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Abstract

The existence of walls surrounding targets leads to multi-path return at the radar receiver, which provides additional
information about the target, and thus can be exploited to strengthen the quality of through-wall radar imaging (TWRI).
Based on this, amulti-path exploitationmethod is proposed to identify the location of the multi-path ghost. An algorithm
that combining the modified Green’s function with back projection algorithm is presented to associate and map the
multi-path ghosts to the location of real targets. The theoretical analysis is verified according to the simulation results obtained
usinggprMAXsoftware as well as practical radar measured data, and our proposedmethod is shown to outperform that
in conventional multi-path exploitation method (Setlur et al., IEEE Trans. Geosci. Remote Sens. 49:4021–4034, 2011).
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1 Introduction
Through-wall radar imaging (TWRI) has attracted much
attention in various fields, due to its numerous civil and
military application [1–4]. The targets of the through-
wall radar are those objects that are located inside rooms
surrounded by walls. This leads to the superimposing of
multi-path returned signals and the direct returned signal.
In the traditional narrowband radar system, it is difficult
to separate the original returned signal of target with the
those caused by multi-path due to the poor range res-
olution and the time-delay resolution [5]. Alternatively,
ultra-wide band (UWB) through-wall radar systems [6]
can provide sufficient range resolution to differentiate the
direct and the multi-path returned signal. In the mean-
time, the multi-path return caused by walls can in turn
enlarge the investigation domain and enhance the num-
ber of the effective array aperture, if sufficiently separated
from the direct return, which motivates the multi-path
exploitation method [7].
In [8, 9], the algorithm of back propagation (BP) and

delay-summing beamforming were proposed to realize
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the target refocusing, respectively. However, the interfer-
ence produced by multi-path cannot be suppressed by
the above approaches, which results in the emergence
of multi-path ghosts in the image region. In order to
solve these problems, several methods were proposed to
remove ghosts produced by multi-path [10, 11]. An adap-
tive CLEAN algorithm was proposed to remove the false
targets or ghosts based on the BP imaging algorithm [10].
From the perspective of multi-sensor fusion, a distributed
algorithm which restrains the ghosts introduced by multi-
path was proposed in [11] based on the algorithm of
fully polarimetric beamforming. The analysis was veri-
fied by using data collected from multiple polarimetric
orientations. However, the methods proposed in [10–12]
regarded multi-path return as clutter, and multi-path was
not particularly exploited or analyzed.
Recently, a group sparse compressive sensing approach

was used to reconstruct stationary scenes [13, 14]. The
returned signal from the target and walls were separated
and shown in the image by using a sparse reconstruction
approach, which jointly uses the wall and target models.
Moreover, the sparse reconstruction and representation
methods are also widely used in various fields of image
processing [15–19]. On the basis of the local maximum
values extract method and the 1-D Kalman filter, the
authors extracted the 1-D trajectories of the real target
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and the multi-path ghosts in each receiving channel in
[20, 21]. Then, based on the principle of the first-order
multi-path echoes, the position of the sidewall was com-
puted in each frame, and the multiple frame average value
is used to improve the detection accuracy. Besides, instead
of using multiple-input multiple-output (MIMO) antenna
array, a limited number of transceivers mounted on robot
are used [22, 23].
In this paper, the multi-path effect is exploited to reduce

false positives and signal-to-clutter ratio (SCR) at the tar-
get location by mapping the ghost targets back to the
real target position. We propose a calculation model of
modified Green’s function based on the non-line-of-sight
(NLoS) propagation path. After that, Back Projection (BP)
imaging combined with modified Green’s function is used
to obtain the composite image. In order to associate and
map the ghosts, an association matrix is constructed,
which has deep nulls at the assumed ghosting locations
and a large peak value at the real target location, which
helps removing the ghosts and ensuring the accuracy
of target location. Comparing to the existing literature
[7], our simulation results are shown to achieve about
3 dB SCR gain, which demonstrates the superiority of our
proposed method.
The remainder of the paper is organized as follows. The

multi-path propagation model is introduced in Section 2.
In Section 3, we present a multi-path exploitation algo-
rithm by using the modified Green’s function imaging.
Section 4 reports representative simulation results of
the proposed method, and concluding remarks follow in
Section 5.
Through this paper, matrix is denoted by boldface cap-

