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Abstract

Global navigation satellite systems (GNSS) are being the target of various jamming, spoofing, and meaconing attacks.
This paper proposes a new statistical test for the presence of multiple spoofers based on range measurements
observed by a plurality of receivers located on a rigid body platform. The relative positions of the receivers are known,
but the location and orientation of the platform are unknown. The test is based on the generalized likelihood ratio test
(GLRT) paradigm and essentially performs a consistency check between the set of observed range measurements and
known information about the satellite topology and the geometry of the receiver constellation. Optimal spoofing
locations and optimal artificial time delays (as induced by the spoofers) are also determined.
Exact evaluation of the GLRT requires the maximum-likelihood estimates of all parameters, which proves difficult.
Instead, approximations based on iterative algorithms and the squared-range least squares algorithm are derived. The
accuracy of these approximations is benchmarked against Cramér-Rao lower bounds.
Numerical examples demonstrate the effectiveness of the proposed algorithm and show that increasing the number
of GNSS receivers makes the attack easier to detect. We also show that using multiple GNSS receivers limits the
availability of optimal attack positions.
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1 Introduction
Global navigation satellite system (GNSS) technology pro-
vides real-time positioning for various civil and mili-
tary applications. Due to the low received power (about
− 160 dBW), GNSS is highly susceptible to intentional
and unintentional interference. In addition, the signal and
modulation formats of civilian GNSS are publicly avail-
able. For these reasons, a wide range of attacks on GNSS
are viable.
Attacks on GNSS are categorized into jamming, mea-

coning (replay), and spoofing [1]. In a jamming attack, the
adversary overshadows the received GNSS signals with a
higher power noise-like signal to make the receiver unable
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to decode the signal. In meaconing (replay), the adversary
records the original GNSS signal and broadcasts it with
a delay. In a spoofing attack, the attacker produces coun-
terfeit GNSS signals that are similar to authentic ones,
by modifying the original GNSS signals [2] in order to
manipulate the victim receiver’s estimated position. This
attack might be the most hazardous since it can take
place without the victim being aware of being attacked.
In the most sophisticated spoofing attacks, the adversary
uses multiple, coordinated spoofers. Owing to the avail-
ability of inexpensive software-defined radios and GNSS
modules, it has become relatively easy to implement such
attacks. This paper is concerned with sophisticated spoof-
ing attacks.

1.1 Taxonomy of existing GNSS spoofing mitigation
methods

There has been research in the past on defense mecha-
nisms against GNSS spoofing attacks. Here, we categorize
these techniques into three groups.
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1.1.1 Techniques using auto-correlation characteristics
The first group of techniques uses the received signal
auto-correlation function characteristics to detect the
presence of a spoofer. These methods detect the spoofer
when it tries to take over the tracking loop of the GNSS
receiver. There are in turn three main approaches:

• Methods that use the signal quality monitoring
mechanism to measure the distortion in the
auto-correlation function of the received signal and
detect the spoofer [3–12]. The paper [12] studies the
applicability of multi-path mitigation techniques for
anti-spoofing purposes. A different approach is taken
in [13], where the cross-correlation among the GNSS
signal of multiple GNSS receivers is used as input to a
machine-learning classifier (a support vector
machine specifically) to detect the spoofing attack.

• Considering that the spoofer must use higher power
than the original GNSS signals to make the receiver
lock on the counterfeit signals, monitoring the
received power level of the auto-correlation function
can be used to detect the spoofing attack [14–19]. The
dynamic process of taking over the victim tracking
loop is used in [19] to detect a spoofing attack. As a
new metric, [18] proposes to measure the variance of
the signal quality to detect when the spoofer starts
taking over the tracking loop of the victim.

• One may combine both power and distortion
monitoring of the auto-correlation function to detect
an attack [20, 21].

These approaches have a number of difficulties. First,
multi-path fading can cause distortion and power level
fluctuations in the auto-correlation function of the
received GNSS signal similar to those caused by the
spoofer. In addition, the spoofer can intelligently change
its power level to mimic the power fluctuation of multi-
path fading. Second, these techniques require access to
the received raw GNSS signals.

1.1.2 Spatial signal processing techniques
The second group of methods use spatial signal process-
ing techniques to detect the presence of spoofers. These
techniques can be further subdivided as:

• Spoofing detection maybe based on estimated
direction-of-arrival of the GNSS signals [22–31].
Considering a common source of spoofing signals,
the work [29] uses the time difference of arrival of the
GNSS signal to detect spoofing. The work in [30] uses
array processing along with multi-path detection
algorithms to estimate the direction of arrival to
detect the presence of one spoofer. A statistical test is
used in [31] to estimate the power and angle-of-
arrival of the GNSS signal in order to detect spoofing.

For example, carrier phase differences can be used to
estimate this direction of arrival [22, 25, 27].

• One may exploit that counterfeit signals from a single
spoofing source are spatially correlated and measure
the spatial correlation between the received signals
from different satellites [32–34]. The work [34] uses
correlation at multiple receivers to separately classify
authentic and spoofing signals; then, double
differences of carrier phase measurements are used to
detect the spoofer.

• Using rotating antennas to measure the spatial
correlation of the received GNSS signals [35, 36]. The
paper [35] uses rotating antennas to measure the
correlation between the carrier phases, while [36]
uses a single rotating antenna to perform spatial
power measurements.

