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and the signed distance function corresponding to it is analyzed to yield a 2D elliptic
shape prior. The method employs the combination of the grayscale histogram, the
intensities of edge, and the smoothness distribution as main image feature descriptors
that define the image statistical measure model. The elliptic shape prior combined with
the image statistical measure energy model drives the elliptic shape contour to the
projection of the circular feature of the 3D object with the current pose into the image
plane. These works effectively reduce the impacts of the challenging scenarios on the
pose estimate results. In addition, the method utilizes particle filters that take into
account the motion dynamics of the object among scene frames, and this work
provides the robust method for object 2D-3D pose estimation using circular feature in
a challenging environment. Various numerical experiments are illustrated to show the
performance and advantages of the proposed method.

Keywords: Pose estimation, Circular feature, Elliptic shape prior, Image statistical
property

1 Introduction

Pose estimation is an essential step in many machine vision and photogrammetric appli-
cations; the ultimate goal of pose estimation is to identify 3D pose of an object of interest
from an image or image sequence [1, 2]. The existing algorithms detect elliptic from 2D
image, and the 3D pose of the circular can be extracted from single image using the inverse
projection model of the calibrated camera (see Fig. 1b) [3—5]. These methods successfully
applied to pose estimation of underwater dock [6]. However, since these methods rely
on local features, the resulting solutions may yield unsatisfactory results in a challenging
environment, such as the higher noise condition, complex background, and partial occlu-
sions. To overcome this, the paper proposes an algorithm to combine the elliptic shape
prior with the image data for object 2D-3D pose estimation using circular feature. How-
ever, before doing so, let us revisit several contributions related to the proposed method.
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Fig. 1 The projection of circular feature of the 3D object into the image plane (a) and a location and
orientation of a circular feature (b)

In order to perform accurate 3D pose estimation in a challenging environment, two
approaches have been developed for the design of object 2D-3D pose estimation algo-
rithms. A common approach was implemented for 3D pose estimation with shape prior
information of a 3D model of the object and image statistics. It did not involve edge detec-
tion or image contour extraction. The shape of objects constrain the contour evolution
to adopt familiar shapes to make up for poor segmentation and pose estimation results
obtained in the presence of noise, clutter, or occlusion or when the statistics of the object
and background are difficult to distinguish [2, 7, 8]. In [2, 7] and [8], projection of the
3D surface of an object to yield a 2D shape prior helps in a top-down manner to improve
the extraction of the contour. The 3D pose is evolved to maximize the image statistical
measure of discrepancy between its interior and exterior regions.

Another approach based on template matching filters has been proposed to solve 3D
pose of an object: by generating a set of synthetic images of 3D model of the object as
reference templates, a high matching score when the input and reference images are very
similar. Given a known 3D model of target, this approach estimates its locations and
orientation parameters by maximizing frequency response between the input and the cur-
rent reference images [9, 10]. The input image is globally processed instead of processing
only local feature, and it yields high accuracy of 3D pose estimation in comparison with
the existing approaches based on segmentation in a challenging environment.

Although these approaches perform exceptionally well for many cases, the drawback of
this algorithm is the input images are processed independently. So, they do not exploit the
underlying dynamics inherent in a pose estimation task and they cannot handle erratic
movements. In [2] and [11], not only to utilize both framework above but also to over-
come their disadvantages, they extend them by incorporating a particle filter to exploit the
underlying dynamics of system; this improvement provides the robust method for object
3D pose estimation in the presence of additive noise, complex background, and occlu-
sion. Both methods rely on the 3D model of the object to obtain prior information and
construct a 6D pose parameter model to estimate the object pose. For object 2D-3D pose
estimation using circular feature, it is a difficult task to have representations for elliptic
shape prior with good and fast numerical solutions using 5D pose parameters.
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In this work, we propose an algorithm for object 2D-3D pose estimation using circular
feature by exploiting elliptic shape constraint and image statistical measure. Given a 3D
object with circular feature, the proposed algorithm estimates the pose of a moving object
using a bank of elliptic shape templates, which is dynamically adapted by particle filters.
By knowing that a spatial circular can appear in any pose configuration in the scene, the
pose estimation problem can be stated as a search problem, in which the goal is to find
the pose parameters of object by processing captured images of a scene. By generating a
set of virtual elliptic shape contours as reference templates of the spatial circular feature
of the 3D object, a comparison with the current view of the spatial circular in the scene
can be performed. For this, we use particle filters as a reliable and adaptive search strategy
in order to drive the elliptic shape contour to the projection of the circular feature of a 3D
object with the current pose into the image. The main contributions of the present work
can be summarized as follows:

1) The paper proposes a method to incorporate elliptic shape prior for object pose
estimation using the level set method.

2) The relationship between the projection of the circular feature of the 3D object and
the signed distance function corresponding to it is analyzed to yield a 2D elliptic
shape prior.

3) The combination of the grayscale histogram, the intensities of edge, and the
smoothness distribution as main image feature descriptors defines the image
statistical measure model. The elliptic shape prior combined with the image
statistical measure energy model drives the elliptic shape contour to the projection of
the circular feature of the 3D object with the current pose into the image plane.

4) The proposed algorithm yields high accuracy of object 2D-3D pose estimation using
circular feature by processing a sequence of 2D monocular images degraded with
additive noise, complex background, and partially occlusion.

The paper is organized as follows. In Section 2, we define the representation method
of the 5D circle pose parameters and give the objective function using the maximum
posterior probability estimation (MAP) for 2D-3D object pose estimation using circu-
lar feature. In addition, we briefly explain an overview of the fundamental concepts used
in the proposed method, particle filters presented in [11]. Section 3 explains the pro-
posed algorithm for 2D-3D object pose estimation using circular feature. Specifically, we
discuss the representation method of elliptic shape prior and the image statistical mea-
sure energy model. Section 4 presents experimental results obtained with the proposed
algorithm when processing synthetic image sequences, which are discussed and com-
pared with those obtained by existing object 2D-3D pose estimation using circular feature
circular feature. The conclusions of the present work are summarized in Section 5.

