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Abstract

Cognitive radio (CR) is designed to implement dynamical spectrum sharing and
reduce the negative effect of spectrum scarcity caused by the exponential increase
in the number of wireless devices. CR requires that spectrum sensing should detect
licenced signals quickly and accurately and enable coexistence between primary and
secondary users without interference. However, spectrum sensing with a low signal-
to-noise ratio (SNR) is still a challenge in CR systems. This paper proposes a novel
covariance matrix-based spectrum sensing method by using stochastic resonance
(SR) and filters. SR is implemented to enforce the detection signal of multiple
antennas in low SNR conditions. The filters are equipped in the receiver to reduce
the interference segment of noise frequency. Then, two test statistics computed by
the likelihood ratio test (LRT) or the maximum eigenvalues detector (MED) are
constructed by the sample covariance matrix of the processed signals. The
simulation results exhibit the spectrum sensing performance of the proposed
algorithms under various channel conditions, namely, additive white Gaussian noise
(AWGN) and Rayleigh fading channels. The energy detector (ED) is also compared
with LRT and MED. The simulation results demonstrate that SR and filter
implementation can achieve a considerable improvement in spectrum sensing
performance under a strong noise background.
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1 Introduction
Wireless mobile network services have grown rapidly and exhibited huge potentiality

in the last few decades. However, a large number of mobile terminal devices occupy

spectrum resources and cause spectrum scarcity in most sub-GHz frequency bands [1].

Some frequency bands of the authorized spectrum (e.g., TV band) are already fixedly

and exclusively allocated. Only partial spectrum bands are utilized at special space and

time domains. This has motivated many researchers to seek innovative techniques to

exploit available radio spectrum holes. Cognitive radio (CR) is considered to be a

promising technology to improve the efficiency of spectrum utilization and alleviate
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the spectral congestion and shortage problem [2]. CR devices can opportunistically ac-

cess the available authorized frequency bands and prevent interference.

Spectrum sensing is the principal task needed to guarantee the successful implemen-

tation of CR. Spectrum sensing requires secondary user (SU) nodes capable of execut-

ing accurate and fast detection of the idle frequency bands of primary users (PUs).

Then, the SUs can be allowed to access the authorized frequency bands without any

harmful interference to the PUs. Many spectrum sensing techniques have been investi-

gated [3]. With the matched filter (MF), a priori knowledge about the PU signal is re-

quired to demodulate and detect the received signal, such as the carrier frequency,

modulation format, or frame type. Energy detection (ED) is a blind algorithm that does

not require any prior knowledge like the noise power but instead uses only the received

signal samples to perform detection. However, ED is easily affected by noise uncer-

tainty. Cyclostationary features detection exploits the circulating frequency of the PU

signal at a low signal-to-noise ratio (SNR).

The covariance-based detector (CBD) is a mature and superior sensing technology

exploiting the statistical characteristic in the sample covariance matrix of the received

signal [4]. The eigenvalue-based detector depends on the framework of the generalized

likelihood ratio test (GLRT) [5], whose decision statistics are constructed by a covari-

ance matrix. For example, the maximum-minimum eigenvalue (MME) detector and the

energy to minimum eigenvalue (EME) detector were proposed in [6], and it was found

that the maximum eigenvalue asymptotically obeyed the Tracy Widom (TW) distribu-

tion. In practical wireless communication, the rank of the covariance matrix of primary

signals is usually more than one [7]. Thus, multiple primary user models have emerged,

such as the arithmetic to geometric mean (AGM) detector [8], the eigenvalue-based de-

tector with higher order moments (EHOM) [9], and the mean-to-square extreme eigen-

value (MSEE) detector [10]. AGM can handle spectrum sensing problems with sparse

samples, EHOM brings about high computational complexity, and MSEE achieves

lower computational complexity.