The techniques in [22–28, 35, 36] require modification
of the GNSS receiver hardware. In addition, the meth-
ods [22–28, 35, 36] are based on the property that the
signals coming from a single-antenna spoofer are corre-
lated. Attacks using multiple spoofers can result in spa-
tially uncorrelated spoofing signals, in which case these
methods can fail.

1.1.3 Methods that usemultiple GNSS receivers
The last category of spoofing mitigation methods uses
multiple GNSS receivers to detect the presence of the
spoofer. These works can be further grouped as follows:

• Using multiple GNSS receivers to detect the presence
of a spoofer, exploiting the fact that all GNSS
receivers show the same position while being spoofed
[37–42].

• Range measurements may be used directly to detect
the spoofing attack [43–47]. More specifically, [43]
considers multiple vehicles where each of them is
equipped with a GNSS receiver and a range
measurement sensor. The range measurements and
GNSS positions are fused to detect the presence of
one spoofer while assuming that only one of the
vehicles is subject to a spoofing attack. In [44], the
range measurements from multiple GNSS receivers
are used to detect a spoofer, assuming that all range
measurements from a spoofer are the same.
Considering the effect of clock knowledge, the
authors in [45] develop a technique to detect a
spoofer using range measurements of multiple GNSS
receivers. The authors of [46] propose to use the time
difference of arrival of the GNSS signals derived from
pseudorange measurements to detect the presence of
one spoofer. The technique is based on the fact that
signals coming from a spoofer have similar time
differences of arrival. The work [47] studies detection
of one spoofer using differential pseudorange and
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carrier phase measurements by a double antenna
receiver. The effect of synchronization between the
measurements on spoofing detection is investigated.

All above methods except [41] consider the detection of
a single-antenna spoofer. The paper [41] develops a tech-
nique for multi-antenna spoofer detection and presents
implementation results.

1.2 Contributions
In this paper, we propose a signal processing approach
that uses range measurements from multiple satellites to
multiple GNSS receivers to detect the presence ofmultiple
single-antenna spoofers. Each spoofer emulates one spe-
cific satellite. The GNSS receivers are assumed to be fixed
on a rigid body platform (with known relative positions),
and the range measurements gathered by all receivers
are processed jointly to detect the presence of a spoofing
attack. The technique developed here can work as a sec-
ond layer of security to further strengthen methods that
rely on properties of the auto-correlation function of the
GNSS signal to detect spoofing attack (Section 1.1.1).
We make the following specific contributions:

• We cast the spoofing detection problem as a
statistical hypothesis test, specifically a generalized
likelihood ratio test (GLRT), based on a set of
observed range measurements.

• We use squared range-least squares (SR-LS)
approach [48] to approximately find
maximum-likelihood estimates of the parameters
under two hypotheses corresponding to spoofing and
no spoofing, respectively. We also calculate the
Cramér-Rao lower bound (CRLB) for the estimated
parameters under both these hypotheses and
compare the empirical results with these bounds.

• We determine optimal locations of the spoofers
(from the adversary’s perspective) that best
counteract the proposed defense mechanism.

We present and evaluate all methodology using a two-
dimensional model of the world, leaving the exten-
sion to three dimensions—which incurs some nontrivial
technicalities—to future work.

1.3 Notation
Uppercase and lowercase bold-faced letters are used to
denote matrices and column vectors, respectively. The
superscripts (·)T , (·)∗, (·)H , and (·)† denote the transpose,
conjugate, Hermitian, andMoore-Penrose pseudo-inverse
operators, respectively. IN×N denotes an N by N identity
matrix, diag(a) denotes a diagonal whose diagonal ele-
ments are the elements of the vector a, 0 is the all-zero
vector, ‖ · ‖ is the Frobenius norm, and | · | represents the
absolute value of a scalar. For a symmetric matrix An×n

Table 1 Summary of model parameters

Parameter Description

M Number of captured range measurements
of a satellite or spoofer signal by a GNSS
receiver

N Number of GNSS receivers

I Number of satellites

pn0 Position of the nth GNSS receiver, relative to
the platform

si Position of the ith satellite

b0 Translation vector of the platform

T Rotation matrix of the platform

pAi Position of the ith spoofer

τi Artificial time delay induced by the ith
spoofer

rn,i,m mth sample from the ith satellite or spoofer
signal measured by the nth GNSS receiver

nn,i,m Noise component of rn,i,m

σ 2 Noise power

and a positive definite matrix Bn×n, the generalized eigen-
values of the matrix pair (A,B) are given by λi (A,B) =
λi

(
B−1/ 2AB−1/ 2), i = 1, ..., nwhere λi (M) denotes the ith

largest eigenvalue ofM.

