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Abstract

The computation of the sine and cosine functions is required in devices ranging from
application-specific signal processors to general purpose floating-point units. Even in
the latter case, the required functionality can be reduced to computing the sine and/or
cosine of multiples of a constant angle. The latency of a sine/cosine generator can be
reduced by using look-up tables. However, a direct implementation with look-up
tables may be unfeasible if the input space is huge. In such a case, look-up tables with a
number of entries lower than the size of the input space can be used indirectly. In
previously published methods, the reduction in the number of table entries is obtained
at the expense of increasing the table width and the computational cost. This paper
introduces an alternative technique that makes it possible to reduce the size of the
look-up tables as well as the required multiplications. The proposed technique can be
used to implement sine/cosine generators of huge input space. It has been used to
implement several twiddle factor generators in reconfigurable hardware and has
enabled the number of look-up tables to be reduced by between 6 and 26% with
respect to previous table-based techniques. Also, these implementations are about
50% faster than those based on Volder’s algorithm.

Keywords: Trigonometric functions, Computational cost, Signal processing, Discrete
Fourier transform

1 Introduction
The computation of sine and cosine functions is fundamental in a wide range of applica-
tions, including that of signal processing [1, 2]. Obvious examples are the computation of
discrete cosine transform (DCT), discrete sine transform (DST), and their inverses (IDCT
and IDST) [3]. A fused sine-and-cosine implementation is of major interest because var-
ious methods compute both and numerous applications require both [1]. In this paper,
the focus is on the implementation of functional units that provide the sine and cosine of
multiples of a constant angle φ, that is, sin(nφ) and cos(nφ), where n is an integer given
as an input. Applications of such functional units include the following:

• Implementing the sine and/or cosine functions in arithmetic units. For example,
suppose an arithmetic unit must compute the sine and/or cosine of a number x using
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the IEEE 754-1985 double-precision format [4]. x is coded in a 64-bit word with 3
fields called sign (1 bit), exponent (11 bits), and significand (52 bits). The significand
is a number in the range [ 1, 2 − 2−52] coded in fixed-point, while the exponent is an
integer laying in the range [−1022, 1023] coded in excess 1023. If the exponent is
lower than −27, then the unit can simply return 1 as the cosine and x as the sine,
assuming rounding to the nearest representable value [5]. Otherwise, it can return
the sine and/or cosine of nφ, where φ is the constant 2−27−52 = 2−79 and n is the
integer x279.

• Generating the set of coefficients, called twiddle factors, of a discrete Fourier
transform (DFT) [6]. The DFT of a complex sequence x of length L is another
complex sequence X of the same length defined by X(k) = ∑L−1

t=0 x(t)Wtk
L , where

WL = eφi and φ = −2π/L. The twiddle factors are the integer powers ofWL, and
there are L different twiddle factors. Thus, the twiddle factor of index n is
Wn

L = (eφi)n = enφi = sin(nφ)i + cos(nφ).

Since the sine and cosine functions are computationally expensive, in applications where
a low latency is required, the generator is implemented using look-up tables (LUT). This
implementation approach is problematic if the input space is large. For example, con-
sider the arithmetic unit previously mentioned: as stated, exponents lower than −27 can
be dismissed. However, even if the input angle is restricted to [ 0, 2π), it is still neces-
sary to consider 30 different exponent values and 252 different significand values. A direct
implementation would therefore require an LUT of 30 ∗ 252 entries. Another example is
given by the DFT engines required in applications such as required in Power Line Com-
munications (PLC) [7], Digital Video Broadcasting—Terrestrial 2 (DVB-T2) [8], photon
counting [9], and radio astronomy [10]. In those applications, the sequence can be as
long as 213, 215, 227, and 230, respectively, and hence the coefficient tables are large in
comparison with other elements of the DFT engine [11]. In this paper, we propose an
innovative technique to reduce the resources required to implement a sine/cosine gen-
erator in application-specific integrated circuit (ASIC) and configurable logic. We have
implemented an open-source tool to automate the design of twiddle factor generators of
arbitrary size and precision using the proposed technique.
The rest of the paper is organized as follows. In the next section, the notation used is

introduced and optimization techniques are presented to reduce the number of entries of
the required LUT to a number proportional to the input space. In Section 3, optimization
techniques are given that enable LUTs to be employed with a total number of entries that
grows sublinearly with the input space. The new proposed technique is introduced in
Section 4. The experiments are described in Section 5. The corresponding performance
results are shown and discussed in Section 6. The last section provides a summary of the
conclusions.

2 Argument reduction
As mentioned in the introduction, our objective is to efficiently implement a functional
unit that provides sin(nφ) and cos(nφ), where n is an integer provided as an input to the
unit, and φ is a constant angle that depends on the application. Hereinafter, the input of
the functional unit will be denoted as I and the number of bits of I will be denoted as w.
Furthermore, the following definitions will be used:
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Definition 1 A real number φ is trigonometric rational if and only if φ
π
is rational.

For example, the angle φ = −2π/L, used in the definition of the twiddle factors in
Section 1, is trigonometric rational, while the angle φ = 2−79 mentioned in the arithmetic
unit example of Section 1 is not.

Definition 2 The trigonometric Carmichael function of a trigonometric rational number
φ is the minimum natural number λt(φ) such that λt(φ)φ

2π is an integer.