Although eigenvalue-based spectrum sensing algorithms can improve sensing quality

under the SNR wall or noise uncertainty conditions [11], in the circumstance of low

SNR, increasing the number of antennas is the primary method to compensate the de-

terioration of spectrum sensing performance. Therefore, the design cost and complexity

of wireless mobile devices will be increased. Stochastic resonance (SR) is a nonlinear

physical and dynamical technology for extracting weak signals from intense noise [12].

The output of SR is determined by the dynamic characteristics, that is, the noise level,

SR system, and input signal. When the noise power is proper, the system will achieve a

desired state, and the output signal can be enforced. In SR, noise is an assistant rather

than a disturbance or harm for signal quality. The SNR and power of a weak signal can

be amplified by a nonlinear SR system, which will result in the increase of signal detec-

tion ability. The SNR wall can also be alleviated with the aid of SR.

SR is extensively applied to spectrum sensing in weak signal conditions. Energy de-

tection based on adaptive SR is proposed through adding appropriate noise or adjusting

parameters [12]. The application of SR in partial polarized noise was investigated in

[13]. Other SR-based detectors have also been studied, including detectors based on

suprathreshold SR [14], particle swarm algorithm and tri-stable SR [15], and optimal

dynamic overdamped SR [11].
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However, the classical SR theories point out that the input signal of an SR system can

only work in low frequencies and small parameters [12], which limits its potential for

wireless communication applications. Therefore, frequency shifting technologies of SR

are often applied to convert high frequency of the raw signal to low frequency equiva-

lently, such as re-sampling transformation, normalized scale transformation (NST), and

generalized scale transformation (GST) [16].

A filter-based detector is another sensing scheme to separate or weaken reference

noise, which does not contain the PU signal. This advantage is offered by a generalized

detector (GD), which considers two filters as additional linear systems before signal

processing [17]. GD exploits the statistics of the mean and variance at the filters output,

and its superiority has been demonstrated in MF, ED, and correlation detector [18].

GD employment in CR systems was investigated in [19].

Motivated by the aforementioned studies, this paper designed a covariance matrix-

based detector that utilizes SR and filters. Multiple antenna signals are processed via

the SR system, in which an NST frequency shifting scheme is exploited. The filters are

equipped in the receiver to remove the high-frequency segment of noise. Then, accord-

ing to the covariance matrices of the processed signals, two test statistics are con-

structed by the likelihood ratio test (LRT) or the maximum eigenvalues detector

(MED). The simulation results are provided to compare the detection performance of

the proposed detector with the conventional detector under a strong noise background.

The rest of the paper is organized as follows: The system model is introduced in Sec-

tion 2. The proposed spectrum sensing methods based on SR and filters are introduced

in Section 3. Simulation results and conclusions are provided in Sections 5 and 6,

respectively.

Notations: Boldface letters denote vectors or matrices. N(a, b) denotes a Gaussian dis-

tribution with mean a and variance b. The superscript (·)T denotes the transposition.

The superscript (.)∗ denotes the conjugate transposition. Furthermore, (·)−1 denotes the

inverse of a matrix, and det(·) denotes the determinant of a matrix.

2 System model
Assuming that the SU nodes are equipped with an uncorrelated antenna array in the

CR system, the spectrum sensing model can be divided as a conventional binary hy-

pothesis test problem [5]:

H0 : ri nð Þ ¼ wi nð Þ;
H1 : ri nð Þ ¼ hi nð Þs nð Þ þ wi nð Þ; ð1Þ

where the hypothesis H0 denotes making a decision that the primary users’ signals

are absent, and the hypothesis H1 denotes making a decision that the primary users are

present. The variable i denotes the i-th antenna element and i = {1,…,M}. M is the

number of antennas. The variable n denotes n-th sample time instant and n = {0, 1,…,

Ns − 1}. In which, Ns is the length of sensing duration. The variable wi(n) denotes the

discrete time additive Gaussian white noise (AWGN) with mean zero and covariance

σ2w . The joint probability distribution of w(n) = [w1(n),……,wM(n)]
T is wðnÞ∼N ð0;RwÞ,

where Rw ¼ σ2wIM , and IM is the M ×M identity matrix. The variable s(n) is the primary

signal with the average transmitted power Es at the special frequency band. The signal-

to-noise ratio (SNR) is described as SNR ¼ Es=σ2w [7]. The variable hi(n) denotes the
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discrete time channel coefficients representing the channel fading. It is assumed that H

is the channel matrix and all antenna array elements hi(n) are spatially independent.

