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Abstract

Range alignment is an essential procedure in the translation motion compensation of inverse synthetic aperture radar
imaging. Global optimization or maximum-correlation-based algorithms have been used to realize range alignment.
However, it is still challenging to achieve range alignment in low signal-to-noise ratio scenarios, which are common in
inverse synthetic aperture radar imaging. In this paper, a novel anti-noise range alignment approach is proposed. In
this new method, the target motion is modeled as a uniformly accelerated motion during a short sub-aperture time.
Minimum entropy optimization is implemented to estimate the motion parameters in each sub-aperture. These
estimated parameters can be used to align the profiles of the current sub-aperture. Once the range profiles of each
sub-aperture are aligned, the non-coherent accumulation gain is obtained by averaging all profiles in each
sub-aperture, which can be used as valuable information. The accumulation and correlation method is applied to
align the average range profiles of each sub-aperture because the former step focuses mainly on alignment within
the sub-apertures. Experimental results based on simulated and real measured data demonstrate the effectiveness of
the proposed algorithm in low signal-to-noise ratio scenarios.
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1 Introduction
Inverse synthetic aperture radar (ISAR), which is used to
obtain images of non-cooperative and moving targets, has
been widely applied in many civil and military domains in
the last few decades [1–5]. ISAR achieves high resolutions
in both the range and azimuth directions by exploiting
the wideband characteristics and angular diversity dur-
ing the coherent processing interval. During the process
of imaging, a target’s movement can be divided into two
parts: translational and rotational motion. It is well known
that only the rotational motion contributes to imaging,
while translational motion can cause blurring of the ISAR
images and therefore must be compensated for. Range
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alignment and autofocusing constitute the basic workflow
of translational motion compensation. The range align-
ment procedure is the prerequisite for the subsequent
fine-tuned phase compensation, which ensures that the
amount of energy of the same scatters are in the same
range bins. Well-aligned range profiles are the foundation
of a focused ISAR image [6–9]. This article focuses mainly
on a novel and effective method for range alignment.
The traditional range alignment methods can be sorted

into three categories. The first is maximum-correlation-
based methods, which maximize the correlation function
between adjacent profiles or between the current profile
and a template one. A representative one was discussed
in detail in [1]. To improve the performance of these
methods in low SNR scenarios, [10] proposed that the
average of aligned profiles can be used as a reference. Xue

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-020-00709-z&domain=pdf
mailto: yangjian@nudt.edu.cn
http://creativecommons.org/licenses/by/4.0/


Lu et al. EURASIP Journal on Advances in Signal Processing          (2021) 2021:4 Page 2 of 20

et al. [11] demonstrated a high-order symmetric accu-
mulated cross-correlation method (HSACM) to achieve
a high real-time computation speed. In extremely low
SNR scenarios, however, these methods can be impacted
by noise, and misalignment errors accumulate during the
coherent processing interval (CPI). The second category
of methods is based on the dominant scatters of targets
[12, 13]. Although these methods have high computa-
tional efficiency, they are sensitive to angular glint and
noise, and they have difficulty in tracking strong scat-
ters in real situations. The third category of methods is
optimization-based and uses several global metrics, such
as entropy ([14, 15]) and contrast ([16, 17]), as references
to iteratively compensate for misalignment. However, as
mentioned in [18], the synthetic profiles in the global
methods are equal to the non-coherent accumulation, and
under a low SNR, the SNR gain from the non-coherent
integrant is not sufficient to overcome the strong noise,
and as a result, the metrics cannot fully indicate the qual-
ity of the range alignment. In short, the current range
alignment methods suffer performance reductions in low
SNR situations, and it is still challenging to propose an
anti-noise range alignment method.
By referring to [19] and [20], it is likely that ISAR signals

encounter interference from strong noises because of the
long observation distance and low transmitting energy.
For example, when the target of interest is a high-orbit
satellite, the SNR of echoes can be very low. It has been
concluded that if the required SNR decreases by 1 dB,
the surveillance range will increase by 8%. Therefore, it
is essential to implement algorithms with high robustness
under low SNRs. Methods such as those by [18] and [19]

model the total translation motion as a high-order poly-
nomial and use coordinate descent or a particle swarm
algorithm to carry out the optimization. According to [21]
and [22], the plain coordinate descent used in [18] can eas-
ily be trapped in a local optimum when the cost function
is non-convex. The particle swarm algorithm is heuris-
tic, which means a relatively complex parameter setting
scheme is required. In addition, the above algorithms
jointly solve range alignment and phase compensation,
but none of them is specifically aimed at range align-
ment. Furthermore, joint compensation demands higher
accuracy (range, 1/4~1/8 range unit; phase, wavelength/8)
than that of the separated methods, and joint compensa-
tion requires a high-order model, which represents a high
computational cost.
To improve the performance of the range alignment

methods in low SNR scenarios and overcome the short-
comings of the above algorithms, the proposed method
is designed with the following three steps. First, the
target motion information is considered. In a relatively
short observation time, it is reasonable to model the tar-
get motion as uniform acceleration. However, in a real
situation, the CPI is always long. Therefore, we split the
full aperture into several sub-apertures to achieve a short
observation time. Extra information is of benefit to sup-
press strong noise. In each sub-aperture, the minimum
entropy principle is implemented to estimate the motion
parameters and obtain the envelope deviations of all pro-
files in the current sub-aperture. As an improvement to
[18], the coordinate descent algorithm (CDA) with prox-
imal point updating is used to obtain better convergent
properties. Second, after optimization and compensation