ital letters, C denote the complex number set, and A ∈
CN×M denotes a complexed-value matrix of dimension
N × M. Moreover, A(x, y) denotes A’s (x, y)th element.
The vector is denoted by boldface lowercase letters x and
x = (x, y) denotes the position vector of object with x- and
y-axis coordinates being x and y, respectively. A triangle
with vertices A, B, and C is denoted by �ABC with edges
AB, BC, and AC. The symbol ⊥ means perpendicularity
between two edges. The operator �x� denotes the largest
integer smaller than x.

2 Systemmodel
In this section, the multi-path system model where we
perform through-wall radar imaging is introduced in
details. In Section 2.1, we first describe the physical sce-
nario, including the geometric positions of walls and tar-
get. Then, under this scenario setup, we obtain the signal
model considering the multi-path returns.

2.1 Scenario description
A two-dimensional multi-path propagation model is illus-
trated in Fig. 1, where a target locates inside homogeneous

walls, with the relative permittivity, electric conductivity,
and thickness of the walls being ε1 , σ1, and d1, respec-
tively. The length of front and the back are the same and
denoted by D1, while the length of the side walls are D2.
It is assumed that the transmitter and receiver are ideal
dipoles and centered at the same position Rn with posi-
tion vector rn = (−xn, yn), n = 1, 2, · · · ,N , whereN is the
number of antennas along the wall. The target is located at
position xt = (−xt, yt) behind the front wall. It is assumed
that the bandwidth is sufficient wide such that direct or
multi-path returns can be resolved.

2.2 Multi-path signal propagation model
In Fig. 1, both the direct path as well as three indirect paths
are considered. The first-order multi-paths are defined
as the signal returned through the indirect path together
with the path A or vice versa, while the second-order
multi-path is defined as the signal that reaches the target
and returns back to the transceivers by the indirect way.
Let the time-varying transmitted signal denoted by s(t),
then the composite received signal at the nth sensor by the
superposition of the direct path and multi-path returns is
given as

rn(t)=A0s
(
t − 2τ (n)

A

)
+

∑
p∈{B,C,D}

Ap,1s
(
t −

(
τ

(n)
A + τ (n)

p

))

+
∑

p∈{B,C,D}
Ap,2s

(
t − 2τ (n)

p

)
, (1)

where A0, Ap,1, and Ap,2 are the complex amplitudes
related to the direct reflection and transmission coef-
ficients for the direct path, first-order multi-path, and
second-order multi-path of the pth path, respectively,
where p ∈ {B,C,D}. Moreover, τ (n)

A and τ
(n)
p are the single-

bounce multi-path delays of the returned signals through
path A and paths B, C, and D, respectively.
As mentioned in [13], the computation complexity of

solving the overdetermined nonlinear equations to cal-
culate the single-bounce path delay is extremely high;
regarding this, the Snell theory and the approximation
algorithm are combined to transform the overdetermined
nonlinear equations into linear equations, leading to con-
siderable decrease of complexity.
As shown in Fig. 1, let A and B be the refraction points

on the air-wall interface and wall-air interface, respec-
tively. For the path Rn → A → B, if the dielectric constant
of the front wall is equal to the one in free-space, then
the signal will transmit along the path Rn → M → B,
where M is the refraction point on the air-wall interface.
In the meantime, if the dielectric constant of the front
wall is assumed to be infinity large, the signal will trans-
mit along the path Rn → A → F, where F is the refraction
point on the wall-air interface. Denote the true value of
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Fig. 1Multipath propagation model

dielectric constant by ε1 ∈[ 1,∞), then the x-axis coor-
dinates of refraction points A and B satisfy the following
equation:

xB − xM
xB − xA

= √
ε1. (2)

Assuming that BB1 ⊥ x-axis with A1 being the inter-
section point on the air-wall interface, then the trianglu-
ars �RnBB1 and �MBA1 are similar to each other, and
according to the Triangle Similarity Law, we have

xB − xn
d1 + dy

= xB − xM
d1

. (3)