2 Systemmodel and problem description
We consider a two-dimensional scenario with N GNSS
receivers and I satellites. The GNSS receivers aremounted
on a rigid platform with fixed (and known) mutual dis-
tances. We assume that the clocks of the GNSS receivers
are synchronized with those of the satellites. Spoofers may
be present, and if so, each spoofer emulates one specific
satellite. The emulation is done by receiving the GNSS sig-
nal of a satellite, modifying the ephemeris data, adding an
artificial time delay, and re-transmitting the signal [49].
We assume that the spoofers use higher transmit power
than the satellites, so that the GNSS receivers lock on the
spoofing signals instead of the legitimate satellite signals.
When the receivers are synchronized, they can operate
as a virtual array to perform angle-of-arrival estimation
[50]. This can be used for spoofing detection where emu-
lated GNSS signals arrive from a specific direction. In
contrast, our approach can detect a spoofing attack where
multiple spoofers emulate GNSS signals originating from
geographically different locations. In addition, performing
array processing requires accessing to the baseband signal
of the GNSS receivers, which requires hardware modifi-
cations and precludes the use of commercial off-the-shelf
(COTS) receivers.
Let pn be the position of the nth GNSS receiver. Since

the GNSS receivers are fixed on a rigid body, we can
parameterize their positions in terms of their locations
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relative to the platform, pn0 , a translation vector (that
determines the position of the platform), b0, and a rota-
tion matrix (that determines the orientation of the plat-
form), T, according to

pn = b0 + Tpn0 . (1)

The rotation matrix, T, is parameterized in terms of a
rotation angle θ as

T =
[
cos θ − sin θ

sin θ cos θ

]
, (2)

and we write b0 =
[
b01
b02

]
. Hence, {pn0} are known a pri-

ori, while b0 and T are not. Figure 1 illustrates the relation
between the variables {pn}, b0, T, and {pn0} in (1).
Each GNSS receiver takes M range measurements to

each satellite. To detect the possible presence of spoofers,
we apply a binary hypothesis test to the so-obtained range
measurements. In regular operation (no spoofing), the
delay of a signal from a satellite to a receiver is entirely
due to the physical distance. In contrast, in the presence
of spoofing, the spoofer is generally located at a different
position than the satellite, and it can add an artificial, a
priori unknown, time delay to the GNSS signal to simulate
a different physical distance. Therefore, the two hypothe-
ses, regular operation (H0) and spoofing (H1) cases, can
be formulated:

H0 : rn,i,m = ∥
∥b0 + Tpn0 − si

∥
∥ + nn,i,m, (3)

H1 : rn,i,m =
∥
∥
∥b0 + Tpn0 − s

′
i

∥
∥
∥ + τi + nn,i,m. (4)

where 1 ≤ n ≤ N , 1 ≤ i ≤ I, and 1 ≤ m ≤ M is the
number of GNSS signal samples captured by each GNSS
receiver. We assume that the rigid body does not move
during the sampling. Here, nn,i,m are measurement noise
samples that we model as identically distributed zero-
meanGaussian random variables with variance σ 2, andwe
assume that these noise samples are independent among
n, i, and m. Also, si is the true position of the ith satellite,
s′
i is the forged position of the ith satellite (when a spoofer
is present), and τi is the artificial time delay caused by the
ith spoofer. Note that the artificial time delay introduced
by the spoofer is perceived by the GNSS receivers as an
additional propagation distance.We assume that the noise
power, σ 2 is known by the GNSS receivers (Table 1).
Under H1, the translation vector b0 is the same for

all measurements, and hence we can absorb b0 into the
unknown satellite positions s′

i by rewriting (4) as

H1 : rn,i,m =
∥
∥∥Tpn0 + s

′′
i

∥
∥∥ + τi + nn,i,m, (5)

where

s
′′
i = b0 − s

′
i.

Fig. 1 System model
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To further simplify (5), we can factor out the rotation
matrix T, exploiting that TTT = I, to rewrite (5) as

H1 : rn,i,m =
∥
∥
∥pn0 + s

′′′
i

∥
∥
∥ + τi + nn,i,m, (6)

where

s
′′′
i = T−1s

′′
i .

We first average the M measurements taken by each
GNSS receiver for each satellite, to obtain:

rn,i = 1
M

M∑

m=1
rn,i,m.

Since under the Gaussian-noise assumption, {rn,i} are
sufficient statistics for localization [51], we have the equiv-
alent hypothesis test based on averaged measurements:

H0 : rn,i = ∥
∥b0 + Tpn0 − si

∥
∥ + nn,i, (7)

H1 : rn,i =
∥
∥
∥pn0 + s

′′′
i

∥
∥
∥ + τi + nn,i, (8)

where nn,i = 1
M

M∑

m=1
nn,i,m is averaged noise with

zero mean and variance σ 2

M . Averaging over the sam-
ples decreases σ 2

M and improves the signal-to-noise ratio.
Under H0, the rotation matrix T and the translation vec-
tor b0 are unknown, while under hypothesis H1, the
vectors s′′′

1 , ..., s
′′′
I , and τ1, ..., τI are unknown. In the next

section, we devise a statistical test that can discriminate
betweenH0 andH1.