The channel parameters are constant during the sensing period but differ from other

sensing periods. It is assumed that siðnÞ ¼ hiðnÞsðnÞ , which denotes the received pri-

mary signal through channel response. Meanwhile, siðnÞ and wi(n) are independent of

each other. ri(n) denotes the discrete time received signal of a secondary user . The ob-

served sample signal matrix r of the primary signals captured at the secondary user

during the sensing time has the dimensions M ×Ns:

r ¼
r1 0ð Þ … r1 Ns − 1ð Þ
⋮ ⋱ ⋮

rM 0ð Þ … rM Ns − 1ð Þ

2
4

3
5: ð2Þ

Then, the joint distribution of the matrix r in the hypothesis H1 can be expressed as

r � NðO;Rs þ RwÞ, in which Rs is the sample covariance matrix of s:

Rs ¼ 1
Ns

XNs − 1

n¼0

s nð Þs� nð Þ: ð3Þ

3 Proposed method
This section will introduce the proposed spectrum sensing method based on SR and

filters.

3.1 Stochastic resonance

In order to recover the periodicity of the original signal furthest from intensive noise,

the received signal in each antenna ri(i = 1,…,M) will be processed via the SR system.

When the received signal is continuous, the SR output signal is defined as:

x tð Þ ¼ f r tð Þð Þ ¼ x1 tð Þ; x2 tð Þ;⋯; xM tð Þ½ �T ; − ∞ < t < ∞; ð4Þ

where f(.) is a nonlinear function representing the physical behavior. The transform-

ation process can be defined by the Langevin equation [11]:

dxi tð Þ
dt

¼ −
U xið Þ
dxi

þ �Si tð Þ þWi tð Þ; ð5Þ

where U(xi) denotes the potential function, the expression and function curve are

shown as follows:

U xið Þ ¼ −
a
2
xi

2 þ b
4
xi

4; ð6Þ

in which a > 0 and b > 0. Equation (5) indicates the classic and nontrivial SR model.

The dynamic and integral characteristics of SR are driven by three basic elements: the

bi-stable nonlinear system, the Gaussian white noise wi(t), and the external excitation si
ðtÞ . In Fig. 1, the curve of U(xi) exists three extreme points P1(xm, −U0), P2(−xm, −U0),

and O(0, 0). In which, xm ¼ ffiffiffiffiffiffiffiffi
a=b

p
and U0 = a2/(4b). The two minimum points P1 and

P2 are named as potential wells. Accordingly, the maximum point O is named as poten-

tial barrier. The difference between the potential barrier and the potential wells repre-
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sents the potential barrier height (i.e., U0). Equation (5) is a bi-stable structure because

the two potential wells represent two stable states.

Supposing that a Brown particle lies in a certain point of U(xi) at the initial time in-

stant, and siðtÞ is treated as a periodic signal with amplitude Am and carrier frequency

fc, there is a critical value Ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a3=ð27bÞp

in U(xi). When the SR system is only

driven by external signal siðtÞ and Am >Ac, the particle can jump across the potential

barrier, and the balance of U(xi) will be broken. Then, the potential wells will elevate al-

ternatively and periodically with the frequency fc [14]. When only noise wi(t) exists, the

Brown particle will switch between two potential wells with the transition speed rk,

which is named as Kramers rate [15]:

rk ¼ affiffiffi
2

p
π

exp −
2U0

σ2w

� �
: ð7Þ

The joint effect of input siðtÞ and noise wi(t) will resonate the SR system to achieve

as high an amplitude as possible. But the classical SR theory, like adiabatic approxima-

tion theory and nonlinear response theory, indicates that SR can only work with small

parameters [15]. Firstly, the output signal xi(t) is mainly concentrated on low frequency

components rather than higher harmonics, so the input carrier frequency should be a

considerably small value (i.e., fc≪ 1 and fc≪ rk). Secondly, the amplitude Am and the

noise power σ2
w should also be far less than 1.