2 Preliminaries

2.1 The position and orientation of a circular feature in 3D

As shown in Fig. 1a, we have shown two coordinate frames. The camera frame X¢ — Yc —
Zc is a 3D frame with the origin as the projection center and has its Z¢ — axis pointing
to the direction it is pointed. The image frame u — v is a 2D frame with the & and v axes
parallel to the Y and X¢ of the camera frame, respectively. The projection of the circular
feature with a radius of R into the image plane is represented as elliptic g.
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As shown in Fig. 1b, the position and orientation of a circular feature in 3D is com-
pletely specified by the coordinates of its center G and the direction angle of the surface
normal vector G_)Po . We will adopt a convention that points the surfaces normal from the
circular towards the direction where the circular is visible [12]. Examples are shown in
Fig. 1b. The direction angle « indicates the angle between the projection of G—>PO into the
plane O, — X.Z, and the axis O.X,. The positive angle is defined as the counterclockwise

rotation of G/—PZ. The direction angle § indicates the angle between G—Pz) and O¢Z¢ axis.
In addition, HG—PBH = land G_P()) = (sinBcosa, sinfsina, cosf) . Therefore, the position
and orientation of a circular feature in 3D can be expressed as £ = (X, Y, Z,a, )T , where
the coordinates of the center G are represented as G = (X, Y, VAR

2.2 Objective function for 2D-3D object pose estimation using circular feature

In this section, we shall give the objective function using the maximum posterior

probability estimation (MAP) for 2D-3D object pose estimation using circular feature.
Given the observed image z (possibly consisting of several image sequences), by max-

imizing the conditional probability distribution of the pose & , the objective function for

2D-3D object pose estimation using circular feature is defined as follows:

arg m%_axp(é |2) (1)
where p(§|z) can be expanded as Eq. 2 [13]:
1
p&lz) = ——p(z|§) - p(§) (2)
p(2)

where p(z|£) is the likelihood of the arrived observation z and p(§) represents the prior
information of the spatial circle pose & of the circular feature in 3D pose.

Particle filtering is widely employed in object pose estimation problems, where the over-
all objective is to estimate pose of a moving object from a collection of samples arriving
sequentially. Particle filters can be seen as population-based Monte Carlo algorithms, in
which the distribution of the pose space is approximated by random measures, called par-
ticles [11]. Each particle is composed of a single pose and has an associated weighting
coefficient. Let QX be a set of particles in time step k , containing information about the
pose éik and with an associated weight ]l{( as follows:

Qk:{qf.‘,izl,---,N} 3)

where q{f = { (Elk , ]Lk)} represents the current particles. For the 2D-3D object pose esti-

mation using circular feature, the pose Eik is given by the location coordinates Xf‘, Y/‘ , ZL{‘
and orientation angles af‘, /Sik as follows:

T
e =[xk, vE, 70 o B @

i
Note that an object’s pose described in Eq. 4 represents a single pose in the time step t.

Furthermore, the weighting coefficients associated to the object’s pose is determined by a

fitness function:
L(g) =t (5)

To estimate the pose of the object with particle filters, the particles {qf } are selected
according to their weights [11], determined by the fitness function of Eq. 5, in which the
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particles with more probability to be selected are those that contain higher weight values.
Then, the diffusion process propagates the selected particles, which favors the diversity
by randomly diffusing a selected particle. The prediction process can estimate the particle
behavior, given by the observation of the motion dynamics of the object. In the paper,
maximum likelihood is utilized as an evaluation method to determine the weight of each
particle. The likelihood function can be obtained by using a different image statistical

measure.

3 Method description

In this section, we present the method for pose estimation of object with circular feature
using a level set function under the elliptic shape prior. First, we shall discuss the repre-
sentation method of elliptic shape prior by a level set function. Later, we shall incorporate
such representation with the image statistical measure energy model.

3.1 Projection of the 3D object circular feature to yield a 2D elliptic shape prior

To interact with the ellipse contour in the image, the circular feature in 3D has to be
projected to the image plane and then the result yields a 2D virtual elliptic shape prior.
Moreover, the projected shape @ (£) is assumed to be represented by the signed Euclidean
distance function, i.e., ®(&, (x,y)) yvields the Euclidean distance of point (x,y) to the
silhouette of the projected circular feature.

For each pose configuration § = (X,Y,Z,«, B) T one can derive ® (&) as follows: let
X, Y,2)T and (I, m, n)T denote the coordinate center and surface normal vector of the
circular feature in 3D with radius R . Projection of the circular feature in 3D into the image
plane to yield the 2D ellipse curve ® (£, (x,y)) that equation is: [12]

Ax* +Bxy + Cy* + Dx + Ey+ F = 0 (B> — 4AC = 1) (6)

where the parameters [A,B, C,D, E, F]T are represented by the location G = (X, Y, 2T
and 3D orientation (/,m,n)T = (sinBcosa,sinBsina, cosp)”, and we need to distin-
guish them from the reference [12]. The derivation of the parameter is given in the
Appendix. Moreover, these parameters yield the geometric parameters of the 2D ellipse
curve ® (&, (x,y)), which can be denoted as:

xo — 2CD=BE
0 = B2_g4C
_ 2AE-BD
Yo = B2_4AC

A+D—/(A-C)?+D? (7)
b= 2(x3+Bxoyo+Cy3—f)
A+D++/(A—-C)2+D?

_1 B
0 = 5 arctan <ﬁ)

where a and b are the semi-major axis and the semi-minor axis of the ellipse ® (§, (x, y)),

4 \/2(x§+3xoyo+Cy3—f)

respectively; 6 is the angle between major axis and horizontal direction; and (xo, yo) is
the ellipse center. In Eq. 6, all 2D points (x,y) correspond to the sample pixel point set g
" = acosicosd — bsindsini
which is collected via the equation x/ cos Cf)s s s‘m + %o ,A €[0,27). This
y = acosAising + bcosfsink + ¥
set of points divides the domain of an image into the regions inside(g;) and outside(gs),

respectively. By applying the signed distance, we obtain elliptic shape representation by a
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level set function, which is defined as follows:

—dist((x,), ), (x,y) € inside(gs)
D&, (%) =10, (%Y €g 8)
dist((x,9),£), (x,y) € outside(gy)

where dist((x,7),g) = min || (x — x5, 7 — ¥5) T ||2.
(x,y) €8s

3.2 Image statistical measure energy model with elliptic shape constraint

In this section, we describe the image statistical measure energy model for 2D-3D object
pose estimation using circular feature. A variety of image information, such as intensity,
edge, or texture, can be used to define an image statistical measure energy functional.
Here, we employ the combination of the gray value, edge, and smoothness information
as main image feature that drives the elliptic shape to the desired boundary. The image
statistical measure model is defined as follows:

L(E) = e~ ML1(PE),P1)+r2L2(P(5),P2)+A3L3(P(6),P3)) 9)

where the Bhattacharyya coefficient L is a divergence-type measure for the grayscale
histogram distribution P;. The lower the Bhattacharyya coefficient between the interior
and exterior of the elliptic silhouette, the lower the similarity between them. The log-
likelihood coefficient Lj is a divergence-type measure for the smoothness distribution P;.
The lower the log-likelihood coefficient between the interior and exterior of the elliptic
silhouette, the lower the similarity between them. Term L3 is related to the energy along
the length of the elliptic silhouette and the energy of the area inside of it. These three
energy terms be defined so that the overall energy is minimized at the desired elliptic sil-
houette. That A; > 0 is a constant that determined the weight of L;(® (§), P;). We acquire
information about the grayscale histogram, smoothness distribution, and the intensities
of edge in the following sections.

3.2.1 Grayscale histogram

The region where the projection of the spatial circular feature of 3D object with the cur-
rent poses into the image plane can be represented as an ellipse. Here, once the region is
fixed, we select the grayscale histogram to model the interior and exterior of the ellipse
contour because of its merits, such as robustness to highly noisy conditions and partial
occlusion, and low computation cost [14, 15].

Assume an image I: 1 X7, {gw}  represents the grayscale value of each pixel,

ue[l,m]ve[l,i
and the grayscale histogram is determined by dividing the grayscale values into differ-

k
between the intervals, which is calculated using Eq. 10:

A grayscale histogram counts the probability of each grayscale level code £; occurring in

ent intervals. Each interval is indicated by {t',;}~€ 17], whereas A indicates the distance

the region.
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Equation 11 represents the probability of the kth interval of the grayscale histogram
occurring inside or outside the contour, respectively:
> 8@mv -2(7)

t'/Z (,v)€Qin
in

Min
~ ~ (11)
> sEwv) -2 (%)
t’/; _ (1,v) €Qout
out —
Nout

where 8 (¢(u,v) — g (£7)) determines the interval attribute of the grayscale value of pixel
LLx=0

(u,v), §(x) = 0 oth is the Dirac function, and #jn, Hoyt represents the number of
, other

pixels in the regions inside and outside the contour Qin, Qout. According to Eq. 11, iden-
. ) . ) L . R )
tifying the region attributes of pixel locations is essential to establish p;, p_ .. This paper

implements the identification using Heaviside conversion, as expressed in Eq. 12:
1,®(u,v) >0
H(®(w,v) = 13, ®(u,v) =0 (12)
0,P(u,v) <0
The term H(® (%, v)) can normalize an arbitrary input value. According to Egs. 8 and 12,

1 — H(®(u,v)) and H(P (u,v)) can effectively identify the region attribute of pixel point
(4, v). Equation 11 can then be updated as:

Y (= H(®u )8 @ v) - F (t))

L7 _ (u,v)eQ
Pin = > (- H@wv)
(u,v)eR
- - (13)
> H(®w,v)S (gw,v) -2 ()
Lrd _ (u,v)eQ
Pour = > H®w)
(u,v)eR
where 2 represents the image domainand Y. (1 — H(®(u,v)))and Y. H(®(u,v))

(u,v)eQ (u,v)eQ
represent the number of pixels inside and outside the contour, respectively. Finally, each

interval probability is connected to build the region feature descriptor. The statistical
properties of the grayscale values in the inner and outer regions of the contour in the
interval £ are expressed in Eq. 14

1
& =
Pin plﬁ]k:lm? ’~Z PiI{(I =1
k=17 (14)
% %
Pout = {pokut}~ v Z Polilt =1
k=1 =1

After the grayscale histogram distributions are established for each region, there are
many kinds of criteria that can be used to compare the similarity of these distribu-
tions. We adopt the Bhattacharyya similarity to measure the image statistical discrepancy
between the interior and exterior regions of the elliptic shape prior contour. We define

the similarity distance measure as follows:

7
Li®E)LP) = Y VPR(®@) x ply(®) (15)
k=1

Page 7 of 19
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where pfﬁ, pf)’;ut € P;; the lower the Bhattacharyya coefficient L; — 0 can push the elliptic
shape ®(§) toward the projection of the circular feature of 3D object with the current
pose into the image plane.

3.2.2 Smoothness distribution
When the object and background differ much from each other on smoothness features,
we select the smoothness distribution to model the interior and exterior regions of the
ellipse contour. We define the smoothness distribution of the projection of the spatial
circular feature of 3D object with the current pose into the image plane and foreground
smoothness distribution as follows:

Assume an image 1,2 € R? is the domain of an image I, suppose the values
{ gmdw}ug[lﬁ]’ve[m] represent the gradient value of each pixel, obey the Gaussian
distribution G(u, ¥), and denote the probability density function by

1 Meradew]-mi

p(grad(u,v), 1, ¥) = ¢ 2 (16)
where A = /27 - det(X). In this work, the probabilities of point belonging to the exterior
and interior regions are

Ilgrad ()| ~routI%,_
out

pout(grﬂd(u: V) louts Lout) = Ze_ 2 (17)
and pin = 1 — pout, respectively. We have
H(® 1-H(®
p@ = [] [Pour:n]™® [pintu, ]~ (18)
(u,v)el

Discarding the constant term, we can get the log-likelihood functional [16]:

Ly(®@) = —/ [In(1 = pout (1, v)) | H(® (1, v))dQ2

; (19)

+/ [lnpout(u,v)] H(®(u,v))d2
Q

The nonnegative weighted parameters are used as the region force term of hood
functional

Ly(®) = / [ in In(1 — poue (1, )] H(® (16,1))d2
Q
(20)
+ / ot 10 pout (1, V)| H(® (1, 1))d2
Q

where Aj, and Aoyt > 0 are balance parameters.