3 Generalized likelihood ratio test for spoofer
detection

We formulate a generalized likelihood ratio test (GLRT)
to detect the presence of a spoofing attack. The GLRT
compares the likelihoods of the data under H0 and H1,
with all unknown parameters replaced by their maximum-
likelihood estimates. The GLRT approach is appropriate
for cases when there are unknown parameters under each
hypothesis, and no prior knowledge of these parameters is
available.
Since the measurements in (7) and (8) follow a normal

distribution, and since all averaged noise samples are inde-
pendent, the PDFs of the measurements underH0 andH1
are

p (r;b0,T,H0)

= 1
(
2σ 2 / M

)NI
2
e−

N∑

n=1

I∑

i=1

(
rn,i−

∥∥
∥b0+Tpn0−si

∥∥
∥
)2

2σ2/M , (9)

and

p
(
r; s

′′′
1 , ..., s

′′′
I , τ1, ..., τI ,H1

)

= 1
(
2σ 2 / M

)NI
2
e−

N∑

n=1

I∑

i=1

(
rn,i−

∥
∥∥
∥pn0+s

′′′
i

∥
∥∥
∥−τi

)2

2σ2/M . (10)

The GLRT can be written as

1

(2σ 2/M)
NI
2
e
−

N∑

n=1

I∑

i=1

(
rn,i−

∥
∥
∥∥pn0+ŝ

′′′
i

∥
∥
∥∥−τ̂i

)2

2σ2
/
M

1

(2σ 2/M)
NI
2
e
−

N∑

n=1

I∑

i=1

(
rn,i−

∥
∥∥b̂0+T̂pn0−si

∥
∥∥
)2

2σ2
/
M

H1
≷
H0

γth, (11)

where
(
b̂0, T̂

)
= argmax p(r;b0,T,H0) , (12)

and
(
ŝ

′′′
i , τ̂i

)
= argmax p

(
r; s

′′′
i , τi,H1

)
. (13)

Taking the logarithm of (11) and simplifying yields
N∑

n=1

I∑

i=1

(
rn,i − f0

(
b̂0, T̂

))2

−
N∑

n=1

I∑

i=1

(
rn,i − f1

(
ŝ

′′′
i , τ̂i

))2 H1
≷
H0

2σ 2

M
ln γth, (14)

where

f0
(
b̂0, T̂

)
=

∥
∥
∥b̂0 + T̂pn − si

∥
∥
∥,

and

f1
(
ŝ

′′′
i , τ̂i

)
=

∥∥
∥pn0 + ŝ

′′′
i

∥∥
∥ + τ̂i.

As we see in (14), GLRT calculates the difference
between the measurements and the best fit assuming that
H0 andH1, respectively, are true.

4 Approximate parameter estimation
Evaluation of the GLRT requires the maximum-likelihood
estimates of the parameters in (12) and (13). However,
finding these estimates is a non-tractable problem. As a
remedy, we resort to using the SR-LS technique [48] as a
building block in an iterative algorithm. SR-LS was orig-
inally devised as a source localization method that finds
the best position estimate (in a least squares sense) based
on squared range measurements. We are going to use
estimates from SR-LS here as a substitute for maximum-
likelihood estimates required in (12) and (13). In this
context, it is important to stress that under a Gaussian
assumption on the measurement errors, SR-LS is asymp-
totically equivalent (for large numbers of samples, which
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in our setting is equivalent to small σ 2/M) to maximum-
likelihood. The range-squaring idea in [48] in ingenious
and has also been used by other authors for joint posi-
tion and orientation estimation of a rigid body from range
measurements [52, 53].

4.1 Estimation of parameters underH0

Under H0, as an approximation to (12), we formulate the
following problem, defined in terms of the squared range
measurements:

(
b̂0, T̂

)
=argmin

b0,T

N∑

n=1

I∑

i=1

(∥
∥b0+Tpn0 −si

∥
∥2−r2n,i

)2
,

(15)

We then solve (15) using cyclic optimization, alternating
betweenminimization with respect to b0 and with respect
to T.

4.1.1 Minimization of (15) with respect to b0
Considering the rotation matrix T to be given, we first
minimize (15) with respect to b0. Expanding the norm
in (15) results in

b̂0 = argmin
b0

N∑

n=1

I∑

i=1

(
bT0 b0 + bT0 Tpn0 − bT0 si + pTn0T

Tb0

+pTn0T
TTpn0 −pTn0T

Tsi−sTi b0−sTi Tpn0 +sTi si−r2n,i
)2
.

(16)

Using the fact that TTT = I and ordering (16) with
respect to b0 yields

b̂0 = argmin
b0

N∑

n=1

I∑

i=1

(
bT0 b0 + 2

(
Tpn0 − si

)Tb0 + pTn0pn0

−2pTn0T
Tsi + sTi si − r2n,i

)2
. (17)

To write (17) as squared norm, we introduce an auxiliary
variable α and a constraint:

b̂0 = arg min
b0,α∈R

N∑

n=1

I∑

i=1

(
α + 2

(
Tpn0 − si

)Tb0 + pTn0pn0

−2pTn0T
Tsi + sTi si − r2n,i

)2

s.t. bT0 b0 = α. (18)

The optimization problem in (18) can be written in a
compact form as

b̂0 = argmin
y

∥
∥Ay − b

∥
∥2

s.t. yTDy + 2fTy = 0, (19)

where

A =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
(
Tp10 − s1

)T 1
. .

2
(
TpN0 − s1

)T 1
2
(
Tp10 − s2

)T 1
. .

