b CA-USSD algorithm, c the curve of the objective function vs. iteration number of SVD-USSD and
CA-USSD algorithms
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(a) (b)

(c) (d)

Fig. 2 Curve of average sidelobe level vs. sequence length and sequence number of the sequence set
optimized by SVD-USSD, CA-USSD, and CD algorithms, a ASL vs.M, b ASL vs. N, c PSL vs.M, and d PSL vs. N

SVD-USSD algorithm has the middle running time. We also note that SVD-USSD algo-
rithm can give better optimization results than CA-USSD algorithm because of faster
convergence speed. Although the proposed two algorithms can achieve almost the same
optimization performance after 300 iterations, SVD-USSD algorithm can obtain better
performance under fewer iteration condition.
Figure 3 shows the range-Doppler processing results by using Golomb sequence,

random sequences and sequence sets optimized by SVD-USSD and CA-USSD algo-
rithms. It is assumed that there exists five scattering points, which are located at
(0, 0), (20, 7.5), (20,−7.5), (−20, 7.5),and(−20,−7.5) on range-Doppler plane. As we can
see, two scattering points are emerged by the sidelobes of the range-Doppler processing
result of Golomb sequence. The sidelobes of the range-Doppler processing result of ran-
dom sequences is lower than that of Golomb sequence. With sequence sets optimized

Table 3 Runtime of SVD-USSD, CA-USSD, and CD-USSD algorithms

Method
SVD-USSD CA-USSD CD-USSD (16PSK)

M=100

N = 8 92.6 s 16.4 s 189s

N = 16 215.3 s 35.8 s 1245 s

N = 32 350.6 s 62.6 s 8447 s

N = 64 731.1 s 122.1 s 57,639 s

N = 128 1382.3 s 252.4 s 48,065 s
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Table 4 Runtime of SVD-USSD, CA-USSD, and CD-USSD algorithms

Method
SVD-USSD CA-USSD CD-USSD (16PSK)

N=64

M = 20 5.9 s 5.4 s 589 s

M = 40 47.3 s 21.2 s 4255 s

M = 60 159.9 s 47.4 s 18325 s

M = 80 379.2 s 84.1 s 32844 s

M = 100 741.1 s 131.2 s 65429 s

by SVD-USSD and CA-USSD algorithms, sidelobes is obviously suppressed and the best
detection performance can be obtained.

5 Discussions
It should be noted that CA-USSD algorithm avoids EVD and SVD operations in iteration
procedure, and the computational complexity of this algorithm is obviously lower than
that of SVD-USSD algorithm. However, it does not mean that CA-USSD algorithm out-
performs SVD-USSD algorithm in every aspect. In the above section, we compare the
two algorithms thoroughly. SVD-USSD algorithm has higher computational complexity
and better optimization result. The computational complexity of CA-USSD algorithm
is lower, but the optimization result of CA-USSD algorithm is not as good as that of
SVD-USSD algorithm.

(a) (b)

(c) (d)

Fig. 3 Range-Doppler processing results by using Golomb sequence, random sequences, and sequence set
optimized by SVD-USSD and CA-USSD algorithms: a Golomb sequence, b random sequences, c sequence set
optimized by SVD-USSD algorithm, and d sequence set optimized by CA-USSD algorithm
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6 Conclusion
In this paper, two algorithms, i.e., SVD-USSD and CA-USSD, for constructing unimod-
ular sequence sets under constant module constraint with desired minimized sidelobes
on a predefined area of range-Doppler plane are presented. SVD-USSD and CA-USSD
algorithms show their advantages in different aspect. SVD-USSD algorithm has higher
computational complexity and better optimization result. The computational complexity
of CA-USSD algorithm is lower, but the optimization result of CA-USSD is not as good
as that of SVD-USSD.
We further note that the computational efficiency of SVD-USSD limited by SVD opera-

tion. This algorithm is better for the sequences of the length no longer than 104. Although
the convergence speed of CA-USSD is slower than that of SVD-USSD, computational
efficiency of CA-USSD is better and more suitable for the sequences with longer length.
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