Note that in Eq. 20, the lower log - likelihood value induces the elliptic shape ® (1, v) to
approximate the projection of the circular feature of 3D object with the current pose into
the image plane.

3.2.3 Theimage gradient measurement of shape priors

Here, we employ edge information that drives the elliptic shape ® (i, v) to the projection
of the spatial circular feature of 3D object with the current pose into the image plane. We
use the following edge indicator to acquire information about the intensities of edges:

1

f=13 IV Gy, v) % I (1, V)P

(21)
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Wheref €[0,1],7 > 1, G, is a Gaussian kernel with a standard deviation , and * denotes
a convolution operation. Function usually takes smaller values at circle boundaries than
at smooth regions. Based onf, we define the following basic energy functional for shape
prior & (u, v):

L3(®) = Length(®) + Area(d) (22)

The term Length is related to the energy along the length of the contour & (u, v), while the
term Area is related to the energy of the area inside of ®(u, v). These two energy terms
can be defined so that the overall energy is minimized at the desired boundaries according
to the edge indicator in Eq. 22:

Length(® = 0) = /gS(d)) IVD|d2 (23)
Q
and
Area(® < 0) = /gH(CD)dSZ (24)
Q

Note that according to Egs. 23 and 24, the minimization of these two energy terms
depends heavily on the amount of edge information in the image. Length(®) is then min-
imized when the elliptic shape ®(u,v) is located at the projection of the spatial circular
feature of the 3D object with the current pose into the image plane.

7
LE) = 11 Y\ PE(®) X ply (@) +

k=1

A2 / [_)\in In(1 = pout (&, v)) + Aout In pout (1, V)] H(®)d2 (25)
Q

+ A3 /ga(cb) V| dS + /gH(@)dQ
Q Q
where A1, 12,43 > 0, Ajn, Aout > O are the constant user-specified parameters, which may
vary for different images. As for the choice of A1, A3, A3, Ain, Lout » We select these param-
eters deliberately to get a desired result. Specially, the parameters Ain, Aout are not only
used as the region force term of the image statistical measure model, they unify the order
of the magnitude of each energy term.

3.3 Flowchart of our method

Given the observed image sequence z1.x = {z1,22, - ,zx} from time 1 to time k, the
prior information of the spatial circle pose & at time k is provided by the inter-frame
motion information. This paper establishes an objective function arg rréax{p(éklzlzk)} for

3
the spatial circle pose measurement based on the video sequence. The particle-filtering
method is adopted in the algorithm design, and the resulting algorithm flow is shown in
Fig. 2.

4 Experiment results and analysis

The results obtained with the proposed algorithm for 3D pose estimation of a moving
object with circular feature from monocular scenes are presented and discussed in this
section. These results are characterized in terms of accuracy of pose estimation when
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Image Statistical measurement of
the differences between inner and
outer regions of the shape priors Particle Evaluation

Input Image iaxsic) |

4 The image gradient measurement
of the shape priors

Circular Pose

|

Shape prior contour template | «— Particle Prediction |¢ Particle Diffusion
k=k+1

Particle Initialization

Fig. 2 The proposed algorithm for circle pose measurement

Algorithm 1 proposed method for circle pose measurement

Step 1—initialize the particle set:

q? eN (’5\0, Vkvg),i =0,---,N— 1,?0 indicates the initial pose measurement value and
vk indicates system noise.

Step 2—particle evaluation:

Particle weight calculation:

]lk — e~ ML1(®E),P1)+12La (P (§),P2)+A3L3(P(§),P3)) /fk _ max{]k“,i =1,---,N);

Best particle set: {ql index)) COMPprise half of the particles with larger welghts, the best
particle 7* = (¢ £k Tk T,

Step3—ref1nement process:

Quip = S(q 8) nhly, = = max{J* b yi=1,-- ,Nuph if/]z:h < 7%, then él‘ 7, otherwise
Tk =Tk o, and 5 = 5 . Repeat the refinement process until the maximum number of
iterations is reached. Observation noise is denoted as ¢.

Step 4—particle prediction:

~ N(gk, (1 —/]7() -v)?) provide a particle sample

Particle diffusion: {¢* , }and ¢~

index index
set {qi} i=0,---,N — 1 for the subsequent frames;

Particle prediction: the particle sample set of the subsequent frames {g; k1

} can be
obtained by predicting {% )

Step 5—output:

status estimation value Ek can be used to determine whether it is over; if so, then exit the

algorithm, otherwise, k = k + 1;return to Step 2.

processing synthetic image sequences. All these synthetic image sequences are rendered
using 3ds Max software; each frame of an input sequence is composed of a 3D object with
circular feature that follows an unknown pose trajectory, it is embedded into a disjoint
background, and the whole frame is degraded with additive noise. Each test sequence is
composed by 100 scene frames consisting of monochrome image with 256 x 256 pixels,
and the effective focal length was f = 20 mm, each circular feature with the radiusk =
100 mm, the appearance of the object during scene frames is dynamically modified by
changing their orientation angles and location coordinates. A performance comparison
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of the proposed algorithm with respect to existing algorithms is presented and discussed.
We compared the following methods:

(1) The algorithm () in [12]: the ellipse detection [17] is also the key issue of
approaches that use the 2D ellipse parameters to solve circular pose estimation
problem. The 2D ellipse parameters were fitted using the least-squares method.

(2) The proposed algorithm () in [5]: similar to the algorithm (-)m, the 2D ellipse
parameters were given by the ellipse detection. The center of the circular feature in
3D is marked, and a virtual diameter parallel to the image plane that combines with
the re-projection of the center is used to estimate the location. And then, a virtual
chord parallel to the diameter is used to estimate the normal vector. The major
contribution is the method formulates the problem with solving equations instead of
matrix transformations.

(3) The proposed algorithm () in [1]: the external feature is given, such as another
circular, new points or lines. The 2D ellipse parameters were given by the ellipse
detection to solve initial estimated solution. A general frame to fuse circulars and
points including all situations, such as one circle one point, two or more circles, and
other situations, is addressed to solve the duality problem in particular cases. And
then, a novel unified re-projection error for circles and points is defined to determine
the optimal pose solution.