This definition is useful in the calculation of the size of the output space of the generator.
This size is the minimum of λt(φ) and the size of the input space. Note that λt(0) = 1.
In the DFT example, λt(φ) is equal to the length of the transform. The function λt can
also be employed to make the following simplification. Suppose that φ has been defined
as a trigonometric rational number whose absolute value is very large: |φ| � 2π . In this
case, an angle α with |α| < 2π can be found such that the functionality of the generator,
that is, computing sin(nφ) and cos(nφ), is equivalent to computing sin(nα) and cos(nα).
In order to obtain such α:

1. Take the integer k = λt(φ)φ
2π

2. Take the remainder r of the division k
λt(φ)

. Note that k and r have the same sign
and |r| < λt(φ).

3. α = r2π
λt(φ)

.

Definition 3 The trigonometric Shannon entropy of a trigonometric rational number φ

is Ht(φ) = log2(λt(φ)).

If φ is trigonometric rational, in order to maximize the size of the output space of the
generator, that is, get an output space of size λt(φ), the minimum number of bits required
to code the input is �Ht(φ)�.

Definition 4 φ is trigonometric binary if and only if it is trigonometric rational and
Ht(φ) is an integer.

The latter definition is relevant since, in many applications, the constant angle φ is
trigonometric binary. For example, consider the algorithms designed to compute effi-
ciently the DFT called fast Fourier transform (FFT) [12] algorithms: many of these
algorithms require the length of the transform L to be a power of 2 [13], that is,
log2(L) must be an integer, and hence φ must be trigonometric binary since Ht(φ) =
log2(λt(−2π/L)) = log2(L). Moreover, in applications where φ is trigonometric binary,
it is irrelevant whether the representation of n is either unsigned or two’s complement
as long as w ≥ Ht(φ). As an example, consider the functional unit specified in [1].
This unit computes the sine and cosine of πx where x is a number in the interval
[−1, 1) coded in fixed-point two’s complement. Let S be the value represented by the
input I in integer two’s complement, x = S/2w−1, and hence πx = Sπ/2w−1. Thus,
the functional unit computes the sine and cosine of Sφ, where φ = π/2w−1. Let n be
the value represented by I in unsigned integer representation. It is easy to prove that
sin(Sφ) = sin(nφ) and cos(Sφ) = cos(nφ). Therefore, the functionality of the unit is
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equivalent to the computation of the sine and cosine of nφ. This is exemplified in Table 1
for w = 3.
Hereinafter, an unsigned notation for n is assumed. In the following subsections, we

will see optimization techniques that require a trigonometric rational value of φ. In these
subsections, the trigonometric Carmichael function of φ, λt(φ), is abbreviated to L.

2.1 Periodicity

If the size of the input space of the functional unit is greater than L, then the periodicity
of the sine and cosine can be used to compute sin(nφ) and cos(nφ) in the following way:

1. Compute n mod L. As noted by [1], if φ is trigonometric binary, then this
computation has no cost since the result is simply the Ht(φ) least significant bits of
the input I.

2. Use a subgenerator to compute the sine and cosine of (n mod L)φ. The input space
of the subgenerator is ZL, smaller than the original input space, and hence, it can
be implemented using a smaller LUT.

In the optimization shown in the following subsections, it is assumed that the input space
of the generator is ZL.

2.2 Sign reduction

If the input space of the functional unit is ZL, then it is possible to implement it with
another subgenerator with the same value of φ but whose input space is Z�L/2�+1, that is,
its size is roughly half of the size of the original input space. This optimization takes into
account the following trigonometric identities:

sin(α) = − sin(2π − α)

cos(α) = cos(2π − α)
(1)

If n ≤ L/2, then the input of the subgenerator is n and its output is the output of the
functional unit. Otherwise, the input of the subgenerator is L−n, the cosine output of the
unit is the cosine output of the subgenerator, and the sine output of the unit is the opposite
of the sine output of the subgenerator. Note that if φ is trigonometric binary, then L − n

Table 1 Values returned by the functional unit specified in [1] when the input I has exactly three bits
(φ = π/23−1 = π/4)

x πx sin(πx) cos(πx)

‖ ‖ ‖ ‖
I S n S/4 Sφ nφ sin(Sφ) cos(Sφ)

‖ ‖
sin(nφ) cos(nφ)

000 0 0 0 0 0 0 1

001 1 1 1
4

π
4

π
4

1√
2

1√
2

010 2 2 2
4

2π
4

2π
4 1 0

011 3 3 3
4

3π
4

3π
4

1√
2

− 1√
2

100 − 4 4 −1 − 4π
4

4π
4 0 −1

101 − 3 5 − 3
4 − 3π

4
5π
4 − 1√

2
− 1√

2

110 − 2 6 − 2
4 − 2π

4
6π
4 −1 0

111 − 1 7 − 1
4 − π

4
7π
4 − 1√

2
1√
2
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can be obtained by simply taking the two’s complement. In the next subsection, another
optimization is presented for the implementation of the subgenerator when L is even.