2
(
TpN0 − sI

)T 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =
[
b0
α

]
, (20)

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

−
(
pT10p10 − 2pT10T

Ts1 + sT1 s1 − r21,1
)

.
−

(
pTN0

pN0 − 2pTN0
TTs1 + sT1 s1 − r2N ,1

)

−
(
pT10p10 − 2pT10T

Ts2 + sT2 s2 − r21,1
)

.
−

(
pTN0

pN0 − 2pTN0
TTsI + sTI sI − r2N ,I

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (21)

and

D =
[
I2×2 02×1
01×2 0

]
, f =

[
02×1
−0.5

]
. (22)

Note that A should have full column rank, i.e., ATA
should be non-singular for the solution to exist. The opti-
mization problem in (19) is non-convex. However, its
global optimum solution can be found using the result in
[54] as

ŷ (λ) =
(
ATA + λD

)−1 (
ATb − λf

)
, (23)

where λ is the unique solution of

φ (λ) = 0, λ ∈ V , (24)

and φ is defined as

φ (λ)
	= ŷ (λ) D̂y (λ) + 2fT ŷ (λ) . (25)

The search interval for λ consists of the values for which
the expression ATA + λD is positive definite. As a result,
the search domain V will be

V =
(

− 1
λ1

(
D,ATA

) ,∞
)

. (26)

Based on [54], the function φ (λ) is strictly decreasing
over the domainV. Hence, we can use bisection to find the
root of φ (λ).

4.1.2 Minimization of (15) with respect to T
To minimize (15) with respect to the rotation matrix T,
for given b0, we again write, similarly to (17):

T̂ = argmin
T

N∑

n=1

I∑

i=1

(
2bT0 Tpn0 − 2sTi Tpn0 + pTn0pn0

+bT0 b0 − 2sTi b0 + sTi si − r2n,i
)2
. (27)
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Defining cn,i = pTn0pn0 +bT0 b0−2sTi b0+sTi si−r2n,i yields

T̂ = argmin
T

N∑

n=1

I∑

i=1

(
2(b0 − si)TTpn0 + cn,i

)2
. (28)

Using the structure of the rotation matrix in (2) and
defining b0 − si = [ ai1, ai2]T and pn0 = [ pn01 , pn02 ]T , we
can expand 2(b0 − si)TTpn0 as

2[ ai1 ai2 ]
[
cos θ − sin θ

sin θ cos θ

] [
pn01
pn02

]

= 2
(
pn01ai1 + pn02ai2

)
cos θ + 2

(
pn01ai2 − pn02ai1

)
sin θ

= αn,i cos θ + βn,i sin θ . (29)

Using (29), estimating T becomes equivalent to estimat-
ing θ as

f (θ)=argmin
θ

N∑

n=1

I∑

i=1

(
αn,i cos θ + βn,i sin θ + cn,i

)2.

(30)

Problem (30) is non-convex with respect to θ and may
have multiple local minima. To find the global minimum,
we calculate the derivative of (30) with respect to θ and
find its roots. The derivative of the objective function
in (30) is

f
′
(θ) =2

N∑

n=1

I∑

i=1

(−αn,i sin θ + βn,i cos θ
)

(
αn,i cos θ + βn,i sin θ + cn,i

)
, (31)

which can be simplified into

f
′
(θ)=

N∑

n=1

I∑

i=1

(
β2
n,i−α2

n,i
)
sin θ cos θ + αn,iβn,i

(
2cos2θ−1

)

− αn,icn,i sin θ + βn,icn,i cos θ . (32)

Summation over the indexes n and i in (32) results in

f
′
(θ)=e1 sin θ cos θ+e2

(
2 cos2 θ−1)+e3 sin θ+e4 cos θ ,

(33)

with

e1 =
N∑

n=1

I∑

i=1

(
β2
n,i − α2

n,i
)
, e2 =

N∑

n=1

I∑

i=1
αn,iβn,i,

e3 = −
N∑

n=1

I∑

i=1
αn,icn,i, e4 =

N∑

n=1

I∑

i=1
βn,icn,i. (34)

The roots of f ′ in (33) are solutions to the equation

e2
(
2cos2θ − 1

) + e4 cos θ = − (e1 cos θ + e3) sin θ .
(35)

We square both sides and substitute sin2θ = 1 − cos2θ
to obtain

(
e21 + 4e22

)
cos4θ + 2 (e1e3 + 2e2e4) cos3θ

+ (−e21 − 4e22 + e24 + e23
)
cos2θ

+ (−2e2e4 − 2e1e3) cos θ + e22 − e23 = 0, (36)

which is now a trigonometric function with only cos θ

terms (which are periodic with period 2π ). Replacing x =
cos θ in (36) results in

(
e21 + 4e22

)
x4 + 2 (e1e3 + 2e2e4) x3

+ (−e21 − 4e22 + e23 + e24
)
x2

− 2 (e1e3 + e2e4) x + e22 − e23 = 0. (37)

The fourth order equation in (37) has at most four roots,
which can be found using the Ferrari’s method [55]. After
solving (37), we can use θ = arccos x to find the values
of θ corresponding to the local optimums of (30). Note
that since cos θ in (36) is periodic with period 2π , we
look for the solutions in the domain [0, 2π ] when using
θ = arccos x. The value of θ corresponding to the global
optimum of (27), i.e., θ̂ , is then

θ̂ = argmin f (θi) . (38)

4.1.3 Iterative algorithm forminimization of (15)
Minimizing (15) jointly with respect to b0 and θ (or
equivalently, T) is not tractable in closed form. Instead,
we propose an iterative optimization approach in Algo-
rithm 1. Since the problem is highly non-convex with
multiple local optima, the point obtained as solution could
depend on the initialization values (especially of θ ). To
tackle this, we repeat Algorithm 1 with different initial
values of θ .