Fig. 1 Estimated error curves without fitting. a Theoretical and estimated error curves and b enlarged version of a
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in each sub-aperture, non-coherent accumulation gain
can be realized through the average of the profiles in the
sub-aperture, and we then use a maximum-correlation-
based algorithm to align the average range profiles of
every sub-aperture and obtain the envelope deviation
between every two sub-apertures. This step is necessary
because optimization in each sub-aperture mainly focuses
on the alignment of the current sub-aperture. After the
former two steps, the envelope deviations of all profiles
in one sub-aperture and the deviations of the average
range profiles of every sub-aperture, i.e., the error within
and between sub-apertures, are obtained. Finally, locally
weighted regression is applied to fit the total envelope
deviations to eliminate the step change between every
two sub-apertures. In general, the reason that the pro-
posed method has enhanced performance in low SNR
scenarios is that the target motion information and global
optimization are used, and in addition, the non-coherent
accumulation gain is adopted.
The main contributions of this article can be summa-

rized as follows:

1) A novel range alignment approach is proposed with
consideration of the target motion, and the global
optimization and maximum-correlation-based

methods are combined to achieve high performance
in low SNR scenarios.

2) The CDA with a proximal update scheme is used to
achieve stability. Furthermore, in each iteration of
the CDA, the Levenberg-Marquardt (LM) method is
implemented as the solver. The LM method, which
blends the advantages of the gradient descent and
Newton’s method, can achieve a better robustness
and a faster rate of convergence.

The remainder of this paper is organized as follows.
In Section 2, the signal model is introduced, and related
works, such as the maximum-correlation-based algorithm
(MCA) and minimization of the entropy of the average
range profile (MEARP) [7], are briefly summarized for
comparison. In Section 3, the three-step procedure of
the proposed algorithm is discussed in detail. Section 4
presents experimental results based on simulated and real
measured data to verify the effectiveness of the proposed
algorithm. Some conclusions are presented in Section 5.

2 Signal model and related works
In this section, the models of transmitted and received
signals obtained using the dechirping technique are
briefly deduced, and the formula of envelope deviation

Fig. 2 Framework of the proposed algorithm
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compensation is demonstrated. For comparison, a bare-
bones introduction to the related works, including the
MCA [1] and MEARP [7], is presented.

2.1 Signal model
In ISAR imaging, the linear frequency modulation (LFM)
signal is often transmitted, which can be expressed as

s
(
t̂
) = rect

(
t̂
TP

)
· exp

[
j2π

(
fct̂ + 1

2
γ t̂2

)]
(1)

where rect (·) is the rectangular function(
rect (τ ) =

{
1, |τ | ≤ 1

2
0, |τ | > 1

2

)
. Tp, fc, γ , and t̂ represent the

pulse duration, carrier frequency, chirp rate, and fast
time, respectively.
After applying the well-established dechirping tech-

nique, including residual video phase (RVP) term elimina-
tion, and the fast Fourier transform (FFT) operations to
the fast time, high-resolution range profiles (HRRPs) can
be obtained:

S
(
f , ts

) = A · TP · sin c
(
TP

(
f + 2

γ

c
�R

))

· exp
(

−j
4π fc
c

�R
) (2)

where A, f, and �R denote the amplitude modulation, fre-
quency variable, and radial range difference between the
scatter and reference point, respectively. ts is the slow time
with 0 ≤ ts ≤ Ta, where Ta is the CPI [18], and the
variation in ts is reflected by �R:

�R = R0 − Rref

≈ d · sin (�ts)
(3)

where R0 is the radial distance between the scatter and
the radar, Rref is that between the reference point and the
radar, d is the distance between the scatter and the refer-
ence point, and � represents the angular velocity of the
target.
The range misalignment, due to the translation motion

of the target, can be reflected by the envelopes of the
HRRPs under the dechirping model. The peak of the sinc
function in (2), which is located at f = −2γ�R/c, denotes
the range information of the scatter. However, because of
the variation in �R during the CPI, the peaks exist in dif-
ferent range bins among all sweeps of the radar, resulting
in the defocusing of the scatter energy in the final ISAR
image.
To achieve range alignment, the misaligned envelopes

of the HRRPs should be shifted along the direction of fast

Fig. 3 The plane model. a The simulated plane model, b the original ISAR image, c the original range profiles, and d the contaminated range profiles
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time. According to the shift property of the Fourier trans-
form, alignment can be accomplished in the time domain
as follows:

s̃
(
ts, t̂

) = s
(
ts, t̂

) · exp [−j2π t̂�(ts)
]

(4)

where s̃
(
ts, t̂

)
is the compensated signal echo and � (ts)

represents the envelope deviations of different sweeps.

2.1.1 Related works
The two main approaches to achieving range alignment
are the MCA and MEARP. In this subsection, both are
briefly introduced.
One of the widely used maximum-correlation-based

algorithms is the accumulation and correlation method
(ACM), which uses the average of already aligned
envelopes as the template (reference envelope) and maxi-
mizes the correlation function between the template and
the next unaligned envelope. Its formula is as follows:

τs = argmax
�τ

R

⎛

⎝xi (�τ ) ,
Q∑

m=1
xm

⎞

⎠ (5)

where xi and xm(m = 1, 2, . . . ,Q) represent the ith
unaligned and first Q aligned envelopes, respectively. R(·)

denotes the correlation function, which is maximized with
respect to �τ , i.e., the shift value of the envelope. τs is
the final result used to calibrate the current envelope. The
approaches for averaging the already aligned envelopes in
(5) can be varied for the sake of accuracy and stability [10,
23].
For theMEARP, it is iterated with the entropyminimiza-

tion principle as follows [7]:

�
(k)
τ (m) = �

(k−1)
τ (m)

+ arg
{
max

τ
R
(
p
(
τ + �

(k−1)
τ (m) ,m

)
, p̃(k−1)

ave (τ )
)}

m = 0, . . . ,M − 1

(6)

and

p̃(k−1)
ave = ln p(k−1)

ave = ln
{M−1∑

m=0
p
(
τ + �(k−1)

τ (m) ,m
)
}

(7)

In (6) and (7), r and m represent the radial range and
pulse index, respectively. k denotes the iteration number,
and p(r,m) is the envelope of the range-compressed ISAR
signal. The other mathematical symbols are the same as
those in (5).