2.3 Quadrant reduction

If L is even and the size of the input space of the functional unit is �L/2� + 1 = L/2 + 1,
then it can be implemented using a subgenerator with the same value of φ but whose
input space is reduced to Z�L/4�+1. This optimization uses the following trigonometric
identities:

sin(α) = sin(π − α)

cos(α) = − cos(π − α)
(2)

If n ≤ L/4, then the input of the subgenerator is n and its output is the output of the
functional unit. Otherwise, the input of the subgenerator is L/2−n, the sine output of the
unit is the sine output of the subgenerator, and the cosine output of the unit is the opposite
of the cosine output of the subgenerator. Again, the computation of L/2 − n is simply a
two’s complement if φ is trigonometric binary. In turn, the optimization described in the
next subsection can be used to implement the subgenerator if L is multiple of 4.

2.4 Octant reduction

Finally, if L is a multiple of 4 and the input space of the functional unit is Z�L/4�+1 =
ZL/4+1, then it can be implemented with a subgenerator with the same value of φ

but whose input space is reduced to Z�L/8�+1 by applying the following trigonometric
identities:

sin(α) = cos(π/2 − α)

cos(α) = sin(π/2 − α)
(3)

If n ≤ L/8, then the input of the subgenerator is n and its output is the output of the
functional unit. Otherwise, the input of the subgenerator is L/4−n, the sine output of the
unit is the cosine output of the subgenerator and the sine output of the unit is the cosine
output of the subgenerator. Once more, a simple two’s complement provides L/4 − n if φ
is trigonometric binary.
With the previous optimizations, a sine/cosine generator can be implemented with an

LUT of �L/8� + 1 entries. For example, the functional unit described in [1] previously
mentioned can be implemented as shown in Fig. 1. As previously discussed, the func-
tionality of that unit is equivalent to computing the sine and cosine of nφ, where n is the
number provided by input I in unsigned integer notation, the angle φ is 2π/2w, and w is
the number of bits of I. In this case, φ is a trigonometric binary. In this implementation,
the output is provided in some type of sign-magnitude notation such as one of the IEEE
754-1985 floating-point formats, and w > 3 so λt(φ) is multiple of 4 and an LUT of only
2w−3 + 1 entries is required. The LUT of the figure should return the sine and cosine of
angles in the range [ 0,π/4] and, since they are all positive, there is no need to store the
sign bits. Instead, they are computed using a simple XOR gate (4c). The LUT has been
implemented using a direct access memory. In order to prevent the problem of dealing
with a direct access memory with a number of positions that is not a power of two, the
access of the entry of the LUT corresponding to n = 2w−3 is detected by a simple logic
gate (4a) and is treated separately. In that case, the LUT returns the sine and cosine of
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Fig. 1 Argument reduction employed to optimize a sine/cosine generator

π/4, that is, 1/
√
2, using a pair of multiplexers (2b). The address lines of the memory are

fed with the w − 3 least significant bits of I or with its two’s complement depending on
Iw−3, using the adder (3) and the multiplexer (2a). The gate (4b) is employed to ascer-
tain whether the magnitude of the sine and the cosine should be interchanged with the
multiplexers (2c).

3 Sublinear optimizations
The optimizations described in the previous sections have the following drawbacks:

• They require a subgenerator with an input space greater than λt(φ)/8, that is, its
input space grows linearly with λt(φ). In many applications, the subgenerator cannot
be directly implemented using an LUT with a number of entries proportional to the
input space since it is excessively large. For example, even if the octant optimization
could be directly applied to the arithmetic unit mentioned in Section 1, it would only
reduce the size of the input space of the required subgenerator to roughly 30 ∗ 249.
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• They can only be directly applied if φ is trigonometric rational. Furthermore, the
quadrant and octant optimizations require λt(φ) to be even and a multiple of 4,
respectively. Hence, in order to apply them in the arithmetic unit of the example of
Section 1, a workaround similar to that shown in [1, 14] is necessary. For example,
assuming the angle is positive, the arithmetic unit could execute the following steps
to compute the sine and cosine:

1. Divide the angle by 2π . This can be implemented efficiently by multiplying the
angle by the precomputed value of the reciprocal of 2π .

2. Take the fixed-point representation I of the fractional part of the previous
division.

3. Return the sine and cosine of nφ, where n is the number represented by I in
unsigned integer notation, φ = 2π

2w , and w is the width of I.

This last step can be carried out by a generator that can be implemented using the
optimizations described in the previous section. However, this approach has its own
drawbacks: first, the cost of a multiplication is introduced; second, the reciprocal of
2π is not rational, and hence, its exact representation cannot be stored. Moreover,
even if we could use an exact representation of the reciprocal of 2π , the exact
product of the angle by the reciprocal is not rational unless the angle is zero, that is,
the exact result of the division of the angle by 2π is not rational. Hence, its
representation cannot be exact and an error is introduced [14].

In the following subsections, optimizations without these drawbacks are described.