Similarly, we can obtain the geometrical relations of the
refraction points for the other propagation paths. Let x′

t =
(xt, yt) be the position of the virtual target with respect
to wall 1, which is shown in Fig. 1, and can be obtained
by using the Householder transformation [29]. Then, the
one-way path delays for path A and path B are at the nth
sensor position are given by

τ
(n)
A =

√
(xA − xn)2 + d2y + √

ε1

√
(xB − xA)2 + d21

c

+
√

(xt − xB)2 + (yt − d1 − dy)2

c
, (4)

τ
(n)
B =

√
(xE − xn)2 + d2y + √

ε1

√
(xD − xE)2 + d21

c

+
√

(xt + xD)2 + (yt − d1 − dy)2

c
. (5)

Substituting (4) and (5) into (1), we obtain the received
signal.

3 Through-wall imaging withmulti-path
exploitation usingmodified Green’s function

In this section, the multi-path returned signal, which is
termed as “ghosts,” is exploited to further enhance the
imaging performance. Similar to the conventional method
where multi-path returns are not taken into account, we
first derive the modified Green’s function. Then, we pro-
posed a method to identical and localize the multi-path
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returned signal from the composite data. Finally, combin-
ing with the modified Green’s function, we associated and
mapped the multi-path signal to obtain the image of the
real target.

3.1 Through-wall imaging based onmodified Green’s
function

According to traditional Green’s function of three layered
background mediums, the line-of-sight (LoS) propagation
path in the absence of the wall is considered in the calcu-
lation, but the variation of the path propagation and phase
are not considered due to the presence of the wall and thus
there exists estimation error using the traditional Green’s
function in indoor propagation model. Considering the
effect of delay inside the wall, a modified Green’s function
calculation model based on the non-line-of-sight (NLoS)
propagation path is proposed.
By dividing the whole rectangle surrounded by walls

into Nx × Ny grids, the modified Green’s function at
arbitrary pixel point xp can be derived as [24, 25]

G(rn, xp, k) = j
4π

∫ ∞

−∞
T(kx)
k1y

exp
{
j [kx(xn − xA)

+ k1y(yn − yA)

+ k2yd1 + kx(xA − xB) + kx(xB − xp)
+k1y(yn − yp)

]}
dkx,

where k is the wavenumber, T(kx) denotes the wall’s
transmission coefficient, which is calculated as

T(kx) =
(
1 − �2

12
)
exp

[
j
(
k2yd1 − k1yd1

)]

1 − �2
12 exp(j2k2yd1)

, (6)

where

k1y =
√
k21 − k2x , (7)

k2y =
√
k22 − k2x , (8)

�12(kx) = k1y − k2y
k1y + k2y

, (9)

and k1 and k2 are the wavenumbers of freespace and the
wall, respectively. Moreover, kx is the horizontal compo-
nent of the wavenumber vector, k1y and k2y are the vertical
components of the wavenumber vector k1 and k2, respec-
tively, and �12 is the local reflection coefficient at the
air/obstacle interface. In order to solve (6) efficiently, the
method of saddle point is applied here. More specifically,
let

F(kx) = T(kx)
k1y

, (10)

�(kx) = k2yd1 + kx(xn − xp) + k1y(yn − yp − d1),
(11)

then the modified Green’s function can be rewritten as

G(rn, xp, k) = j
4π

∫ ∞

−∞
F(kx) exp[ j�(kx)] dkx. (12)

According to the stationary phase method, we have

∂�(kx)
∂kx

= xn−xp− kx
k1y

(yn−yp)− kx
k1y

d1+ kx
k2y

d1 = 0.