Fig. 4 Alignment results of the different methods under a − 10 dB SNR. a The range profiles without envelope deviation, b the alignment result of
the proposed algorithm, c the alignment result of the ACM, and d the alignment result of the MEARP
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The two algorithms above are representative of the
maximum-correlation-based and global-optimization-
criterion-based methods, respectively. They are used for
comparison with the proposed algorithm.

3 Methods
In this section, the workflow of the proposed range align-
ment method is discussed in detail. In general, as men-
tioned in Section 1, this novel algorithm contains three
steps:

1 Split the full aperture and estimate the target motion
parameters in each sub-aperture based on the CDA
and the Levenberg-Marquardt (LM) optimization
method

2 Align the envelopes of the average range profiles
(ARPs) of every sub-aperture using the MCA

3 Smooth the estimated deviations by means of locally
weighted regression (LOESS)

3.1 Estimating the motion parameters in the
sub-apertures

Traditional range alignment methods often focus on the
similarity among range profiles without fully considering

the target motion information. As a result, these algo-
rithms are vulnerable in low signal-to-noise ratio (SNR)
scenarios.
In a relatively short observation time, the target transla-

tion motion can be regarded as stable movement, i.e., uni-
formly accelerated motion; thus, it is rational to model the
envelope shift as a second-order polynomial with respect
to the slow time. With the adoption of the motion infor-
mation, the algorithm robustness under a low SNR can
be considerably improved. However, in real ISAR imaging,
hundreds or even thousands of echoes are accumulated,
which leads to a long observation time. To use the motion
information, we split the full aperture into a certain num-
ber of sub-apertures to obtain a short slow-time span. In
each sub-aperture, optimization based on the minimum
entropy principle is performed to estimate the velocity
and acceleration of the target, which is discussed at length
in the following.
Assume every M consecutive echoes of the full aper-

ture are viewed as a sub-aperture and that the echo in the
kth sub-aperture is xk

(
tm, t̂

)
, where tm is the slow time

and tn is the fast time (discrete). As mentioned above,
the envelope shift in one sub-aperture can be modeled
as a second-order polynomial in tm with two unknown

Fig. 5 Estimated error curves of the three methods under a − 10 dB SNR. a The estimated error curve of the proposed algorithm, b the estimated
error curve of the ACM, and c the estimated error curve of the MEARP
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Fig. 6 Imaging results of the different methods under a − 10 dB SNR. a The ideal ISAR image, b the imaging result of the proposed algorithm, c the
imaging result of the ACM, and d the imaging result of the MEARP

parameters, i.e., acceleration a and velocity v:

�(tm) = vtm + atm2 (8)

where � (tm) represents the envelope shift error.
As (4) indicates, once the optimal values of the unknown

parameters are obtained, modulation in the time domain
can be carried out to compensate for the range shift:

x̃k (tm, tn) = xk (tm, tn) · exp [−j2π tn
(
vtm + atm2)] (9)

where x̃k denotes the compensated echo.
To estimate a and v, the minimum entropy method is

introduced. By referring to [24], compared with contrast-
based methods, this method can attain a good compro-
mise among all kinds of scatters contained in the echo and
result in a globally high-quality image. The entropy of the
ARP of the current sub-aperture is chosen as the metric,
and the unknown parameters are estimated byminimizing
the entropy.
The HRRP of one sub-aperture is denoted by

HRRP = fft
{
x̃k (tm, tn)

}
(10)

where fft {·} represents the FFT operation on tn.

Based on (9) and (10), the ARP of the sub-aperture can
be expressed as:

ARP = 1
M

M−1∑

m=0

∣
∣fft

{
x̃k (tm, tn)

}∣∣

= 1
M

M−1∑

m=0

∣
∣fft

{
xk (tm, tn) · exp [−j2π tn

(
vtm+atm2)]}∣∣

�= 1
M

M−1∑

m=0
|fk (v, a) |

(11)

where fk (v, a) =fft
{
xk (tm, tn) · exp [−j2π t̂

(
vtm + atm2)]}

and m is the index of each echo in the sub-aperture.
Equation (11) is apparently a one-dimensional real

Table 1 Comparison of simulated imaging results under a
− 10 dB SNR

Original image Proposedmethod ACM MEARP

Entropy 12.52841 12.52842 12.68372 12.60427

Contrast 0.58952 0.58952 0.55225 0.57155
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function with a length equal to the number of fast time
sampling points N.
According to [18], the entropy of the ARP can be written

as

E (ARP) = − 1
Sarp

N−1∑

n=0
|ARP|2 ln |ARP|2+ ln Sarp (12)

where n is the index of the fast-time sampling points and
Sarp is the intensity of the ARP, namely,

Sarp =
N−1∑

n=0
|ARP|2 (13)

Combining (11) and (12), it can be seen that the entropy
E is a function of the unknown parameters a and v. There-
fore, the problem of estimating these parameters can be
abstracted to the following form:

〈
â, v̂

〉 = argmin
a,v

E(a, v) (14)

where â and v̂ are the estimated values that minimize the
entropy.
Equation (14) is a two-dimensional optimization. In

the proposed algorithm, the CDA is implemented as the
optimization solver, which is an iterative method with
outer and inner iterations. The inner ones, with the same
number of unknown parameters, are accomplished by
minimizing the objective along a certain dimension while
fixing the remaining components of the vector of the
parameters at their current values. The outer one is not
to be terminated until the criteria on the tolerance of the
change in the cost function or the preset maximum loop
times are met [21].
According to [25], by using a proximal point update

technique, the CDA can achieve better robustness in solv-
ing one-dimensional sub-problems. Suppose the vector of
the unknown parameters is θ and that the CDA proce-
dure is in the pth outer loop and implemented to update
the ipth parameter. The CDA updating scheme with the
proximal point update can be written as

θ
p
ip = argmin

θip

⎡

⎣E
(
θip , θ

p−1
�=ip

)
+ 1
2ap−1

ip

∣
∣
∣
∣
∣
∣θip − θ

p−1
ip

∣
∣
∣
∣
∣
∣
2

2

⎤

⎦

(15)

where 1
2ap−1

ip

∣
∣
∣
∣
∣
∣θip − θ

p−1
ip

∣
∣
∣
∣
∣
∣
2

2
is the so-called quadratic prox-

imal term and ap−1
ip serves as a step size and can be any

bounded positive number. The addition of the quadratic
proximal term makes the function of each sub-problem
dominate the original objective around the current itera-
tion and therefore produces increased stability and better
convergence properties, especially in the case of non-
smooth optimization [25].

Algorithm 1 Levenberg-Marquardt method
Input: input parameters E, λ = 1e-3, γ = 2
Output: output θi
1: Calculate the first and second derivatives of the cost

function with respect to the parameter: ∂E (θi) /∂θi
and ∂E2 (θi) /∂θ2i

2: while ∂E2 (θi) /∂θ2i + λ < 0 do
3: λ = λ · 4
4: end while
5: Calculate the update value:� = − ∂E(θi)

∂θi

(
∂E2(θi)

∂θ2i
+ λ

)

6: Update: θi = θi + �

7: Calculate the gain ratio:
GR = [E (θi) − E (θi + �)] / [L (0) − L (�)]

8: if GR < 0 then
9: λ = λ · γ

γ = γ · 2
θi = θi − �

go back to 5
10: else
11: λ = λ · max

[
1/3, 1 − (2 · GR − 1)3

]

γ = 2
12: end if
13: return θi

For the one-dimensional search in the CDA, the LM
algorithm, which has been the de facto standard for most
optimization problems [26], is utilized. In the LMmethod,
the cost function in the neighborhood of the current
iteration θi can be approximated as

E (θi + �) ≈ L (�) = E (θi) + ∂E (θi)

∂θi
· � + 1

2
∂E2 (θi)

∂θ2i
�2

(16)

where � is the update value and L(�) represents the
approximation of E(θi + �).
With two parameters, i.e., the damping parameter λ and

the division factor γ , the LM procedure can be summa-
rized as in Algorithm 1, where the initial values of λ and γ

are empirically obtained.
It can be seen fromAlgorithm 1 that the first and second

derivatives of the cost functions are needed to complete
the LM method, as illustrated in the Appendix.
Assume that the number of sub-apertures is SN ; there-

fore, there areM · SN echoes in total. The envelope devia-
tions obtained by parameter estimation can be written as

�sub = [
v1ts1 + a1ts12, . . . , vSN tsSN + aSN tsSN2]T (17)

where vi and ai (i = 1, 2, . . . , SN) denote the estimated
parameters and tsm (m = 1, 2, . . . ,M) represents the
slow-time vector with length M of each sub-aperture.
Therefore, the total length of vector �sub isM · SN .
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Fig. 7 Imaging results of the different methods under a − 15 dB SNR. a The ideal ISAR image, b the imaging result of the proposed algorithm, c the
imaging result of the ACM, and d the imaging result of the MEARP

3.2 Aligning the ARPs of the sub-apertures
After the parameter estimation based on the method
mentioned in the previous subsection and compensa-
tion according to the estimated results, the envelopes in
each sub-aperture have been aligned. However, due to the
following two reasons, some fine-tuned techniques are
required to achieve better alignment.
On the one hand, the parameter estimation method

focuses mainly on the alignment in the sub-apertures, and
as a result, there exist envelope fluctuations among differ-
ent sub-apertures; on the other hand, after the misalign-
ment compensation in each sub-aperture, the process-
ing gain of non-coherent integration can be obtained by
means of averaging all envelopes in a sub-aperture, which
provides useful information for performance enhance-
ment in low SNR scenarios.
To make full use of the non-coherent integration

gain and improve the effect of alignment between sub-
apertures, we implement the ACM (5) on the ARPs of
all sub-apertures. The framework of this fine-tuned tech-
nique is demonstrated below.
Suppose the estimated motion parameters of the kth

sub-aperture are v̂ and â; therefore, the compensated
echoes of this sub-aperture can be written as

xck (tm, tn) = x̃k (tm, tn) · exp
[
j2π

(
v̂tm + ât2m

)]
(18)

where xck (tm, tn) denotes the aligned echoes of the kth
sub-aperture. The ARP of the kth sub-aperture can be
expressed as

h = 1
M

M−1∑

m=0
|fft {xck (tm, tn)} | (19)