The prerequisite of low frequency is a straight conflict of the modulation carrier re-

quirement of high frequency in wireless communication. To solve this problem, we ex-

ploit the normalized scale transformation (NST) method to convert high frequency to

low frequency [16]. The NST technology exploits the normalization and variable substi-

tutions as follows:

Fig. 1 The curve of potential function U(xi)
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dzi τð Þ
dt

¼ zi − z3i þ A0 cos 2π f 0τð Þ þ w0 τð Þ; ð8Þ

where z ¼ x
ffiffiffiffiffiffiffiffi
a=b

p
; τ = at is the re-sample time interval; A0 ¼ Am

ffiffiffiffiffiffiffiffiffiffi
b=a3

p
is the normal-

ized amplitude; w0(τ) is the normalized noise with expectation 0 and variance σ20 ¼ σ2wb

=a2; and f0 is the normalized frequency and can be expressed by the original carrier fre-

quency (i.e., f0 = fc/a).

It can be found that Eq. (8) is the standard normalized form of Eq. (5), and they have

the same dynamic characteristics. However, the main significances and contributions lie

in that Eq. (8) can satisfy the preconditions of small parameters according to the adiabatic

approximation theory. Note that the condition a≫ 1 can ensure that the high frequency

fc of the carrier signal turns into a low frequency f0. Thus, for algorithm implementation,

we can preset small values of f0 and A0 to obtain a and b. Then, f0 and A0 can be adjusted

based on the output SNR and resonance effect to achieve the desired state.

In general, Eq. (8) is an expression of an ordinary first order differential equation,

and no exact solutions have been provided in recent studies. However, it can be ap-

proximately solved by the fourth order Runge Kutta (RK) algorithm [13], which is a nu-

merical computation method and includes the process of multi-stage iteration.

Meanwhile, RK algorithm is the form of discrete time system referred to the Langevin

Eq. (5), and processes ri(n) rather than ri(t).

3.2 Filters

The output of SR xi(n) will pass through two linear time invariant discrete time sys-

tems, that is, low pass, high pass, or band pass filters. The two filters are named as pre-

liminary filter (PF) and additional filter (AF) with the impulse responses hp(m) and

ha(m), respectively, which is mentioned in a description of GD in [19]. The processes

of PF and AF are described as a convolution form:

ei nð Þ ¼
X∞

m¼ − ∞

hp mð Þxi n −mð Þ

ηi nð Þ ¼
X∞

m¼ − ∞

ha mð Þxi n −mð Þ
;

8>>><
>>>:

ð9Þ

where ei(n), n = 0, …, Ns − 1 is the i-th antenna and n-th sample of the secondary data

via SR at the PF output; ηi(n) is the corresponding one at AF output; and e and η are

the M ×Ns matrix forms of ei(n) and ηi(n).

Assuming that the central frequencies of PF and AF are detuned, the PU signal via

SR cannot pass through AF and only appears in the PF output. If the detuning of cen-

tral frequencies between the AF and PF achieved over four times the PU signal band-

width, the correlation coefficient between the PF and AF output can be ignored [18].

That means the AF and PF outputs are independent. Then, the amplitude frequency

characteristics of the PF and AF can be adjusted to ensure that the noise portions are

equal. Hence, it is approximately considered that e ≈ x + η, and the noise power can be

estimated by η.
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3.3 Detection method

Now that the filtered signal e and η are obtained, this section will introduce three de-

tection algorithms, namely, ED, LRT, and MED.