(13)

And the stationary phase point kx0 can be obtained by
solving (10), given as

kx0 =
√

(xB − xA)2k22
d21 + (xB − xA)2

. (14)

Using the Taylor series expansion of �(kx) at kx = kx0 and
ignoring the high order terms, the phase function �(kx)
can be approximated as

�(kx) ≈ �(kx0) + �′′(kx)
2

(kx − kx0)2. (15)

Since the function F(kx) only has value near the station-
ary phase point, whereas has zero value on the other
locations, the modified Green’s function could be further
simplified as

G
(
rn, xp, k

) = j
4π

∫ +∞

−∞
F(kx) exp[ j�(kx)] dkx

= jF(kx0) exp[ j�(kx0)]

√
1

8π |�′′(kx0)|
,

(16)

where F(kx0) is readily given by

F(kx0) = 1 − �2
12

k1y
(
1 − �2

12 exp
(
j2k2yd1

)) . (17)

Taking all the antennas into account, then the composite
modified Green’s function at xp can be given as

G(xp, k) =
N∑

n=1
G(rn, xp, k). (18)

3.2 Multi-path identification and localization
In this subsection, a method for localizing the multi-path
ghosts is described. Based on the beamforming algorithm,
when �τn(xp, xt) = τn(xp) − τn(xt) = 0, n = 1, 2, · · · ,N
holds for the pth image pixel located at xp, which depicts
the locations of target or ghost in the beamformed image
and the pixel xp becomes focus [26]. It is noted that τn(xt)
represents the two-way path delay for the direct path or
the delay for the first-order multi-path at the nth sen-
sor’s position. The first-order ghost location is linked with
L(rn, xt) and L(rn, x′

t), where L(rn, xt) and L(rn, x′
t) are the

single-bounce propagation distances of path A and path
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B, respectively. Consider the ghost located at xp, which
satisfies the following equation

L(xn, xp) = L(rn, xt) + L(rn, x′
t)

2
. (19)

The first-order ghost location is relatively fixed in the
original beamformed image. We can determine the travel
distance from the nth antenna to the pixel along the direct
or indirect way, which indicates that L(xn, xp) is a known
parameter. If we provide a circular contour with radius
L(rn, xp) centered at Rn, the ghost must lie on it. Simi-
larly, Fig. 2 shows that using two circular contours with
the size of L(rn, xp) by L(rm, xp) centered at Rn and Rm,
respectively, the ghost must appear in the place where
the circular contours cross. Nevertheless, two positions,
which are crossed by the contours, are presented: one is in
front of the array and the other is behind it. Because of the
imaging scene locate directly in front of the array, it is rea-
sonable to suppose that the location of the ghost is in front
of it. The equations for both contours can be interpreted
by

(x + xn)2 + y2 = L2(rn, xp), (20)
(x + xm)2 + y2 = L2(rm, xp). (21)

In the real-world radar system, the array contains N
elements. Then, there exist �N

2 � possible pairs if each
element is considered only once. Providing two circular

contours with the size of L(rn, xp) and L(rn+�N
2 �, xp)which

are centered at Rn and Rn+�N
2 � respectively, the procedure

for identifying the ghost locations xpn is as follows.
For all n = 1, · · · , �N

2 �, we obtain the intersection points
xpn of the two circular contours by letting their analyt-
ical expression be equal. Then, taking expectation with
respect to n, we have the final value of ghost location as
per

xp = 1
�N
2 �

�N
2 �∑

n=1
xpn. (22)

For the ghosts associated with walls 2 and 3, the location
of them can be obtained in a similar way.

3.3 Multi-path association andmapping
After we localize the multi-path ghosts, we can then asso-
ciate and map these signals back to the position of the real
target. To enhance the signal-to-clutter ratio and remove
the false targets, a composite image can be constructed by
using Hadamard product of back propagation (BP) image
and modified Green’s function as follows:

IG(·) = IBP(·)
⊗

G(·) (23)

where IBP(·) is Back Projection imaging matrix [10],
G(·) ∈ CNx×Ny is the modified Green’s function
matrix, whose element for arbitrary pixel is obtained in