3.1 Branching

This optimization, used in [1], accepts an arbitrary value of φ, although it was originally
employed for a trigonometric rational value. When branching is applied, the generator is
implemented using two subgenerators,M1 andM0, which we call branches. The inputs of
the branches are denoted by A(1) and A(0), while the widths of these inputs are denoted
by L(1) and L(0), respectively. These are chosen so that the width of the input of the
generator, I, is w = L(1) + L(0). M1 provides the sine and cosine of integer multiples of
φ1, that is, the sine and cosine of n1φ1, where n1 is the value represented by A(1) and
φ1 = 2L(0)φ. On the other hand, M0 provides the sine and cosine of n0φ0, where n0 is
the value represented by A(0) and φ0 = φ. The least significant bits of I are connected to
A(0), while the rest are connected to A(1). Since I is the concatenation of A(1) and A(0),
the value represented by I is

n = n12L(0) + n0 (4)

and hence,

nφ = n12L(0)φ + n0φ = n1φ1 + n0φ0 (5)

Since the sines and cosines of n1φ1 and n0φ0 are provided by M1 and M0, the sine and
cosine of their sum can be computed by applying the following trigonometric identities:

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)

cos(A + B) = cos(A) cos(B) − sin(A) sin(B)
(6)



Guerrero Martos et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:35 Page 8 of 21

Alternatively, we can say that each subgeneratorMk provides the complex sin(nkφk)i+
cos(nkφk) = enkφk i, and the generator can provide the value enφi by computing the com-
plex product en1φ1ien0φ0i. Indeed, computing the product of two complexes, each of a
unitary module, is equivalent to computing the sine and cosine of the sum of two angles
from the sine and cosine of those angles and implies four real products, a real sum, and
a real subtraction. A generalization of this branching technique was proposed in [15] to
compute twiddle factors. Note that the sum of the sizes of the input spaces of M1 and
M0 is minimum when L(1) and L(0) differ by no more than 1. In this case, such a sum
grows with the square root of the size of the original input space, that is, sublinearly [15].
Accordingly to [1], floating-point sine/cosine applications will benefit from a fixed-point
conversion of the datapath around these functions.

3.2 Tree generator

The implementation of the branches was not detailed in the previous subsection. In the
generator described in [1], the branch M0 computes its output using the Taylor series,
while M1 is implemented with an LUT of affordable size. Further optimization could be
achieved if one or both branches were, in turn, implemented with sub-branches. This
recursive application of the branch optimization is used by the tree generator described in
[16]. In general, the tree generator requires a set of subgenerators that we will call leaves,
complex multipliers, and, if the implementation is sequential or pipelined, registers. The
following notation is employed for its description:

• w: width of the input of the tree generator
• I = Iw−1Iw−2 . . . I1I0: input of the tree generator
• n = ∑w−1

t=0 It2t : number represented by the input of the tree generator
• m: number of leaf subgenerators employed
• M0,M1,. . . ,Mm−1: the m leaves
• L(k): width of the input of the leafMk
• A(k) = A(k)L(k)−1 . . .A(k)0: input of the leafMk
• nk = ∑L(k)−1

t=0 A(k)t2t : number represented by the input A(k)
• SL(k) = ∑k−1

t=0 L(t) ={
0 if k = 0
L(k − 1) + SL(k − 1) if k > 0

: total number of input lines of the leaves with an

index lower than k
• φk : angle defined by φk = (2SL(k))φ

Each leaf subgenerator Mk provides the sine and cosine of nkφk . The leaves are chosen
such that the sum of the widths of their inputs is equal to the width of the input of the
tree generator:

w = SL(m) =
m−1∑

k=0
L(k) (7)

The input lines of each leaf Mk are connected to the input lines of the tree generator
from ISL(k) to ISL(k+1)−1, that is, each input line A(k)t is connected to It+SL(k):

A(0) = IL(0)−1 . . . I1I0

A(1) = IL(0)+L(1)−1 . . . IL(0)+1IL(0)
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...

A(m − 1) = Iw−1 . . . ISL(m−1)+1ISL(m−1)

Hence, the input value n represented by I becomes:

n =
w−1∑

t=0
It2t =

m−1∑

k=0

SL(k)+L(k)−1∑

t=SL(k)
It2t =

m−1∑

k=0

L(k)−1∑

t=0
It+SL(k)2t+SL(k) =

m−1∑

k=0

L(k)−1∑

t=0
A(k)t2t+SL(k) =

m−1∑

k=0
(

L(k)−1∑

t=0
A(k)t2t)2SL(k) =

m−1∑

k=0
nk2SL(k)

(8)

and therefore the angle whose sine and cosine must be computed by the tree generator
can be written as:

nφ =
m−1∑

k=0
nk2SL(k)φ =

m−1∑

k=0
nkφk (9)

Hence, the angle nφ is the sum of the subangles nkφk , or, alternatively, the complex enφi

is the product en0φ0ien1φ1i . . . enm−1φm−1i. Again, since the sine and cosine of the suban-
gles are provided by the leaves, the sine and cosine of nφ can be computed with complex
multiplications. Taking this into account, the structure of the generator described in [16]
becomes a directed rooted binary tree with m leaves. Each vertex corresponds to a com-
ponent whose output is a complex of unitary module. Each internal vertex has exactly two
children and corresponds to a complex multiplier that computes the product of the out-
puts of the components associated to these children. The components corresponding to
the m leaves are the m subgenerators and provide the complex values enkφk i. The output
of the tree generator is the output of the component corresponding to the root vertex.
Hereinafter, the height of the tree will be denoted as h. The following recommendations
may improve the efficiency of the design:

• It is desirable to minimize the height of the tree h in order to reduce latency and
rounding errors. This is achieved if the structure of the generator is a complete
binary tree.

• If each leaf is implemented with an LUT, the total number of entries is minimum
when the width of the inputs of those LUTs differ by no more than 1. To this end, let
q be the quotient obtained by dividing w by m, and let r be the remainder. A total of r
LUTs must have inputs of width q + 1. The other LUTs must have inputs of width q.