Again,M is the number of echoes in one sub-aperture, and
fft {·} represents application of the FFT along the fast-time
direction.
Assume that the number of sub-apertures is SN. After

the ACM, the SN values of the envelope deviations are
obtained, i.e.,

�ave = [�1,�2, . . . ,�SN ]T (20)

Table 2 Comparison of simulated imaging results under a
− 15 dB SNR

Original image Proposedmethod ACM MEARP

Entropy 12.62062 12.62458 12.72116 12.68513

Contrast 0.56509 0.56332 0.54001 0.54963
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where �i (i = 1, 2, . . . , SN) represents the envelope devi-
ation of each sub-aperture’s ARP and �ave denotes the
vector of all deviations.
The length of vector�ave should be extended toMwhen

carrying out compensation for each echo. The longer
version of �ave can be expressed as

�ave = [
M·SN

︷ ︸︸ ︷
�1, . . . ,�1︸ ︷︷ ︸

M

, . . . ,�SN , . . . ,�SN︸ ︷︷ ︸
M

]T (21)

3.3 Total error fitting using locally weighted regression
In the previous two subsections, the envelope devia-
tions in each sub-aperture and between every two sub-
apertures were obtained through optimization and the
ACM, respectively. With the combination of (17) and (21),
the total envelope deviations can be expressed as

�total = �sub + �ave (22)

where �total denotes the total deviations of the envelopes.
After aligning the ARPs of all sub-apertures, in gen-

eral, the misaligned envelopes can be calibrated well. To
achieve a higher performance, some fine tuning is still
required. Figure 1 shows an estimation result for a full
aperture’s envelope misalignment error, where relatively

accurate error estimation could be achieved; however,
according to the enlarged error estimation curve, there
exist step changes between the two sub-apertures, which
can undermine the imaging quality. Because each sub-
aperture is aligned as a whole by the method proposed in
the previous subsection, the step changes are inevitable.
These step changes can be easily smoothed and elim-

inated by some curve-fitting techniques. By referring to
[27] and [11], we use locally weighted regression (LOESS)
to smooth the step changes between every two adja-
cent sub-apertures. The procedure of LOESS is briefly
introduced in the following:

1 Suppose that there are N points to be fitted, i.e.,
[x1, . . . , xN ]T . For the i th point xi, put
N · fr

(
0 < fr ≤ 1

)
points into its neighborhood �i.

2 Determine the weight wk(xi), k = 1, 2, . . . ,N · fr for
the weighted least squares (WLS) in the
neighborhood of xi using tricube functions.

3 Because of the short length of the neighborhood, it is
reasonable to model the points in the neighborhood
as quadratic. After conducting WLS, the i th fitted
value can be expressed as yi = β0 + β1xi + β2x2i ,
where βi, i = 0, 1, 2 are the estimated coefficients of
the quadratic polynomial.

Fig. 8 Estimated error curves of the three methods under a − 15 dB SNR. a The estimated error curve of the proposed algorithm, b the estimated
error curve of the ACM, and c the estimated error curve of the MEARP
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4 Repeat steps 1–3 for all N points to obtain N fitted
values.

After LOESS, accurate envelope deviations can be
obtained, and good alignment can be achieved. The whole
framework is shown in Fig. 2.

3.4 Optimal selection and computational complexity
This subsection discusses how to choose the number of
sub-apertures and the computational complexity of the
proposed algorithm.
By referring to [28] and [29], we develop the following

adaptive selection method:

1 Initialize SN. The principle of initializing SN is that
the envelope deviation in one sub-aperture should
not exceed half the range unit, i.e., c/4Fs, where c is
the velocity of light and Fs is the sampling rate.

2 Implement the minimum entropy optimization. The
estimated error of the pth sub-aperture is �Rp(tm),
where tm represents the slow time of the current
aperture.

3 Double SN and implement the minimum entropy
optimization. The pth aperture in (2) is split into two
equal sub-apertures, and the estimated envelope

errors in each one can be expressed as �Rp1(tm) and
�Rp2(tm). They can be denoted as
�RpNew(tm) = [

�Rp1(tm),�Rp2(tm)
]
, and the length

of tm is equal to that in (2).
4 If the following condition is satisfied, the initialized

SN can be used; otherwise, return to (3) and repeat.

|max
(
�Rp(tm) − �RpNew(tm)

)

− min
(
�Rp(tm) − �RpNew(tm)

) | ≤ c/4Fs

In addition to the selection scheme above, in real cases,
it is also important to jointly consider prior information,
such as the motion parameters, the expected gain through
accumulated echoes, and the computational burden (a
larger number of apertures means a higher computational
complexity). Moreover, when the accumulated echoes are
insufficient, a certain number of echoes can be reused by
two different sub-apertures. In general, the selection of
the number of sub-apertures requires thorough consider-
ation.
In the following part of this subsection, the computa-

tional complexity is briefly numerically analyzed, with the
detailed derivation shown in the Appendix. As mentioned
above, the proposed algorithm contains three parts. In the
first part, we use the CDA to solve the optimization in

Fig. 9 Adding the envelope deviation errors. a The original ISAR image, b the original range profiles, c the three-order error, and d the contaminated
range profiles
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each sub-aperture. In each loop, the computational bur-
den is devotedmainly to obtaining the entropy and its first
and second derivatives. The computational complexity of
these operations is denoted as

NOP
mul ∼ �

(
M · N · log2N

)
(23)

NOP
add ∼ �

(
M · N · log2N

)
(24)

where NOP
mul and NOP

add represent the numbers of multipli-
cations and additions of the proposed algorithm’s opti-
mization procedure, respectively, andM andN denote the
numbers of Doppler and range cells of each sub-aperture,
respectively. It also can be seen that each sub-aperture is
independent; thus, parallel programming can be used to
execute all optimizations concurrently.
The second step is the ACM in each loop, of which the

computational burden arises mainly from obtaining the
correlation function between the current profile and the
reference. The computational complexity of this step is

NACM
mul ∼ �

(
SN · N · log2N

)
(25)

NACM
add ∼ �

(
SN · N · log2N

)
(26)

whereNACM
mul andNACM

add represent the numbers ofmulti-
plications and additions of the proposed algorithm’s ACM
procedure, respectively, N denotes the number of range
cells of each sub-aperture, and SN is the number of sub-
apertures.
With reference to [30], LOESS also decomposes the

problem into independent pieces, with all operations
being completely parallel. Therefore, with well-designed
concurrent programming, the computational complexity
of the LOESS step is equal to that of a weighted least
squares operation with few points.