3.3.1 ED

The ED algorithm is a blind spectrum sensing method used when siðnÞ is not known to

the CR user. ED employs the sum of the energy at the observed interval. The test statis-

tic is defined as follows [11]:

TED ¼
XM
i¼1

XNs − 1

n¼0

ei nð Þj j2; ð10Þ

3.3.2 LRT

Based on the Neyman Pearson (NP) criterion, when the probability of false alarm Pf
and the noise variance σ2η is given, the LRT will maximize the detection probability.

The decision statistic of LRT is determined using the following form:

TL ¼ p ejH1ð Þ
p ejH0ð Þ ¼

YNs − 1

n¼0

p e nð ÞjH1ð Þ
p e nð ÞjH0ð Þ ; ð11Þ

where e is the received signal vector that is the aggregation of e(n), and p(e|H1) and

p(e|H0) denote the likelihood function under the hypotheses H1 and H0, respectively.

The likelihood function at time instant n can be presented in the following form [13]:

p e nð ÞjH1ð Þ ¼
exp − e� nð Þ Rs þ Rη

� � − 1
e nð Þ

n o
π2 det Rs þ Rη

� � ; ð12Þ

p e nð ÞjH0ð Þ ¼
exp − e� nð ÞR − 1

η e nð Þ
n o
π2 det Rη

� � : ð13Þ

Based on the character of the matrix inversion lemma, there is

R − 1
η − Rs þ Rη

� � − 1 ¼ 1
σ2η

R�s R�s þ Rη
� � − 1

: ð14Þ

Hence, Eq. (11) can be simplified as follows:

σ2ηln

 
TL

 
detðR�s þ RηÞ

detðRηÞ

!Ns
!

¼
XNs − 1

n¼0

e�ðnÞR�sðR�s þ RηÞ − 1eðnÞ: ð15Þ

Note that the left side of Eq. (15) does not contain the signal matrix e and does not

relate to constructing the test statistic. In contrast, the right side of Eq. (15) does relate

to constructing the test statistic and in fact is defined as a new test statistic: TLRT

≶ γLRT, where γLRT is the detection threshold of LRT.

3.3.3 MED

LRT is the optimal and ideal detector based on the likelihood function, in which some

parameters, such as noise variance σ2n or received source signal covariance Rs , are
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known. In most practical scenarios, they are blind. This means the probability distribu-

tion of the observations or the likelihood functions cannot be obtained. This type of

problem can only be solved by GLRT, which estimates the unknown parameters by

maximum likelihood estimate (MLE). The test statistics of the GLRT detector have

some simple form expressed by the eigenvalue of the sample covariance matrix of the

received signal. Thus, MED will be used in this section. The algorithm steps are

expressed as follows [5]:

1) Calculate the sample covariance matrix of filter output signal e(n) as:

Re ¼ 1
Ns

XNs − 1

n¼0

e nð Þe� nð Þ: ð16Þ

2) Calculate the eigenvalues of the sample covariance matrix Re and order them as

λ1 ≥ λ2 ≥ ≥ λM.

3) Use the largest eigenvalues for detection:

TMED ¼ λ1
σ2η

; ð17Þ

3.4 Algorithm summary

The proposed algorithm is summarized in Fig. 2. Next, the computational complexity is

analyzed. Due to the RK algorithm, the extra computational cost is produced in con-

trast to the traditional detector. Since the signals from multi antennas are independent,

the receivers can calculate the SR output concurrently. Thus, the RK algorithm needs

5(Ns − 1) manipulations. The computational complexity of SR is TSR =O(5(Ns − 1)) =

O(Ns), which is linear order. It indicates that the time cost is acceptable compared to

detection probability. Noted that the computational complexity only reflects the grad-

ual change of the time complexity accompany with the problem scale Ns. TSR cannot

reflect the time frequency, i.e., the actual execution time of the algorithm.