• If the above recommendation is followed, then the total number of entries decreases
when m increases. For a fixed height h, the maximum possible value of m is 2h, and
therefore, the total number of entries can be minimized by using 2h leaves.

In order to ascertain the power of this approach, suppose we use a complete binary tree
with height h = �log2(w)�. In this case, the number of subgenerators m would be no
greater than w, and each subgenerator would have no more than 2 input lines. If each
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subgenerator is implemented with an LUT, then an upper bound on the total number of
entries is 4w, that is, the total number of entries grows logarithmically with the size of the
input space of the tree generator. Hence, the implementation of a sine/cosine generator
with an input space as large as that required by the arithmetic unit mentioned in Section 1
is feasible with a tree generator. Note that a tree generator can be combined with the
argument reduction mentioned in Section 2. For example, in [1], argument reduction is
first applied, and hence, only a subgenerator with an input space of roughly 1/8 of the
original size is required. That subgenerator is then implemented with a tree generator of
height h = 1.
In the following sub-subsections, we will see several optimizations that can be applied

to the tree generator. In the rest of the paper, φ > 0 is assumed for the sake of simplicity,
although in practice this is not a restriction since cos(nφ) = cos(n|φ|) and sin(nφ) =
sgn(φ) ∗ sin(n|φ|).

3.2.1 Quadrant restriction

This optimization can be applied to quadrant restricted sine/cosine generators, which are
defined as follows:

Definition 5 Given a functional unit with an integer input n ≥ 0 that computes one
or more trigonometric functions of nφ, where φ > 0 is a constant, the unit is quadrant
restricted if and only if π

2φ is an upper bound on its input space.

If a sine/cosine generator is quadrant restricted, then it must compute the sine and
cosine of an angle nφ in the interval [ 0,π/2]. Since both functions are positive in that
interval, the following optimizations are possible:

• As in the example of Section 2, if the generator is implemented with an LUT, there is
no need to store the sign bits.

• If it is implemented with a tree generator, no signed adders, subtracters, nor
multipliers are required.

For example, the tree generator used in [1] is quadrant restricted, and hence, the com-
plex multiplier requires no signed arithmetic components and the LUT employed does
not need to store the sign bits. Note that even if a tree generator is not quadrant
restricted, it may contain quadrant restricted branches that can benefit from these
optimizations.

3.2.2 Leading zeros of the sine

This optimization is useful when the sine values of a quadrant-restricted generator are
coded in fixed-point. In this case, an upper bound on the sine output is sin(nmaxφ), where
nmax is the maximum of the input space. Consequently, if the k most significant bits of
the fixed-point representation of sin(nmaxφ) are 0, those bits of the sine output of the
generator are always 0, and the following optimizations are possible:

• If the generator is implemented with an LUT, then there is no need to store the k
most significant bits of the sine.

• If the generator feeds a complex multiplier of a tree generator, the size of its real
multipliers can be reduced.
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3.2.3 Leading ones of the cosine

This optimization is useful when the cosine values of a quadrant-restricted generator are
coded in fixed-point using all the bits for the fractional part. In this case, the representable
value nearest to cos(0) = 1 corresponds to the word with all the bits equal to 1. A lower
bound on the cosine output is cos(nmaxφ), where nmax is the maximum of the input space,
and therefore, if the kmost significant bits of the fixed-point representation of cos(nmaxφ)

are 1, those bits of the cosine output of the generator are always 1. Hence, if the generator
is implemented with an LUT, there is no need to store the k most significant bits of the
cosine.
To exemplify these optimizations, suppose a generator must provide the sine and cosine

of nφ in fixed-point notation with 8 fractional bits and no integer bits rounding to
the nearest representable value. In this example, φ = 2π/211 = π/210, that is, it is
trigonometric binary and λt(φ) = 211 is a multiple of 4, and hence, we first apply argu-
ment reduction and treat the case n = 28 separately as in the example of Section 2.
A subgenerator still has to be subsequently implemented with an input space of size 28

(w = Ht(φ) − 3 = 8). We implement this subgenerator with a tree generator of height
h = 1, and therefore, there are 2 leaves (m = 2h = 2) as shown in Fig. 2. Since this tree
generator is quadrant restricted, it does not require signed arithmetic components. Each
leaf is implemented with direct access memory (5) of depth 24. Note that the sine/cosine
values must be stored with a precision of 17 bits to compensate for rounding errors. The
leaf M0 provides the sines and cosines of the multiples of φ0 = 20φ = π/210, while the
leaf M1 provides the sines and cosines of the multiples of φ1 = 24φ = π/26. The great-
est angle whose sine and cosine is stored in M0 is 15π/210. The 4 most significant bits
of the representation of the sine of this angle are 0 and, since the generator is quadrant
restricted, the 4 most significant bits of the other representations of the sines stored in
M0 are also 0, and therefore, there is no need for them to be stored. On the other hand,
the 9 most significant bits of the representation of the cosine of that angle are equal to 1,
and therefore, there is no need for them to be stored either. Similar optimizations can be
applied toM1, but in this case, only one bit can be saved. Note that we only need two inte-
ger multipliers of size 13× 17 (6a) and two of size 17× 17 (6b) instead of four multipliers
of size 17× 17 thanks to the leading zeros of the sine. The leading ones of the cosine can-
not be employed to reduce the size the arithmetic components in a similar way. In the last
stage, an adder (3) provides the sine of the tree generator and a subtracter (7) provides the
cosine.