4 Results and discussion
In this section, experiments based on simulated and real
measured data are reported to verify the effectiveness of
the anti-low-SNR characteristics of the proposed algo-
rithm. Entropy and contrast were chosen to evaluate the
quality of the range profiles and ISAR images. The ACM
(5) and MEARP (6) were also used for comparison. The
computation platform was based on the Windows 10 64-
bit operating system, an Intel Core i5-9300H@2.40 GHz
CPU, 8 GB of memory, and MATLAB version 2017b.

4.1 Simulated experiment
In this subsection, a simple plane model, as shown in
Fig. 3a, is used as the target of the simulated experiments.
The radar system has a 15-GHz carrier frequency and
2-GHz bandwidth. The numbers of fast-time sampling
points and accumulated echoes are both 512. Figure 3b is
the original ISAR image of this plane model. Figure 3c and

d demonstrate the original (without misalignment) and
the misaligned HRRPs.
To preliminarily verify the effectiveness of the proposed

algorithm using this simulated data, we added extra white
Gaussian noise to change the SNR to − 10 and − 13 dB.
First, the alignment results, the final ISAR images and

their evaluations, and the estimated error curve under
− 10 dB SNR are given. For the purpose of comparison,
these results obtained by the proposed algorithm, ACM,
and MEARP are all displayed.
Figure 4 gives the aligned HRRPs under the − 10 dB

SNR obtained through the three methods above. It
can be seen that due to the strong background noise,
the maximum-correlation-based algorithm has the worst
alignment result and that a few profiles at the beginning
of the slow time cannot be identified. The proposed and
MEARP algorithms utilize the global information so that

Fig. 10 Results of the Monte Carlo experiments. a The mean entropy
of ISAR images obtained from the three methods and b the MSE of
the error estimation
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their range profiles have higher sharpness than those of
the ACM.
The theoretical and estimated envelope deviation

curves are given in Fig. 5 to compare the accuracies of the
three methods. In Fig. 5, the dotted lines are the estimated
curves, and the full lines are the theoretical ones. It can be
seen from the first sub-figure that the estimated curve is
almost consistent with the theoretical one, indicating the
high accuracy of the proposed algorithm under low SNR
situations. However, there exist several abrupt changes in
the estimation of the ACM, which is the result of the noise
interference. The results of theMEARP, with fewer abrupt
changes than those of the ACM, reveal an overall shift
of the envelopes and are still not as good as those of the
proposed algorithm.
As shown in Fig. 4, it is difficult to distinguish the pic-

tures of the range profiles under strong noise. Moreover,
under very low SNRs, the entropy of the range profiles
cannot fully reflect the degree of focus due to the noise
disturbance. Therefore, the final image is obtained, and
the image quality is used as another reference for evalua-
tion. After the range alignment, by using the autofocusing
method proposed in [31], we can obtain the final ISAR
image. Figure 6 demonstrates the ISAR imaging results of

the three methods. The qualities of the images evaluated
by the entropy and contrast are shown in Table 1. Through
Fig. 6 and Table 1, it can be seen that the proposed algo-
rithm can obtain the best degree of focus, namely, the
lowest entropy and highest contrast. It should also be
noted that the ACM performs worse than the two other
algorithms, with some scatter points overwhelmed by the
ground noise.
In more challenging situations (− 15 dB SNR), the

proposed algorithm can still achieve high performance.
Figure 7 shows an ISAR image under − 15 dB for the
three methods. Their evaluations, conducted using the
entropy and contrast, are listed in Table 2. As is the case
in the − 10 dB SNR situation, the proposed algorithm
achieves the highest performance. It can be seen in Fig. 7
that the ACM cannot image at all and that some scatters
drowned in noise in the result of the MEARP can hardly
be identified. However, the imaging result of the proposed
algorithm is almost the same as the original one. Through
Table 2, it can be seen that compared with the qualities of
the results of the ACM and MEARP, the proposed algo-
rithm achieves the highest contrast and lowest entropy,
indicating that the proposed algorithm can produce the
most-focused images.

Fig. 11 Imaging results under a − 20 dB SNR. a The imaging result of the proposed algorithm, b the imaging result of the ACM, and c the imaging
result of the MEARP
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The estimated error curves obtained through the three
methods under − 15 dB are also demonstrated. As in
Fig. 5, in Fig. 8, the proposed algorithm realizes the highest
accuracy.