(4) The proposed algorithm (),

The location error (LE) is given by [11]

LE = [l — & (26)

where & and /’.;‘\L are the true and estimated coordinates of the object in the scene,

respectively, given in millimeters. Moreover, the orientation error (OE) is given by
OE = 50 — &oll (27)

where & and &) are the true and estimated rotation angles of the object with respect of
the observer, respectively, given in degrees.

The performance of the tested algorithms is quantified in terms of percentages of nor-
malized absolute errors (NAE), between the real &, and estimated &5t pose parameters
as follows: [11]

||Sest - é:reaI”
— X

NAE = 100 (28)

real

The accuracy of location estimation of object is denoted by NAE; and the accuracy of
orientation estimation of the object is denoted by NAEp; both computed with Eq. 28.

Figure 6a presents the results of location estimation of the object obtained with the
tested algorithms in processing sequences of synthetic images and while varying the vari-
ance of the additive noise. The means and standard deviations of the NAE; and NAE( of
the four algorithms are shown in Tables 1 and 2, which are marked as T,(é‘),g, T(s't)d, R.(é)vg and
R(Sg . respectively. The algorithm ()l yields better performance in terms of location esti-
mation of the object than the algorithms ) and () in lower noisy conditions, such as
o2 < 2%. Because the algorithm ()1 obtains the location estimation from the detected
center in 2D image plane, the detected circular center is approaching the projection of the

marked circular center with the true pose into the image plane in lower noisy conditions.

Page 11 of 19
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Table 1 The means and standard deviations of NAE, of the four algorithms

Noise level (%) Normalized absolute error (%)*
Tovg Tog  Tog  Tow Ty T Tad  Tag

0 0.50 033 0.50 0.19 0.01 0.03 0.01 0.01
2 046 0.39 0.46 0.22 0.05 0.29 0.05 0.01
4 334 5.90 3.37 0.33 311.95 733.08 322 0.03
6 1240 842 1332 0.36 2870 618 3072 0.05
8 13.58 14.51 14.02 0.37 1302 942 1508 0.09
10 25.36 28.39 25.76 0.44 7982 13733 8155 0.22

But among these algorithms’ yield, there were high error levels in terms of location esti-
mation in highly noisy conditions, and standard deviations of the NAE; and NAEo are
very high. It means that the location estimation is incorrect in some scenarios. It can be
seen that the proposed algorithm (-)[*] yields the best performance in location estimation
of the target among all considered. Also, in this comparison, the algorithm (-)[*! presents
robustness under different noise variance.

Figure 6b presents the orientation performance obtained with different values of addi-
tive noise SNR. Note that the algorithms (-)[J and (-)[/l yield good results in lower noisy
conditions. Also, the algorithm (-)[%! produces good results in terms of location but with
high error levels in terms of orientation estimation. Because the algorithm (-){] obtains
the orientation estimation from the cross product of two special vectors, in which one
vector consists of circular center and the projection of the center of the ellipse in 3D cir-
cular feature, and the another is obtained from the virtual chord of 3D circular feature,
when the ellipse is approaching the circular, the high error level of the orientation estima-
tion will be obtained. It can be seen that the proposed algorithm yields the lowest NAE,
because the method (-)[*! is the region-based algorithm to obtain the 3D pose parameters,
in which the proposed algorithm does not require the ellipse detection. Furthermore, the
proposed algorithm takes into account the motion dynamics of the object among scene
frames, and better performance in pose estimation is obtained in comparison with the
other tested algorithms.

Note that the accuracy of the previous algorithm (-)!! has been proved in Fig. 7, and
it produces good result in terms of location and orientation estimation among all previ-
ous algorithms in lower noisy conditions. According to our tests, the proposed algorithm
yields excellent results in pose estimation of object from monocular images. The obtained
results show that the proposed algorithm is highly accurate in estimation of 3D pose of the
object. Also, the proposed algorithm yields robustness to the presence of additive noise.

Table 2 The means and standard deviations of NAEp of the four algorithms

Noise level (%) Normalized absolute error (%)*
Rl Rlil Rl RUV] Rl Rl RUM RV
avg avg avg avg std std std std
0 047 11.01 047 0.33 003 951 0.03 0.03
2 0.56 10.81 0.57 0.37 011 12.51 0.12 0.11
4 1.79 16.47 1.95 0.47 60.82 95.46 91.47 0.09
6 3.85 2435 7.2 0.68 120 944 1520 0.12
8 522 29.78 21.02 0.71 179 1199 4629 0.23
10 7.63 27.26 15.88 0.90 268 1002 2544 0.63
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In the experiment depicted in Fig. 7, we evaluate the performance of the proposed
algorithm in terms of LE and OE measures by processing sequences of synthetic images
corrupted with zero-mean additive Gaussian noise with the variance 02 = 2%, 6%, 10%.
Figure 3 illustrates examples of noisy scene frames for different values of o2.

In Fig. 7, the estimated object’s pose obtained with the algorithm (-)[") is indicated with
dot lines; the estimated object’s pose obtained with the algorithm (-)[? is indicated with
solid lines. We can see that after processing several frames of input sequence with highly
noisy conditions, the algorithm (-) fails; high LE and OE values are obtained and LE and
OE lines are missing in Fig. 7. However, we can observe that the proposed algorithm is
able to estimate the pose of object with good accuracy even in highly noisy conditions.
The means of normalized absolute error (NAE) of LE and OE are no more than 0.5% and
1%, respectively. This is because the elliptic shape prior and the image feature drive the
virtual elliptic shape contour to approximate the projection of circular feature in 3D into
the image plane to measure the circular pose, in which the proposed algorithm does not
require to the edge detection the co-elliptic arc matching and ellipse fitting.

Note that in Fig. 7, low LE and OE values are obtained when the additive noise vari-
ance is 02 < 2%. This is because the global information of the image rather than the
local features is considered in the proposed algorithm. The stability of the image statisti-
cal measurement (grayscale histogram, smoothness distribution) is utilized to overcome
the impacts of noise on the measurement results. In addition, the temporal information
among the frames is considered in the proposed algorithm. It can be shown that the
proposed algorithm is very robust to the presence of additive noise in the scene.