4 Sine/complement generator
In the optimizations described in Section 3, the angle whose sine/cosine must be com-
puted is decomposed into two subangles, A and B. Two subgenerators, called branches,
are employed to compute the sine/cosine of A and B, and then the sine/cosine of
A + B is computed by applying the identities 6. This method presents the following
drawbacks:

• If the maximum value of one of the angles A or B is small, then its sine is close to 0,
while its cosine is close to 1. In this case, the product cos(A) cos(B) can be orders of
magnitude greater than sin(A) sin(B), and hence, smearing may occur when
computing cos(A + B) = cos(A) cos(B) − sin(A) sin(B).
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Fig. 2 Optimization of a quadrant-restricted tree generator of height 1

• Unlike the optimization described in Section 3.2.2, the one described in Section 3.2.3
fails to help in the reduction of the required arithmetic components.

These problems can be solved by using another type of generator that we call
sine/complement generator. Such generator receives an integer n and computes the sine
and the complement of the cosine of nφ, that is defined as follows:

Definition 6 The complement of the cosine of x is com(x) = 1 − cos(x)

It is possible to compute the sine and the complement of the cosine of the sum
of two angles, A and B, from the sines and complements of the cosines of those
angles by using a functional unit called a trigonometric adder [17]. Similar to the
complex multiplier, the trigonometric adder can be implemented with adders (3),
subtracters (7), and multipliers (6) as depicted in Fig. 3. This trigonometric adder
implementation uses the following trigonometric identities derived from those of 6:
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Fig. 3 Implementation of a trigonometric adder

sin(A + B) =
sin(A) + sin(B)−[ sin(A)com(B) + com(A) sin(B)]

com(A + B) =
com(A) + com(B)+[ sin(A) sin(B) − com(A)com(B)]

(10)

Trigonometric adders enable the implementation of a sine/complement generator
using a tree structure similar to that described in Section 3.2. Such an implementation,
described in [18], requires a set of sine/complement subgenerators (the leaves of the tree)
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as well as trigonometric adders (the internal vertex). Furthermore, if the generator is
quadrant restricted, then optimizations similar to those described in Section 3.2 can be
applied:

• Since the complement of the cosine is also positive in [ 0,π/2], the trigonometric
adders can be implemented without signed arithmetic components.

• If fixed-point representation is used, the leading zeros of the sines make it possible to
reduce the size of the integer multipliers and that of the leaves.

In this case, the optimization described in Section 3.2.3 cannot be applied, but if fixed-
point representation is used, we can use the following optimization that we call leading
zeros of the complement: if a branch is quadrant restricted, an upper bound on its comple-
ment output is com(nmaxφ), where nmax is the maximum of the input space of the branch.
Therefore, if the k most significant bits of the fixed-point representation of com(nmaxφ)

are 0, those bits of the complement output of the branch are always 0. If the branch is
implemented with an LUT, then there is no need to store those bits. Note that, unlike the
optimization described in Section 3.2.3, this optimization enables a reduction of the size
of the required multipliers.
A sine/cosine generator can be implemented with a sine/complement generator by sim-

ply adding a trivial arithmetic circuit to subtract the complement of the cosine from 1. In
fact, if fixed-point notation is used, then this arithmetic circuit is not necessary since the
trigonometric adder corresponding to the root can be easily modified to provide cos(nφ)

instead of com(nφ) at no additional cost. To this end, instead of com(nφ) = com(A+ B),
the root vertex computes its opposite −com(nφ) = −com(A + B) by using the following
equation:

−com(A + B) =
[ com(A)com(B) − sin(A) sin(B)]−[ com(A) + com(B)]

(11)

subsequently 1 can be added to −com(nφ) in order to obtain cos(nφ). Note that this
last operation is merely toggling the integer bit of the representation of −com(nφ).
If a sine/cosine generator or a branch of it is quadrant restricted, then it should be
implemented employing a complement generator due to the following reasons:

• The smearing problems are lessened by using the formulae 10.
• In contrast to the leading ones of the cosine optimization, the leading zeros of the

complement optimization make it possible to reduce the size of the multipliers.

As an example, Fig. 4 shows how to implement a sine/cosine generator with an input I
of width w = 11 using a sine/complement generator whose topology is a tree of height
h = 2. The sine/complement generator uses m = 2h = 4 subgenerators, M0, M1, M2,
and M3, which have been implemented with direct access memories (8). Following the
recommendations of Section 3.2 to minimize the total number of memory locations, M3
has 2 address lines (q = �w/m� = 2) and each of the other 3 remaining memories (r =
w − mq = 3) has an additional address line, and therefore, L(3) = 2 and L(2) = L(1) =
L(0) = 3. Hence, SL(0) = 0, φ0 = 20φ, SL(1) = 3, φ1 = 23φ, SL(2) = 6, φ2 = 26φ,
SL(3) = 9, and φ3 = 29φ. Each memory Mk contains the sines and the complement of
the cosines of the multiples of φk = (2SL(k))φ, and therefore, its output provides the sine
and the complement of the cosine of nkφk , where nk is the value of its address lines. Each
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Fig. 4 Sine/cosine generator implemented with a sine/complement generator