Algorithm 1 Iterative approach to minimization of (15)
with respect to b0 and T.
1: Pick an initial value for θ̂ , denoted by θ̂0;
2: Set j = 0;
3: Substitute θ̂ j into (23) and get b̂j0 ;
4: Insert b̂j0 into (37) to obtain θ̂ j+1;
5: if

∣
∣∣θ̂ j+1 − θ̂ j

∣
∣∣ ≥ ε then

6: Set j = j + 1;
7: Go to 3;
8: end if

It is shown in [48] that the SR-LS results in the global
optimum to the approximated problem based on squared
range measurements. Hence, in the minimization with
respect to b0, for given T, in each iteration inside of
Algorithm 1, we find the global optimum. The same is
true of θ , as its global solution is given by the root of (37).
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However, the overall problem is non-convex and the joint
estimate of b0 and Tmay be suboptimal.

4.2 Estimation of parameters underH1

Next, to find approximate solutions to (13), we con-
sider again a cyclic optimization algorithm that alternates
between minimization with respect to s′′′

1 , ..., s
′′′
I and with

respect to τ1, ..., τI and where SR-LS is used as a building
block in the first-mentioned step.

4.2.1 Minimizationwith respect to s
′′′
1 , ..., s

′′′
I

We first consider minimization with respect to s′′′
1 , ..., s

′′′
I

for given τ1, ..., τI . Using the SR-LS technique, the corre-
sponding optimization problem to find s′′′

1 , ..., s
′′′
I becomes

(
ŝ

′′′
1 , ..., ŝ

′′′
I

)
=arg min

s′′′1 ,...,s′′′I

N∑

n=1

I∑

i=1

(∥
∥
∥pn0 + s

′′′
i

∥
∥
∥
2 − r2n,i

)2
,

(39)

where r2n,i = (
rn,i − τi

)2. We expand the norm expression
in (39) as

(
ŝ

′′′
1 , ..., ŝ

′′′
I

)
= arg min

s′′′1 ,...,s′′′I

N∑

n=1

I∑

i=1

(
pTn0pn0 + 2pTn0s

′′′
i

+
(
s

′′′
i

)T
s

′′′
i − r2n,i

)2
, (40)

and add the terms in (40) over index i to obtain
(
ŝ

′′′
1 , ..., ŝ

′′′
I

)

=arg min
s′′′1 ,...,s′′′I

N∑

n=1

((
s

′′′
1

)T
s

′′′
1+2pTn0s

′′′
1 +pTn0pn0 − r2n,1

)2

+...+
N∑

n=1

((
s

′′′
i

)T
s

′′′
I + 2pTn0s

′′′
I + pTn0pn0 − r2n,I

)2
.

(41)

Problem (41) is a minimization of sum of I positive
terms, where the ith term only depends on s′′′

i . Hence, the
problem decouples and we can minimize each individual
term separately. This results in I separate optimization
problems, where the ith problem is

ŝ
′′′
i =argmin

s′′′i

N∑

n=1

((
s

′′′
i

)T
s

′′′
i +2pTn0s

′′′
i +pTn0pn0 − r2n,i

)2
.

(42)

Similar to the approach in Section 4.1.1, moving the
quadratic term to a constraint results in

ŝ
′′′
i = arg min

s′′′i ,α∈R

N∑

n=1

(
α + 2pTn0s

′′′
i + pTn0pn0 − r2n,i

)2

s.t.
(
s

′′′
i

)T
s

′′′
i = α. (43)

By completing the square, we can cast (43) as

ŝ
′′′
i = argmin

y

∥
∥Ay − b

∥
∥2

s.t. yTDy + 2fTy = 0, (44)

where

A =
⎡

⎢
⎣

2pT10 1
. .

2pTN0
1

⎤

⎥
⎦ ,b =

⎡

⎣
r21,i − pT1 p1
.
r2N ,i − pTN0

pN0 ,

⎤

⎦ , (45)

and

y =
[
s′′′
i

α

]
,D =

[
I2 01×2
01×2 0

]
, f =

[
0
−0.5

]
. (46)

4.2.2 Minimizationwith respect to τi
Next, we find the artificial time delays caused by each
spoofer for given values of s′′′

1 , ..., sI
′′′ . The problem is

(̂τ1, ..., τ̂I) = arg min
τ1,...,τI

N∑

n=1

I∑

i=1

(∥
∥
∥pn0 + s

′′′
i

∥
∥
∥+τi−rn,i

)2
.

(47)

We expand (47) as

(̂τ1, ..., τ̂I) = arg min
τ1,...,τI

N∑

n=1

(∥
∥
∥pn0 + s

′′′
1

∥
∥
∥ + τ1 − rn,1

)2

+ ... +
N∑

n=1

(∥
∥
∥pn0 + s

′′′
I

∥
∥
∥ + τI − rn,I

)2
.