In the experiment depicted in Fig. 8, the performance of the proposed algorithm for
pose estimation is evaluated and discussed by processing sequences of synthetic images
with a challenging background. Each test sequence contains the objects with an unknown
pose trajectory and embedded into a disjoint background depicted in Fig. 4.

Figure 8 shows the obtained results with the two algorithms when processing 100 scene
frames while varying background. The estimated object’s pose obtained for varying back-
ground is indicated with red lines, green lines, and blue lines, respectively. We can see
that after processing several frames of input sequence with background, the algorithm
(-)[@ fails; LE and OE lines are missing in Fig. 8. Especially, the algorithm (-)[? fails when
processing the first frame of input sequence that cylindrical model is embedded into

(a) (b) (c)

Fig. 3 Synthetic image sequences degraded with additive noise with the variance (a) 0,72 = 2%, (b) a,? = 6%,
and (c) Gﬂz = 10%. The parameters A1 = A3 = 1,1, = 0 for all three image sequences
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R Vi

(a)background 1 (b)background 2 (c)background 3

o

Fig. 4 Circular feature model of 3D object and cylindrical model is embedded into complex background. The
parameters A1, A2, A3 for the three image sequences from left to rightare [1,1,0.11,[1,1,1]1,[1,1,1],

respectively. The parameters Ain, Aoyt for the three image sequences from left to right are
[1.0e —6,1.0e —7],[8.0e —6,2.0e — 7],[8.0e — 6,2.0e — 8]

complex background 2; LE and OE lines are missing in Fig. 8. Whereas the algorithm
()™ maintained reliable measurements throughout all the sequences, we can observe
that the proposed algorithm is able to estimate the pose of object with good accuracy
even in several challenging backgrounds. This is because the proposed algorithm takes
into account the image smoothness of discrepancy between the object region and natu-
ral background. The key image feature descriptors, such as smoothness, gray histogram,
and intensities of edge, are considered in the image statistical measurement, and the pro-
posed algorithm set proper weighting value for each energy term. Figure 4 illustrates
the weighting parameter of each energy term for varying scene frames. The parame-
ters A1, Ao, A3 for the three image sequences with varying background from left to right
are [1,1,0.1],[1,1,1],[1, 1,1], respectively. The parameters Ain, Aoyt for the three image
sequences from left to right are [ 1.0e — 6, 1.0e — 7], [ 8.0e —6,2.0e — 7], [ 8.0e — 6, 2.0e — 8].

Such experiment shows that the proposed algorithm that incorporates elliptic shape
prior representation with the image statistical measure energy model is more stable to
complex background pollution. These works induce the virtual elliptic shape contour to
approximate the projection of circular feature in 3D into the image plan by maximizing
the image statistical measurement of discrepancy between its interior and exterior regions
and minimizing the intensities of edge at the desired of boundaries. One can obtain a
good accuracy in the circular pose results.

In the experiment depicted in Fig. 9, we tested the influence of partial occlusion. The
motion of the object causes partially severe occlusion as depicted in Fig. 5. In this case,
another significant advantage of using the elliptic shape prior becomes apparent. The esti-
mated object’s pose obtained with the proposed algorithm (-)!*! is indicated with red line
as depicted in Fig. 9; the estimated object’s pose obtained with the proposed algorithm
()" is indicated with blue line as depicted in Fig. 9. We can see that after processing sev-
eral frames of input sequence, the pose given by the algorithm (-)[! is incorrect, the high
LE and OE values are obtained, and red lines are missing in Fig. 9. This is because a local
minimal value can appear in using the least-squares method, resulting in incorrect ellipse
fitting and a bad spatial circle pose estimation. Despite the change of the partial occlu-
sions, the proposed algorithm is able to estimate the pose of target with a good accuracy
even in severe occlusion. This is because the information from the combined information
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<

(@) (b) (c)

Fig. 5 Synthetic image sequences with partially occlusion. The parameters A1, A, A3 for the image
sequences are [ 1,1,0.01]. The parameters Ain, Aoyt for the image sequences are [0.8,0.1]

from both the elliptic shape prior and image data can be still sufficient for a reliable pose
estimation. The elliptic shape prior can constrain the projection contour of the spatial
circular to the vicinity of the edge of the spatial circle image. Note that in Fig. 9, low OE
values are obtained when processing few more frames. This is because the slight occlu-
sion does not harm the pose estimation. The nearly constant values of the LE indicate a
stable result. The values of the partially severe occluded sequence have a higher deviation
(up to 4 cm), but it is still possible to reliably estimate the object.

The overall computation time depends on the number of particle for the method to
converge. For each sequence that includes the disturbances by noise, background, and
occlusion, the computation time per stereo pair was approximately 2 min (1 min and
50 s to 2 min and 2 s) on a 1.8-GHz Inter(R)Core(TM)i7-8565U window10 machine.
The computation time is significantly larger than that with other pose estimate mod-
els that often achieve real-time performance. However, in contrast to these approaches,
our model includes a sophisticated interlocking of image statistical measure-based virtual
elliptic contour matching and pose estimation that allow for good results in situations
where current real-time.

As can be seen from Figs. 6, 7, 8, and 9, the proposed algorithm has excellent pose esti-

mation performance under various application scenarios. At the same time, the proposed

14 18 T T T - - -
Alg-[i] Alg-[i]
—6— Alg-{ii] 6l —o— Alg-[ii]
12+ Alg-{iii] Alg{iil]
—2A— Alg-[iv] “ —A— Alg-iv]
10
12r
8 —_
S X 1o
Lﬁ e
< 6 2 8
4 4
6l
n
nt
oL
ol
ol e oA A A A ol — A A A —A
0 2 4 6 8 10 0 2 4 6 8 10
Noise variance(%) Noise variance(%)
(a) NAEL (b) NAEo
Fig. 6 Performance analysis of the circular pose estimation algorithms in terms of (@) NAE; and (b) NAEo
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Fig. 7 Comparison of the estimation errors of the circular pose parameters of the two algorithms under the
scenario with zero-mean additive Gaussian

algorithm demonstrates robustness and provides accurate and reliable pose estimation
results under challenging scenarios. The reason for this is that the proposed algorithm
employs the elliptic shape prior information of the circular feature in 3D and the combina-
tion of image feature statistical measures, such as the grayscale histogram, the intensities
of edge, and smoothness distribution to drive the virtual elliptic shape contour to the pro-
jection of the circular feature of 3D object with the current pose into the image plane.
These works utilizes the elliptic shape constraint and the stability of the image statistical
measurement, effectively reducing the impacts of highly noisy conditions, complex back-
ground, and partial severe occlusions on object pose estimation results. The proposed
algorithm is able to estimate the pose of object with a good accuracy.