4 Simulation results and discussion
4.1 Simulation results

In this section, the spectrum sensing performance of ED, LRT, and MED based on SR

and filters will be evaluated by simulation. Figure 3 displays the effects of SR and PF in

arbitrary antenna under the hypothesis H1 without channel fading. The simulation pa-

rameters are presented follows: The input signal is a periodic sine wave s = Am cos (2

πfct) with the amplitude Am = 1 and carrier frequency fc = 10 Hz, the normalized ampli-

tude is A0 = 0.5, the normalized frequency is f0 = 0.01 Hz, the signal-to-noise ratio is

SNR = − 5 dB, the sample frequency is fs = 5 kHz, and the sample number is Ns = 1536.
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The PF is a digital low pass filter implemented by finite impulse response (FIR) based

on Kaiser Window. The parameters of Kaiser Window is β = 4.53. The order of FIR is

150. The cutoff frequency of pass band and stop band are fpp = 100 Hz and fps = 200

Hz, respectively.

It can be found that the SR system can adequately recover the signal periodicity bur-

ied in noise. The effect of NST is obvious through adjusting the SR parameters a and

b. It appears that the SR output signal still works in the frequency 10 Hz rather than

0.01 Hz. Therefore, the setting of f0 and A0 is rational. It is also shown that the PF can

effectively reduce the noise ingredient and make the wave curve smoother.

Figure 4 shows the influence that the parameters A0 of NST have on the detection

probability Pd under PF and AF. The parameters are presented as follows: The antenna

number is M = 3, the sample number is Ns = 512, the false alarm probability is Pf = 0.1,

Fig. 2 Algorithm flowchart
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the times of Monte Carlo simulation is 5000, SNR = − 16 dB, fpp = 500 Hz, and fps = 600

Hz. The AF is a high pass filter implemented by FIR based on Kaiser Window, and the

cutoff frequency of stop band and pass band are fap = 1900 Hz and fas = 3200 Hz, re-

spectively. The other parameters are the same as the ones in Fig. 3. In the legends of

the following figures, the abbreviations of SR-ED, SR-LRT, and SR-MED denote the

SR-based detection algorithms of ED, LRT, and MED, respectively.

It is shown that, accompanied with the increase of A0 at the interval [0.1, 0.4], Pd pro-

motes rapidly, and the order of detection performance from best to worst is ED > LRT >

MED. When A0 increases at the interval [0.4, 1], Pd descends slowly and smoothly.

Fig. 3 The comparisons among the input, SR output and PF output under H1

Fig. 4 The detection probability Pd versus normalized amplitude A0 with filters
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Meanwhile, the order of detection performance from best to worst is LRT >MED > ED.

The variation trends are the same for ED, LRT, and MED. It is demonstrated that the

critical value of a normalized SR system is Ac = 0.344 [12], which approximately coin-

cides with the optimal value A0 = 0.4 shown in Fig. 4. It is indicated that when A0 ≤ Ac,

the input signal itself cannot cross the potential barrier, while the assistant effect of

noise is extremely significant until A0 =Ac. When A0 > Ac, the situation is reversed and

the assistant effect of noise becomes weaker when larger A0 values are selected.

Figure 5 tests the influence of the normalized frequency f0 with the interval [0.01, 0.1]

when A0 = 0.5. It is shown that when f0 is lower in value, the noise will easily satisfy the

requirement of Kramers rate and produce the SR phenomena. However, considering

the calculation problem of overflow, f0 = 0.01 is low enough. In addition, the order of

detection performance from best to worst is LRT > ED >MED.

Figures 6 and 7 exhibit the variation curve of detection probability Pd versus SNR at

the interval [−24, −9] dB without filters and with filters. The three algorithms ED, LRT,

and MED based on SR are also compared. According to the simulation conclusions in

Figs. 4 and 5, the parameters are set as f0 = 0.01 Hz and A0 = 0.5 while other parameters

are not changed.

It is shown that SR can enormously improve the detection performance in various

detection algorithms. When filters are employed, the advantage of SR is weakened com-

pared with the situation without filters. However, PF and AF can help to enhance the

function of SR overall. The order of detection performance from best to worst is LRT >

MED > ED whether SR and filters are employed or not.