4.2 Experiment on real measured data
Real measured Yak-42 data were adopted to validate
the performance of the proposed algorithm. The radar
recording the dataset was a C-band ISAR experimental
system with a 400-MHz bandwidth, 5.52-GHz carrier fre-
quency, 100-Hz PRF, and 25.6-μs pulse width. The num-
bers of fast-time sampling points and accumulated echoes
were both 256. The SNR of the original echoes (before
range compression) was− 15 dB. To test the robustness of
the proposed algorithm in low SNR scenarios, extra white
Gaussian noise was added, making the SNR of echoes
− 20, − 22, and − 25 dB. Monte Carlo experiments were
performed under these low SNRs.
The three-order envelope deviation error, which can be

expressed as (27), was added:

Rerror = 15ts − 60t2s + 7t3s (27)

where Rerror is the added error and ts represents the slow
time.

The original ISAR image, the range profiles of 256
echoes, the added error, and the contaminated range pro-
files are demonstrated in Fig. 9. In the following part of
this subsection, the performances of the proposed algo-
rithm under − 20, − 22, and − 25 dB SNR are evaluated.
The imaging results and estimated error curves of the
three algorithms are demonstrated. To verify the robust-
ness of the proposed algorithm in low SNR scenarios,
Monte Carlo experiments were conducted.
Figure 10 demonstrates the ISAR image entropy and

MSE of the error estimation achieved after the 150 Monte
Carlo experiments. In Fig. 10, the full lines, dotted lines,
and dashed lines indicate the results of the proposed algo-
rithm, ACM, and MEARP, respectively. It can be seen in
Fig. 10a that the entropy of the ISAR images obtained from
the three methods indicates that the proposed algorithm
achieved lower entropy than did the ACM and MEARP
under − 15 to approximately − 25 dB SNRs. Furthermore,
according to Fig. 10b, the proposed algorithm had the
lowest MSE of error estimation, which further verifies its
robustness in low SNR scenarios. Through Fig. 10a and b,
it can be seen that the MEARP performed better than the
ACM under − 20 to approximately − 25 dB SNRs, which
is consistent with the conclusion in [7].

Fig. 12 Imaging results under a − 22 dB SNR. a The imaging result of the proposed algorithm, b the imaging result of the ACM, and c the imaging
result of the MEARP
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Figures 11, 12, and 13 demonstrate the ISAR imag-
ing results of the three methods under − 20, − 22, and
− 25 dB SNRs, respectively. The first sub-figures in these
figures show the results of the proposed algorithm, and
the second and third sub-figures show the results of
the ACM and MEARP, respectively. It can be seen from
Figs. 11, 12, and 13 that for extremely low SNRs, especially
− 22 and − 25 dB, severe defocus occurred in the images
yielded by the ACM and MEARP, and the outlines of the
planes could not be distinguished. However, the imag-
ing results of the proposed algorithm remained clear and
well focused as the background noise increased. There-
fore, through Figs. 11, 12, and 13, it can be concluded that
in low SNR scenarios, the proposed algorithm can realize
the most-focused ISAR images compared with the ACM
and MEARP.
In Figs. 14, 15, and 16, the error estimation curves of

the three algorithms under − 20, − 22, and − 25 dB SNRs
are demonstrated. The full lines represent the theoretical
results, and the dotted lines represent the estimations. It
can be seen that compared with the ACM and MEARP,
the proposed algorithm is the most robust and has the
highest estimation accuracy. The estimated error curve

obtained by the proposed algorithm is approximately con-
sistent with the theoretical one; however, there exists a
very large estimation error in the curves generated by the
ACM and MEARP, which will cause severely defocused
images. Therefore, through Figs. 14, 15, and 16, the supe-
riority of the proposed algorithm in low SNR scenarios is
further confirmed.

5 Conclusions
In low SNR scenarios, it is challenging to realize range
alignment in ISAR translation motion compensation. Ill-
aligned range profiles can cause imprecise phase com-
pensation results. A novel range alignment method was
proposed in this article. First, the target motion infor-
mation was adopted as useful information, and the full
aperture was split into several sub-apertures. In each sub-
aperture, the minimum entropy principle was applied as
a metric, and the CDA with a proximal point updating
scheme was implemented as the solver to estimate the
motion parameters (i.e., velocity and acceleration) in each
sub-aperture. Second, after parameter estimation in every
sub-aperture, the non-coherent accumulation gain was
obtained by averaging the profiles in each sub-aperture,

Fig. 13 Imaging results under a − 25 dB SNR. a The imaging result of the proposed algorithm, b the imaging result of the ACM, and c the imaging
result of the MEARP
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Fig. 14 Estimation results under a − 20 dB SNR. a The estimation result of the proposed algorithm, b the estimation result of the ACM, and c the
estimation result of the MEARP

which could be used as further information to improve the
anti-noise characteristics. The first step focused mainly
on alignment in each sub-aperture; therefore, we used
the ACM to align the ARPs of each sub-aperture. Third,
to eliminate the step change in the total estimated error
curve, LOESS was applied to smooth the discontinuity.
Experiments based on real measured Yak-42 data were
conducted, and the classic ACM and MEARP were used
for comparison. The results show that the proposed algo-
rithm achieved the best performance in low SNR scenar-
ios. Further work will be focused on parallelization of the
proposed algorithm to use it in real-time ISAR scenarios.