5 Conclusions

In order to resolve low accuracy in 3D object pose estimation or estimation failure under
the scenarios with highly noisy conditions, complex backgrounds, and partial severe
occlusions, this paper proposes an algorithm combing elliptic shape priors with the image
statistical measure for 2D-3D object pose estimation using circular feature. The algorithm
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Fig. 8 Comparison of the estimation errors of the circular pose parameters of the two algorithms under the
scenario with complex backgrounds
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Fig. 9 Comparison of the estimation errors of the circular pose parameters of the two algorithms under the
scenario with a partial occlusion of the target

defines a representation method for 5D circular pose parameters, constructs the ellip-
tic shape prior model for the circular feature in 3D, and selects the grayscale histogram,
smoothness distribution, and the intensities of edge as main image feature descriptors
that define the image statistical measure model. Then, the algorithm incorporates the
elliptic shape priors representation with the image statistical measure energy model to
construct the likelihood function. The image feature statistical measure drives the virtual
elliptic shape prior contour to approximate the projection of the circular feature of 3D
object with the current pose into the image plane. A good accuracy pose estimation can
be obtained. The algorithm is based on the global information of the image rather than
on the local features. It utilizes the elliptic shape priors and the image statistical measure-
ment to effectively reduce the impacts of noise, complex backgrounds, and partial severe
occlusions on the pose estimation result. The simulation experiment demonstrates that
the proposed algorithm provides reliable and accurate pose estimation results for 2D-3D
object pose estimation using circular feature under challenge scenarios.

Appendix

5.1 The 2D ellipse equation parameter model with pose parameter

Let (X,Y,2)T and (I, m, n)T denote the coordinate center and surface normal vector of
the circular feature in 3D with radius R. Projection of the circular feature in 3D into the
image plane to yield the 2D ellipse curve ® (&, (x, y)) that equation is represented in Eq. 28

Ax* +Bxy + Cy* + Dx + Ey+ F = 0 (B> — 4AC = 1) (29)

where we shall represent the parameters [A, B, C,D, E, FT by the location (X, Y, Z)T and
(I, m,n)T the 3D orientation vector .

To find the 2D ellipse curve, we will first form a cone having the projection center as
vertex and which joins the vertex to every point on the circular whose center position is
G = (X,Y,2)T and surface normal vector is (/, m, n)T and intersect the cone with the
image plane Z = f.

In order to find the equation of the cone S¢one, we need to construct the equation of
the base circular G and the line that joins the vertex to the point on the circular G . The

equation of the base circular is obtained by intersecting the sphere Sg whose center is

Page 17 of 19



Cui et al. EURASIP Journal on Advances in Signal Processing (2020) 2020:34 Page 18 of 19

X, Y, Z)T and radius is R with the plane = whose surface normal vector is ([, m, n)T as
follows:

X=X+ M-+ (Z1—-2?*=R

(30)
IX; —X)+m(Y1 —Y)+n(Z1 — 2> =0

where the point (X1, Y1,72) € Sg.
For VP(Xy, Y2, Z2) € Scone, the equation of the line that joins the vertex to the point on
the circular G and the point on the cone is represented as:

X1 — X Y1 - Y Zy—Z
1 2_ N 2 _ 41 2y (31)
X, -0 Y, -0 Zy—0

where we can obtain the coordinate of the points on circular G which can be denoted as:

XY, 2) = (tXo + Xo, tYo + Yo, tZy + Z) (32)

Especially, (X, Y,Z) € w and (X, Y, Z) € Sg, by solving two simultaneous equations given
by Eqgs. 28 and 30, the equation of cone Scone can be written as:

(mY + n2)*Xs — 2(mY + nZ)XoX(mY + nZy)+

X2 (mYo 4+ nZ)? + (IX + n2)* — 20X + nZ)YoY (IXo + nZo)+

(IXy 4 nZ2)*Y?* + (IX + mY)?Z3— (33)

20X + mY)ZoZ(IXy + mYs) + (IXy + mY2)2Z?

= R? (PX3 + m?Y3 + n*Z} + 2mXaYs + 2nXoZy + 2mnYZ5)
By replacing Z, with f , the parameter model of 2D ellipse curve equation with pose
parameter & is expressed as:
A= (mY +nZ?+PY*+PZ* - R°P
B = —2mX(mY + nZ) — 2lY(X + nZ) + 2lmZ?* — 2lmR?
C=m’X>+ (X + nZ)* + m*Z* — m*R>
D = —2nfX(mY + nZ) + 2nlfY? — 21Z(IX + mY) — 2 In fR?
E = 2mnfX* — 2nfY (IX + nZ) — 2mfZ(IX + mY) — 2mnfR*
F=Xn?f? + Y?n?f? + (IX + mY)’f* — R°n’f?

(34)

where f is the focal length of the camera. By replacing (I, m,n)T with
(sinBcosa, sinBsina, cosp)’, Eq. 33 can be written as

A = ((sinfsina) Y + cos,BZ)2 + (sirl,Bcosoc)2 Y2 4 (sinfcosa)?Z? — R%(sinfcos)>

B = —2(sinBsina) X (sinBsina Y + cosBZ) — 2(sinfcosa) Y ((sinBcosa) X + cosBZ)
+2(sinBcosa) (sinBsina) Z% — 2(sinBcosa) (sinfsina)R?

C = (sinBsina)®X? + ((sinBcosa)X + cosBZ)? + (sinBsinw)>Z> — (sinBsina)2R>

D = —2cosBfX((sinBsina)Y + cospZ) + 2cospB(sinfcosa)fY?
—2f (sinBcosa) Z((sinBcosa) X + sinBsinaY) — 21In fR?