address line t of each memory Mk is connected to It+SL(k), that is, the inputs of M0, M1,
M2, and M3 are connected to I2I1I0, I5I4I3, I8I7I6 , and I10I9, respectively. Hence,
n = n02SL(0) + n12SL(1) + n22SL(2) + n32SL(3) =⇒ nφ = n02SL(0)φ + n12SL(1)φ +
n22SL(2)φ +n32SL(3)φ = n0φ0 +n1φ1 +n2φ2 +n3φ3. Three trigonometric adders are used
(9). Those connected directly to the memories are employed to compute the sine and the
complement of the cosine of the angles n0φ0+n1φ1 and n2φ2+n3φ3. The other computes
the sine and the complement of the cosine of nφ = n0φ0 + n1φ1 + n2φ2 + n3φ3. A trivial
arithmetic circuit (10) subtracts the complement of the cosine of nφ from 1 to obtain the
cosine of nφ.

5 Experiments
In order to measure the possible enhancements that the proposed approach may provide,
we have written an open-source tool, called twiddle.py, to automate the design of
twiddle factor generators that use the proposed optimization. The tool admits arbitrary
output precision and tree height. We selected the same size for the input, the sine out-
put, and the cosine output. In the current version, the sequence length must be a powers
of 2 so it is possible to apply argument reduction and only quadrant-restricted genera-
tors are needed. The sequence lengths in our experiments ranged from 216 to 223. The
twiddle.py tool follows the recommendations of Section 3.2 to minimize the size of
the memories. More information about the tool can be found in the section “Availability
of data and materials.” The values computed by the generators are faithfully rounded.
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6 Results and discussion
6.1 Multipliers

As described in Section 3.2.3, the leading ones of the cosine optimization make it possible
to reduce the size of the memories, but not the size of the required arithmetic compo-
nents. We claimed that the leading zeros of the complement optimization, described in
Section 4, were more convenient because they make it possible to reduce not only the size
of the memories, but also the size of the multipliers. To ascertain such claim, we used the
twiddle.py tool to implement generators of height 1 with input size ranging from 16
to 23 bits. The comparison of the size of the complement multiplicands and the corre-
sponding cosine multiplicands is shown in Table 2. The width in bits of the cosine and the
complement of the cosine is reported in the subcolumns cosine and compl respectively.
The relative reduction is reported in the subcolumns red.
The first fractional bit of the cosine multiplicand is always zero. However, the precision

of the multiplicands must be two bits higher than the output precision to compensate for
rounding errors. For this reason, the size of the cosine multiplicands of both branches
must be a bit greater than the output data width. The size of the corresponding comple-
ment multiplicand of the left branch is just one bit lower so the relative saving decreases
with the data width. On the other hand, the size of the complement multiplicand of the
right branch is almost constant and is never greater than 4 so the relative saving increases
with the data width and ranges from 83 to 90%.
As noted by [1], an obvious way to further reduce the size of the memories is to replace

them by sub-branches with memories of smaller depth at the cost of more multiplica-
tions. Of course, if the implementation is fully pipelined or combinational, the additional
multiplications should be carried out by new multipliers. If such replacement is carried
out, the angles corresponding to most of these newmemories are remarkably smaller. For
this reason, the leading zeros of the complement optimization should further reduce the
size of the additional multipliers. To ascertain this, we used the twiddle.py to carry
out such replacements by increasing the tree height one stage. The saving obtained for
each branch is reported in the next sub-subsections.

6.1.1 Left branch

The size of the operands of the left branch is shown in Table 3. As in the tree of height
1, the saving obtained by using the proposed implementation in its left sub-branch is
negligible, but the saving in its right sub-branch is remarkable, ranging from 41 to 53%.

Table 2Multiplicand width comparison of generators with a tree structure of height 1

Data width Left branch Right branch

Cosine Compl. Red. (%) Cosine Compl. Red. (%)

16 17 16 6 16 2 88

17 18 17 6 17 3 83

18 19 18 5 18 2 89

19 20 19 5 19 3 85

20 21 20 5 20 2 90

21 22 21 5 21 3 86

22 23 22 4 22 4 83

23 24 23 4 23 3 88
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Table 3Multiplicand width comparison of the left branch of generators with a tree structure of
height 2

Data width Left sub-branch Right sub-branch

Cosine Compl. Red. (%) Cosine Compl. Red. (%)

16 19 18 5 19 9 53

17 20 19 5 20 11 45

18 21 20 5 21 12 43

19 22 21 5 22 13 41

20 23 22 4 23 12 48

21 24 23 4 24 13 46

22 25 24 4 25 14 44

23 26 25 4 26 15 42

6.1.2 Right branch

As shown in Table 4, the saving obtained by using the proposed implementation in the
right branch is astonishing. To begin, the saving corresponding to its left sub-branch is
very high, ranging from 77 to 88%. Moreover, the saving corresponding to its right sub-
branch is always 100%. This means that the complement multiplicand of the right sub-
branch is always zero and the corresponding multipliers can be removed.