Appendix
Proof of the first and second derivatives of the cost function
In this section, the first and second derivatives of (12) are
given.
The ARP is a one-dimensional function of the unknown

parameters v and a. A vector containing an unknown is
denoted as θθθ = [v, a]T . Combined with (11) and (13), the
first derivative of (12) can be written as

∂

∂θi
E (ARP) = − 1

SARP

N−1∑

n=0

(
1 + ln |ARP|2) ∂|ARP|2

∂θi
(28)

where θi(i = 1, 2) is the ith element of θθθ .
Therefore,

∂ARP2

∂θi
= 2ARP · ∂ARP

∂θi
= 2ARP · 1

M

M−1∑

m=0

∂|fk(θθθ)|
∂θi

(29)

It can be seen from (28) and (29) that ∂|fk (θθθ) |/∂θi
should first be deduced to obtain ∂E (ARP) /∂θi.
Consider that

∂fk
∂v

= fft
{
x̃k

(
tm, t̂

) · (−j2π tmt̂
)}

(30)

∂fk
∂a

= fft
{
x̃k

(
tm, t̂

) · (−j2π t2mt̂
)}

(31)
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Fig. 15 Estimation results under a − 22 dB SNR. a The estimation result of the proposed algorithm, b the estimation result of the ACM, and c the
estimation result of the MEARP

and

∂|fk (θθθ) |
∂θi

= ∂
[
fk · fk∗]1/2

∂θi

= 1
2
[
fk · fk∗]−1/2 · ∂fk · fk∗

∂θi

= 1
2
[
fk · fk∗]−1/2 ·

[
fk

∂fk∗

∂θi
+ fk∗ ∂fk

∂θi

]

= [
fk · fk∗]−1/2 · Re

{
fk∗ ∂fk

∂θi

}

= 1
|fk| · Re

{
fk∗ ∂fk

∂θi

}

(32)

where fk∗ represents the conjugate of fk .
Taking (29)~(32) in (28), we can obtain an expression for

the first derivative of (12).
The second derivative of (12) can be written as

∂2E (ARP)

∂θ2i
= − 1

SARP

N−1∑

n=0

(
1 + ln |ARP|2)∂

2|ARP|2
∂θ2i

− 1
SARP

N−1∑

n=0

1
|ARP|2

(
∂|ARP|2

∂θi

)2
(33)

and

∂2ARP2

∂θ2i
= 2 ·

(
∂ARP
∂θi

)2
+ 2ARP · ∂2ARP

∂θ2i

= 2 ·
(

1
M

M−1∑

m=0

∂|fk|
∂θi

)2

+ 2ARP · 1
M

M−1∑

m=0

∂2|fk|
∂θ2i

(34)

It can be seen from (33) and (34) that ∂2|fk|/∂θ2i should
first be deduced to obtain ∂2E (ARP) /∂θ2i .
Consider that

∂2fk
∂v2

= fft
{
x̃k (tm, tn) · (−4π2t2mtn2

)} (35)

∂2fk
∂a2

= fft
{
x̃k (tm, tn) · (−4π2t4mtn

2)} (36)

and
∂2|fk (θθθ) |

∂θ2i
= ∂

∂θi

{
1

2|fk |
[
fk

∂ fk∗
∂θi

+ fk∗ ∂ fk
∂θi

]}

= − 1
|fk |2

∂|fk |
∂θi

Re
{
fk∗ ∂ fk

∂θi

}

+ 1
|fk |

Re
{

fk∗ ∂2fk
∂θ2i

+ | ∂ fk
∂θi

|2
}

(37)
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Fig. 16 Estimation results under a − 25 dB SNR. a The estimation result of the proposed algorithm, b the estimation result of the ACM, and c the
estimation result of the MEARP

Taking (34)~(37) in (33), we can obtain an expression for
the second derivative of (12).

Numerical computational complexity analysis
As (11) shows, fk contains M FFTs in the fast-time direc-
tion. Therefore, the numbers of multiplications and addi-
tions can be approximately expressed as

N (10)
mul = M

(
N
2
log2N + N

)
(38)

N (10)
add = M

(
N log2N + N

)
(39)

According to (30) and (31), the first derivative of fk
also contains M FFT operations, whose computational
complexity can be written as

N (1st)
mul = M

(
N
2
log2N + N

)
(40)

N (1st)
add = M · N log2N (41)

Because the ARP, SARP , and ∂ARP2/∂θi are all functions
of fk or ∂fk/∂θi, once fk and ∂fk/∂θi have been obtained,
(28) can be obtained. In other words, the computational
complexity of (28) is the sum of the complexity of comput-
ing fk , ∂fk/∂θi, and other multiplications and additions in

(28). The final result is

N (27)
mul = M

(
N
2
log2N + N

)
+ 3N + 2M · N (42)

N (27)
add = 2M · N log2N + M · N + 3M + N (43)

Once (28) is obtained, in (33), only ∂2ARP2/∂θ2i must
be recomputed. According to (34)~(37), the numbers of
multiplications and additions of (34) can be written as

N (33)
mul = M

(
N
2
log2N + N

)
+ N (44)

N (33)
add = M · N log2N + 2M · N + N (45)

The total numbers of multiplications and additions of
(33) are equal to the sum of the multiplications and addi-
tions of (34) and other necessary ones contained in (33).
Therefore, the computational complexity of (33) can be
expressed as

N (32)
mul = M

(
N
2
log2N + N

)
+ 5N (46)

N (32)
add = M · N log2N + 3M · N + 2N (47)

Combining (42), (43), (46), and (47), it can be seen that
(23) and (24) have been proved.
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For the computational burden of the ACM, the focus
is on the correlation function in each loop. To obtain the
correlation between the current profile and the template
through an FFT, three N-point FFT/IFFT operations and
one N-point conjugate multiplication must be performed,
and the average of the aligned profiles must be taken.
An N-point FFT contains Nlog2N/2 multiplications and
Nlog2N additions, and N-point conjugate multiplication
has N multiplications. Therefore, the total computational
burden of the ACM can be approximately written as

N (ACM)

mul = SN
(
3
N
2
log2N + 2N

)
(48)

N (ACM)

add = SN
(
3N log2N + N

)
(49)

Therefore, (25) and (26) are proved.
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