E = 2(sinfsina)cosBfX? — 2cospfY ((sinBcosa)X + cospZ)
—2sinBsinafZ((sinfcosa)X + (sinfsinaY)Y) — 2(sinBsina)cosffR?

F = X%(cospB)’f? + Y2(cosB)*f? + ((sinBcosa)X + (sinBsinaY))?f> — R(cosB)>f>

(35)

Acknowledgements

The authors thank for the valuable and constructive comments from the editor and reviewers. The authors would like to
thank the First-Class Disciplines Foundation of Ningxia (contract no. NXYLXK2017B09) and the Major Project of North
Minzu University (contract no. ZDZX201801) for supporting this work.



Cui et al. EURASIP Journal on Advances in Signal Processing (2020) 2020:34 Page 19 0f 19

Authors’ contributions
All the authors have participated in writing the manuscript. All authors read and approved the manuscript.

Funding
This work was supported in part by the Natural Science Foundation of Ningxia (No.2018AAC03126), the First-Class
Disciplines Foundation of Ningxia (No.NXYLXK2017B09), the Major Project of North Minzu University (No.ZDZX201801).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

The National Laboratory for Mechatronic and Control, Beijing Institute of Technology, Beijing, 100081 China. 2The Key
Laboratory of Intelligent Information and Big Data Processing of Ningxia Province, North Minzu University, Yinchuan,
750021 China.

Received: 25 October 2019 Accepted: 23 June 2020
Published online: 17 July 2020

References
1. B.Huang, Y. Sun, Q. Zeng, General fusion frame of circles and points in vision pose estimation. Optik. 154, 47-57
(2018)

2. J.Lee,R.Sandhu, A. Tannenbaum, Particle filters and occlusion handling for rigid 2d-3d pose tracking. Computer
Vision and Image Understanding. 117(8), 922-933 (2013)

3. C.Meng, H. Sun, in Proceedings of the 2nd International Conference on Electronics, Network and Computer Engineering
(ICENCE 2016), Monocular pose measurement method based on circle and line features (Atlantis Press, 2016).
https://doi.org/10.2991/icence-16.2016.149

4. B.Huang, Y.Sun, Y. Zhu, Z. Xiong, J. Liu, Vision pose estimation from planar dual circles in a single image. Optik.
127(10), 4275-4280 (2016)

5. C.Wang, D.Chen, M. Li, J. Gong, Direct solution for pose estimation of single circle with detected centre. Electronics
Letters. 52(21), 1751-1753 (2016)

6. S.Ghosh, R.Ray, S. R. K. Vadali, S. N. Shome, S. Nandy, Reliable pose estimation of underwater dock using single
camera: a scene invariant approach. Machine Vision and Applications. 27(2), 221-236 (2016)

7. T.Brox, B. Rosenhahn, J. Weickert, in Joint Pattern Recognition Symposium, Three-dimensional shape knowledge for
joint image segmentation and pose estimation (Springer, 2005), pp. 109-116. https://doi.org/10.1007/11550518_14

8. S.Dambireville, R. Sandhu, A. Yezzi, A. Tannenbaum, A geometric approach to joint 2D region-based segmentation
and 3D pose estimation using a 3D shape prior. SIAM journal on imaging sciences. 3(1), 110-132 (2010)

9. V.H. Diaz-Ramirez, K. Picos, V. Kober, Target tracking in nonuniform illumination conditions using locally adaptive
correlation filters. Optics Communications. 323, 32-43 (2014)

10. K. Picos, V. H. Diaz-Ramirez, V. Kober, A. S. Montemayor, J. J. Pantrigo, Accurate three-dimensional pose recognition
from monocular images using template matched filtering. Optical Engineering. 55(6), 063102 (2016)

11. K Picos, V. H. Diaz-Ramirez, A. S. Montemayor, J. J. Pantrigo, V. Kober, Three-dimensional pose tracking by image
correlation and particle filtering. Optical Engineering. 57(7), 073108 (2018)

12. Y.C. Shiu, S. Ahmad, in Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics, 3D
location of circular and spherical features by monocular model-based vision (IEEE, 1989), pp. 576-581. https://doi.
0rg/10.1109/icsmc.1989.71362

13. S.Challa, M. R. Morelande, D. Musicki, R. J. Evans, Fundamentals of Object Tracking. (Cambridge University Press,
Cambridge, 2011)

14. J.Ning, L. Zhang, D. Zhang, W. Yu, Joint registration and active contour segmentation for object tracking. IEEE
transactions on circuits and systems for video technology. 23(9), 1589-1597 (2013)

15. Y.Hang, C. Derong, G. Jiulu, Object tracking using both a kernel and a non-parametric active contour model.
Neurocomputing. 295, 108-117 (2018)

16. S.Luo, X-C. Tai, L. Huo, Y. Wang, R. Glowinski, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Convex shape prior for multi-object segmentation using a single level set function (IEEE, 2019), pp. 613-621. https://
doi.org/10.1109/iccv.2019.00070

17. C.Lu, S. Xia, M. Shao, Y. Fu, Arc-support line segments revisited: An efficient high-quality ellipse detection. IEEE
Transactions on Image Processing. 29, 768-781 (2019)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.2991/icence-16.2016.149
https://doi.org/10.1007/11550518_14
https://doi.org/10.1109/icsmc.1989.71362
https://doi.org/10.1109/icsmc.1989.71362
https://doi.org/10.1109/iccv.2019.00070
https://doi.org/10.1109/iccv.2019.00070

	Abstract
	Keywords

	Introduction
	Preliminaries
	The position and orientation of a circular feature in 3D
	Objective function for 2D-3D object pose estimation using circular feature

	Method description
	Projection of the 3D object circular feature to yield a 2D elliptic shape prior
	Image statistical measure energy model with elliptic shape constraint
	Grayscale histogram
	Smoothness distribution
	The image gradient measurement of shape priors

	Flowchart of our method

	Experiment results and analysis
	Conclusions
	The 2D ellipse equation parameter model with pose parameter

	Acknowledgements
	Authors' contributions
	Funding
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