6.2 Implementation

The hardware description of the twiddle factor generators with a sine/complement
tree of height 1 were implemented in a Xilinx (Virtex) 7 XC7VX485T-2FFG1761 field-
programmable gate array (FPGA) chip. We also implemented the equivalent sine/cosine
tree generators described in [1] and cordinate rotation digital computer (CORDIC) gen-
erators to measure the relative enhancements and penalties. Following the notation used
in [1], the reference sine/cosine tree implementations will be called SinAndCos. The
proposed implementations will be called SinAndCom. The SinAndCos and CORDIC
implementations are generated by the flopoco open-source tool version 4.1.2 available
at http://flopoco.gforge.inria.fr. The tested implementations are combinational, but are
embedded in a dummy sequential module in order to obtain delay estimations from the
synthesis tool. Synthesis was carried out with the (Vivado) Design Suite tool of Xilinx ver-
sion 2017.2.1 using the default options. The only exception is that the use of the Digital
Signal Processing (DSP) blocks was disabled in order to extrapolate the results to other

Table 4Multiplicand width comparison of the right branch of generators with a tree structure of
height 2

Data width Left sub-branch Right sub-branch

Cosine Compl. Red. (%) Cosine Compl. Red. (%)

16 19 4 79 19 0 100

17 20 3 85 20 0 100

18 21 4 81 21 0 100

19 22 5 77 22 0 100

20 23 4 83 23 0 100

21 24 3 88 24 0 100

22 25 4 84 25 0 100

23 26 5 81 26 0 100

http://flopoco.gforge.inria.fr
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Table 5 Delay of the sine/complement generators

Data width Delay (ps)

16 15026

17 17243

18 18547

19 16592

20 17183

21 18628

22 19791

23 19914

reconfigurable devices as well as to ASIC. The obtained results are reported in the next
sub-subsections.

6.2.1 Delay

The delay of the slowest path of the generators is shown in Tables 5, 6, and 7. The SinAnd-
Com approach turned out to be about 50% faster than CORDIC but was slower than
SinAndCom in most cases. For the lower data widths, the penalty was as high as 26%. One
of the reasons is that, in order to apply Eq. 10, it is necessary to execute more explicit
additions and subtractions than in Eq. 6. The penalty is not that severe for higher widths,
and there are some little speed-ups ranging from 5 to 7%.

6.2.2 Resources

The resource utilization of the generators are shown in Tables 8, 9, and 10. No DSP
units were used. As mentioned in Section 3.2, in order to save resources, the flopoco
tool does not implement the right branch of the SinAndCom generators with a mem-
ory. Instead, the corresponding values are evaluated by using the Taylor series. The same
optimization can be applied to the SinAndCom approach, but the twiddle.py does
not implement it yet. For this reason, this comparison is not fair to the SinAndCom
approach but, even without the Taylor series optimization, SinAndCom used less LUTs
in every case. The best saving was as high as 26%. The implementation of the Taylor
optimization should provide higher relative savings. Also, as mentioned in Section 6.1,
the relative saving should be remarkable if higher tree structures are used. Unfortunately,
unlike twiddle.py, the current version of flopoco only supports tree structures of
height 1 so we were unable to ascertain this. Regarding CORDIC, for low data widths, the
SinAndCom has enabled the number of look-up tables to be reduced by between 20 and
27%, while for higher data widths, it introduces a penalty as high as 15% in the resource
utilization.

Table 6 Delay of the CORDIC generators

Data width Delay (ps) SinAndCom speed-up (%)

16 28292 47

17 30660 44

18 31769 42

19 34167 51

20 35845 52

21 37474 50

22 38459 49

23 41852 52
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Table 7 Delay of the sine/cosine generators

Data width Delay (ps) SinAndCom speed-up (%)

16 12877 − 17

17 13692 − 26

18 15433 − 20

19 16362 − 1

20 18500 7

21 19590 5

22 17862 − 11

23 19078 − 4

Table 8 Resource utilization of the sine/complement generators

Data width Look-up tables

16 696

17 828

18 863

19 1390

20 1161

21 1711

22 1735

23 2025

Table 9 Resource utilization of the CORDIC generators

Data width Look-up tables SinAndCom saving (%)

16 934 25

17 1037 20

18 1175 27

19 1270 − 9

20 1362 15

21 1512 − 13

22 1657 − 5

23 1765 − 15

Table 10 Resource utilization of the sine/cosine generators

Data width Look-up tables SinAndCom saving (%)

16 739 6

17 1121 26

18 1040 17

19 1600 13

20 1325 12

21 1994 14

22 2238 23

23 2602 22
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7 Conclusions
In this paper, we propose a table based-sine/cosine computation technique. In the pro-
posed technique, the complement of the cosine is computed before the cosine itself in
order to reduce the size of the required multiplications. We have released an open-source
tool to automate the design of twiddle factor generators of arbitrary size and precision
using the proposed technique. Several twiddle factor generators have been implemented
in a Xilinx (Virtex) 7 XC7VX485T-2FFG1761 FPGA chip using the proposed technique
and other techniques described in [1]. The proposed technique is remarkably faster than
CORDIC. Also, when compared with previous table-based implementations with a tree
structure of height 1, the proposed technique enabled a remarkable saving in the hardware
resources at the expense of delay. To increase the relative saving, some of the memories
could be replaced by circuits that evaluate the corresponding values. Further research is
required to measure the benefits that such optimization could provide. Also, it would be
interesting to make new comparisons if a version of flopoco supporting higher tree
structures is released.
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