Fig. 2 Location of multi-path ghost
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Section 3.1, and
⊗

denotes the Hadamard product oper-
ation. Combining the strong shadow region of the target
with the multi-path ghost associated with wall 2, the
image IBP(·) has a strong false target at the same cross-
range as the target and at a downrange position equal to
the back wall. The target location can be identified under
the simple threshold operation.
With regard to the focused multi-path ghosts, the asso-

ciation and mapping of them are considered. Let X and
Y be the index of the crossrange and downrange, respec-
tively, and we define the two-dimensional space as W =
X × Y . The region we are interested in, IG(·), consists
of Nx × Ny grids, where the pixel is located at the center
of each grid. Without loss of generality, we assume that
the target is located at x = (x, y) ∈ W , and we denote
the focused multi-path ghost from walls 1, 2, and 3 as
xwallk = (xwallk , ywallk ), k = 1, 2, 3, (xwallk , ywallk ) ∈ W , respec-
tively. Then, the composite image values at the target
can be represented in a Nx × Ny complexed-value matrix
form as IxG(·) ∈ CNx×Ny with the elements being IG(xp; x).
Similarly, the composite image values are evaluated at
xwallk , k = 1, 2, 3 ∈ W and are denoted as the matrices
IwallGk (·) ∈ CNx×Ny with the elements being IG(xp; xwallk ).
To prevent the differences in intensity, the images are
normalized such that the elements of these matrices are
within the interval [ 0, 1]. For the composite image matrix
elements, a threshold operation is considered, with the
threshold βth, i.e.,

Î(x, y) =
{
1, I(x, y) > βth
0, otherwise, (24)

where I(x, y) is either IwallGk (x, y) or IxG(x, y), and ÎwallGk (·) con-
tains many peak values in and near the locations of the
ghosts and ÎxG(·) contains many peaks value in the vicin-
ity of the target location. Moreover, we define ĨxG(·) =
I − ÎxG(·), where I is the identity matrix. If the pixel xp is
located at the location of the focused multi-path ghost,
IBP(xwallk , ywallk ) is assumed to be a large value. In that case,
ĨxG(·) can be used to alleviate the multi-path pixels that
are very close to the genuine target if they are at position
xwallk . It can also be used to reject the pixel location being
in the vicinity of the true target location. In order to asso-
ciate and map the ghost, an association matrix Iinter can
be constructed, and the element of Iinter is calculated as

Iinter(xp)=
∑
xp∈W

∣∣∣IBP
⊗ (

I − ÎxpG + ÎwallG1 + ÎwallG2 + ÎwallG3

)∣∣∣ .

(25)

Repeating (25) for all possible pixel locations, matrix
Iinter ∈ CNx×Ny can be obtained. Assuming deep nulls at
the region of ghost and the strongest peak at the region
of target, the final image of the multi-path exploitation is
obtained by

Ifinal = If
⊗

Iinter
⊗

IBP, (26)

where the element of If is calculated as

If(x) =
{
1, Iinter(x)

max Iinter (x) > λth,
0, otherwise,

(27)

and λth ∈[ 0, 1] is a predefined threshold.

4 Results and discussions
In this section, numerical simulations are given to eval-
uate the effectiveness of the proposed modified Green’s
function. The reference scenario and measurement con-
figuration are best defined in the preceding section. The
image domain is x = 2.0 m and y = 1.48 m in width and
length, respectively. The transceiver array scans the region
of interest from the distance between the front 0.3 m from
the front wall, along a line parallel to the wall in x direc-
tion from 0m to− 2 mwith a step of 0.05 m. The accurate
scattered field is calculated in time domain by gprMax
software, we define the relative permittivity, conductivity,
and thickness are ε1 = 6.0, σ1 = 0.01 S/m, and d1 = 0.1
m for the front wall in the software, respectively. For a line
source, its radiates Ricker wavelet at 900 MHz center fre-
quency and with a bandwidth of 900MHz. The intensities
of the image are described in dB, unless noted otherwise.

4.1 Single target
The numerical results for the imaging of one target behind
a homogeneous wall are presented in this subsection and
the square target whose size is 0.04 m is centered at
(− 0.9, 0.75) m. The composite image in Fig. 3 is obtained
through Hadamard operation.Since the reflection and
transmission coefficients for single-bounce trip along with
path B, path C, and path D are smaller than that along with
path A, the pixel values at the region of ghosts are signif-
icantly smaller than that at the region of target. Then, the
target location and the focused multi-path ghosts’ loca-
tions can be identified by the threshold operation. Figure 4
is an intermediate image; it shows the existing deep nulls
at the locations of ghosts and the strongest peak can iden-
tify the location of the target. Figure 5 shows the result
after association and mapping. This figure shows the tar-
get and the ghosts that have been mapped back to the
target location. Since the method of background subtrac-
tion can not filter out the interference produced by the
target, the extraneous target is retained, which is located
at (− 0.9, 0.46) m.