Figures 8 and 9 consider the wireless communication circumstances of Rayleigh fading

channel and exhibit the variation curve of detection probability Pd versus SNR when filters

are exploited or not. ED, LRT, and MED are also compared in Figs. 8 and 9. The parame-

ters are the same as the ones in Figs. 6 and 7 except the fading coefficient β = 0.5.

Fig. 5 The detection probability Pd versus normalized frequency f0 with filters
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It is shown that SR can enhance the detection performance of various detection algo-

rithms in the low SNR area at [−23, −11] dB. In this area, the situations and effects of

SR and filters are the same as in Figs. 6 and 7. However, the difference lies in that the

order of detection performance from best to worst is LRT > ED >MED whether SR and

filters are employed or not. This indicates that when noise power is unknown, ED is

the preferred alternative scheme rather than MED.

Fig. 6 The comparison of detection probability without filters

Fig. 7 The comparison of detection probability with filters
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When SNR ≥ − 11 dB, the detection performance with SR descends in Rayleigh fading

whether filters are employed or not. This indicates that the channel matrix H causes

the external excitation sðnÞ to become an aperiodic signal. The relatively weak noise

cannot help sðnÞ to jump across the potential barrier. Therefore, SR is not suitable for

high SNR conditions under Rayleigh fading channel.

Fig. 8 The comparison of detection probability under Rayleigh channel without filters

Fig. 9 The comparison of detection probability under Rayleigh channel with filters
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5 Discussion
From the simulation results above, it can be found that SR can enhance the output

SNR under the premise of the adiabatic theory, which is ensured by the NST technol-

ogy. The setting of fc = 10 Hz in the simulation is just to demonstrate the feasibility for

shifting frequency from high value to low value. When ultra-high frequency is needed,

we can adjust SR parameters a and b to larger values.

Note that, the SR output xi(n) is still a high frequency signal, that is, the frequency of

xi(n) is fc rather than f0. The proposed sensing methods still work for very high fre-

quency signals, and is applicable in various real scenarios, such as LTE system, Ad hoc,

Mesh.

The distribution of SR output xi(n) is determined by Fokker-Planck Equation (FPE),

whose exact closed-form expression is not obtained yet. Therefore, the distributions of

the detection statistics TED, TLRT and TMED cannot be analytically obtained. We have to

determine the detection threshold by simulation.

To ensure that the brown particle can jump across the potential barrier, A0 > 0.344

should be considered. But extremely large A0 is harmful for detection. Additionally,

smaller f0 can easily achieve SR condition. But, we need to consider the calculation ac-

curacy of computer device.

Under the aid of the NST technology, the filters AF and PF reduced the effect of

noise component. Therefore, the filters can improve the detection performance with

SR. However, the performance promotion is less obvious than the one without SR. It is

probably because that the energy of SR output xi(t) concentrates on low frequency re-

gion, while the purpose of AF and PF is to reduce the noise in high frequency.

Additionally, SR is implemented by RK algorithm. So, more sample numbers are re-

quired to ensure the approximation accuracy. This fact will lead to the increase of exe-

cution time. In actual wireless application, we should consider the compromise of the

time and accuracy.

6 Conclusion
This paper proposes a novel covariance matrix detector employing SR and filters. The

NST technology is introduced in SR to normalized the high frequency application to a

low frequency expression. The test statistic is constructed by three detector of ED, LRT

or MED. The simulation results verify the extraordinary effect that SR can recover the

periodicity of the received signal. It is also found that the superior detection probability

is obtained when A0 = 0.3 and f0 = 0.01 Hz. The detection methods with SR achieve bet-

ter performance than the ones without SR under Gaussian channel, while perform ro-

bust only in low SNR region under Rayleigh channel. The contributions of AF and PF

is little for the detectors with SR. the test statistic of LRT performs better than the ones

of ED and MED in various simulation circumstance.
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