4.2 Multiple targets
The configuration of radar system is equal to the previ-
ous case. One target is located at (− 0.7, 0.75) m and the
other at (− 1.25, 0.65) m. As shown in Fig. 6, it reveals not
only the original beamforming image, but some false tar-
gets are also shown from the figure. This is probably due
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Fig. 3 Single target case: composite image

Fig. 4 Single target case: intermediate image
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Fig. 5 Single target case: final image

Fig. 6Multiple target case: original BP image
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Fig. 7Multiple target case: intermediate image

Fig. 8Multiple target case: final image
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Table 1 The simulations for the SCR cases

SCR single SCR multiple

Before After Before After

[7] − 6.6878 3.2844 − 5.0952 1.6054

This paper − 6.6878 6.8612 − 5.0952 4.4013

to the interactions with the wall or the targets themselves.
It is noted that proposed algorithm can not eliminate
erroneous targets. The intermediate image is shown in
Fig. 7, which are existing deep nulls at the regions of
ghosts and the strongest peak at the locations of targets.
In Fig. 8, it reveals the result of association and mapping.
After exploitation, we can distinctly see two targets and
map ghosts back to real targets. Figure 8 shows the com-
pound interactions between the walls and targets, leading
to some remnants persisting.
As noise was not taken into account in our scenario,

we consider the signal SCR, defined as the ratio of the
power in the target regions to the power in the rest of
the image as the performance metric [27]. Through multi-
path exploitation, the case of the SCR about single target
and multiple targets are reported in Table 1 by using the
method in [7] and the proposed method. It can be seen
that both methods can enhance the SCR after the proce-
dure. According to the exploitation procedure, for single

target case, the SCR increases by about 9.9722 dB at the
location of the target by using the method in [7] and about
13.549 dB growth by the proposed method. For multi-
ple targets case, the SCR component is 9.4965 dB and
6.7006 dB for the proposedmethod and the method in [7],
respectively.

4.3 Results of real measured dataset
An experimental dataset comprising of a single target
in an enclosed structure is collected to demonstrate the
improvement from multi-path exploitation. A through-
wall radar system is used for signal synthesis and data
collection. The system is operated at a central frequency
of 800MHz. The human is stationary in the imaging scene
and the standoff distance to the back side of the front wall
is 1.4 m. The size of the imaging scene is 4.0 × 3.2 m2,
consisting of 125 × 100 grids and the size of each grid
is 0.032 × 0.032 m2. Assuming that the walls are single-
layered and homogeneous with permittivity ε1 = 6.0 and
thickness d1 = 0.1 m, which can be estimated through the
approach proposed in [28].
Figure 9 shows the raw radar data with heavy clut-

ter in the time domain. Due to the complex imaged
environment, the electromagnetic interactions among the
targets, the unidentified walls, and the furnitures distort
the received signals, leading to severe interference to the

Fig. 9Measured data: raw radar data
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Fig. 10Measured data: original BP image

Fig. 11Measured data: results after exploitation



Wu et al. EURASIP Journal on Advances in Signal Processing          (2020) 2020:4 Page 12 of 13

exploitation results. Compared with the curve presented
by target, the multi-path returns are relatively weak due
to multiple reflections occurring. Using BP imaging algo-
rithm, the result is shown in Fig. 10. There exist so many
ghosts or false targets that the location of the target can
not be identified with a simple operation. Figure 11 is the
result of association and mapping; the majority of ghosts
are removed, and we can ensure the target location.

5 Conclusion
In this paper, a modified Green’s function-based method
is proposed to remove the focused multi-path ghosts and
enhance the SCR by exploiting multi-path returned sig-
nals on the basis of the knowledge of geometric model.
An algorithm combining the modified Green’s function of
through-wall radar with the algorithm of BP imaging can
be built, which associates andmaps the ghosts to their real
target. Simulation and real radar experiment results con-
firm that the proposed method can strengthen the quality
of TWRI and enhance SCR at the target location.
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