(48)

The objective function in (48) is sum of positive and
independent terms. Again, the problem decouples and we
can find the minima with respect to τ1, ..., τI separately for
i = 1, ..., I. The corresponding problem for the ith variable,
τi, is

τ̂i=argmin
τi

N∑

n=1

(∥
∥
∥pn0 + s

′′′
i

∥
∥
∥ + τi − rn,i

)2
. (49)

and has the (s) solution

τi =

N∑

n=1
rn,i −

∥
∥
∥pn0 + s′′′

i

∥
∥
∥

N
. (50)

4.2.3 Iterative algorithm for approximate solution of (13)
The whole approach to estimate the parameters under
H1 is summarized in Algorithm 2. Since the estimation
problem is non-linear and can have multiple local opti-
mum points, we need to repeat Algorithm 2 for different
initialization points of τ1, ..., τI .
Similarly to the case under H1, the minimization with

respect to s′′′
1 , ..., sI

′′′ for given τ1, ..., τI in Algorithm 2
returns the global optimum. Also, for given s′′′

1 , ..., sI
′′′ , (50)

yields the globally optimal values of τ1, ..., τI . However,
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the joint estimates s′′′
1 , ..., sI

′′′ and τ1, ..., τI delivered by
Algorithm 2 may be suboptimal. A more granular initial-
ization range for the parameter θ increases the chance of
finding the global optimum rather than a local optimum.

Algorithm 2 Iterative approach to approximation of
s′′′
1 , ..., sI

′′′ and τ1, ..., τI in (13).

1: Pick initial values for τ̂1, ..., τ̂I denoted by τ̂
0 =

[ τ̂ 01 , ..., τ̂
0
I ];

2: Set j = 0;
3: Substitute τ̂

j
i in (44) to get ŝj

′′′
i for i = 1, ..., I;

4: Insert ŝj
′′′
i into (50) to obtain τ̂

j+1
i for i = 1, ..., I;

Defining dj =
N∑

n=1

I∑

i=1

[
rn,i −

(∥
∥
∥pn0 + sj

′′′
i

∥
∥
∥ + τ

j
i

)]2
,

5: if
∣∣dj − dj+1∣∣ ≥ ε then

6: Set j = j + 1;
7: Go to 3;
8: end if

4.3 Complexity analysis of the proposed algorithms
In this section, we provide the Big-O complexity for each
step of Algorithms 1 and 2, respectively. Algorithm 1
is comprised of two parts where b0 is first estimated
using (23) and θ is estimated using (37), which is solved
using Ferrari’s method. Adding up the complexity of these
two parts, the complexity of each iteration of Algorithm 1
is:

4O (3NI) + O (9NI) + O
(
log2 (r)

)
, (51)

where r = log2
(

ε0
ε

)
, ε0 is the search domain of the bisec-

tion algorithm in (26), and ε is the required accuracy of
the bisection algorithm. The overall complexity of (51) is
the number of tested initial values of θ0 multiplied by the
complexity of each iteration provided in (51).
Similarly, Algorithm 2 is comprised of two parts. First,

the values of s′′′
1 , ..., s

′′′
I are estimated and then τ1, ..., τI are

computed. Adding the complexity of these two parts, the
complexity of each iteration of Algorithm 1 is:

I × [
4O (3N) + O (9N) + O

(
log2 (r)

)]
(52)

5 Optimal design of attack parameters
As we develop signal processing methodology to detect an
attack by multiple spoofers, it is expected that the adver-
sary devises the best strategy to counteract the spoofing
detection technique. In this section, we develop analyti-
cal solutions to design the optimal spoofing parameters.
In this analysis, we assume that the adversary has perfect
knowledge of the initial positions of the GNSS receiver
nodes, pn0 .

To minimize the chance of detection, the adversary
needs to satisfy two types of constraints. First, the adver-
sary needs to find spoofed locations, pspn , such that the
relative coordinates of the GNSS receivers is preserved
after spoofing. To achieve this, the spoofer selects values
of the spoofed translation vector, bsp0 , and spoofed rotation
matrix,Tsp. Then, it uses the knowledge of pn0 to calculate
the values of the spoofed locations, pspn , as

pspn = bsp0 + Tsppn0 . (53)

Second, the locations of the spoofers and forged posi-
tions of the satellites need to chosen such that the range
measurements at all GNSS receivers result in the target
spoofed location derived in (53), and the spoofed forma-
tion of the GNSS receivers is preserved. To satisfy this,
the simulated distance by a specific spoofer, caused by its
physical distance to a GNSS receiver and artificial delay,
needs to be equal to the distance of forged satellite, pro-
vided in the simulated GNSS signal, to the estimated
position of that GNSS receiver. To implement the former
in the best way, the adversary first picks values for the
forged positions of the satellites, sspi , and uses the values of
pspn derived in (53) to satisfy the following constrains:

∥
∥
∥pAi − pn

∥
∥
∥ + τi = ∥

∥pspn − sspi
∥
∥ , (54)

where pAi is the position of the ith spoofer, pspn is the
spoofed location of the nth GNSS receiver, sspi is the forged
position of the ith satellite, and τi is the artificial delay
produced by the ith spoofer. The better the spoofers sat-
isfy the corresponding equations in (54), the closer the
estimated parameters in (3) to that set by the adversary.
Consequently, this leads to a better fit between the mea-
surements and the data model. As we see in the developed
detection test in (14), this helps reducing the left hand
side of the detection test and not reaching the detection
threshold.
Each spoofer chooses values for sspi since these values

need to be in a specific range, e.g., GEO satellites, and then
solves the related equations in (54) to get the optimal val-
ues of pAi and τi. To illustrate, the best position for the
first attacker is illustrated in Fig. 2 for N = I = A = 2.
As we see, satisfying the set of constraints in (54) results
in the optimal position for the spoofer being the intersec-
tion of two circles where the center of each circle is pn for
n = 1, 2. For N ≥ 3, there are three circles which may not
have a common intersection point. Therefore, the adver-
sary needs to find the best point for each spoofer which
best satisfies (54) for all GNSS receivers. One way is to use
a least squares fit,

min
N∑

n=1

[∥
∥
∥pAi − pspn

∥
∥
∥
2 − (

μn,i − τi
)2

]2
, (55)
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Fig. 2 Spoofing attack illustration

where μn,i = ∥
∥pspn − sspi

∥
∥. To solve (55), we do the follow-

ing change of variables:

pn =
[
pnx
pny

]
, pAi =

[
xi
yi

]
, (56)

and calculate the derivatives of the objective in (55) with
respect to pnx , pny , and τi. After algebraic simplifications,
we get

∂f
∂xi

=Nx3i − 3
N∑

n=1
pnxx2i +

(

3
N∑

n=1

(
pnx

)2 +
N∑

n=1
cn,i

)

xi

+
N∑

n=1

(
−(

pnx
)3 − pnxcn,i

)
,

∂f
∂yi

=Ny3i − 3
N∑

n=1
pnyy2i +

(

3
N∑

n=1

(
pny

)2 +
N∑

n=1
dn,i

)

yi

+
N∑

n=1

(
−(

pny
)3 − pnydn,i

)
,

∂f
∂τi

=Nτ 3i − 3
N∑

n=1
μn,iτ

2
i +

N∑

n=1

(
3μ2

n,i − en,i
)
τi

+
N∑

n=1
−μ3

n,i + μn,ien,i, (57)

where

cn,i = (
yi − pny

)2 − (
μn,i − τi

)2,

dn,i = (
xi − pnx

)2 − (
μn,i − τi

)2,

en,i = (
xi − pnx

)2 + (
yi − pny

)2. (58)

Relations (58) imply an intertwined system of non-linear
equations in (57). This system of equations can be solved
using classic approaches such as the Newton method. To
find the optimal values of pAi and τi for each spoofer, we
perform a coarse search over multiple initial guess points
and choose the best one among them.
Nonetheless, in practice, it may not be possible for each

spoofer to be in the optimal location at eachmoment. This
is due to the fact that the GNSS receivers are installed on a
moving platform and physical barriers as well as unknown
velocity and speed can prevent the spoofers from being
at the required positions. We quantify the spoofing detec-
tion performance with respect to the deviation from the
optimal location of the spoofers in Section 6.

6 Simulation results
In this section, we present numerical examples to quan-
tify the performance of the proposed spoofing detection
mechanism. Unless otherwise stated, the parameters of
the simulation setup are as in Table 2.
To initialize θ̂ for Algorithm 1, we select a set of

coarsely spaced values within the range [ 0, 2π ]. We repeat
Algorithm 2 for different initial values of τ1, ..., τI and then
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Table 2 Simulations parameters for the spoofing scenario

Parameter Value

GNSS initial positions, pn0
for N = 3

[(10, 30), (20, − 60), (− 10, 40)]

GNSS initial positions, pn0
for N = 5

[(10, 30), (20, − 60), (− 10, 40), (− 5,
− 6), (7, 5)]

Satellite positions 106[(− 7, 36.786), (− 3, 35), (5,
− 35.5)]

Rotation angle, θ 7π / 6

Translation vector, b0 [12 , 4]

Spoofer positions for
bsp0 = 103[ 0.5,0.5]

104[(1.7534, 0.1163), (− 0.6936,
0.9408), (− 1.2268, −0.1218)]

Artificial time delays for
bsp0 = 103[ 0.5,0.5]

107(3.7388, 3.5156, 3.4883)

Spoofer positions for
bsp0 = 103[ 5,5]

104[(1.7534, 0.1163), (− 0.6936,
0.9408), (− 1.2268, − 0.1218)]

Artificial time delays for
bsp0 = 103[ 5,5]

107[(3.73, 3.51, 3.48)]

Noise power, σ 2 2 × 103

All the distances and locations are in meters

pick the estimated parameters which result in the least dif-
ference between the measurements and the data model.
The values of ε in both Algorithms 1 and 2 are set to
ε = 10−3.
To demonstrate the accuracy of the parameter esti-

mates used in lieu of the maximum-likelihood estimates
required in (12)–(13), we first compare the empirical esti-
mation variance to the Cramér-Rao lower bound (CRLB).
The CRLBs under H0 and H1 are derived in Appendix A
andAppendix B, respectively. Due to space constraints, we
present these comparisons only for the parameters θ for
H0 and s′′′31 forH1. Figures 3 and 4 show the results. As we
can see, parameter estimates get close to their respective
CRLBs as the noise variances decrease.

Fig. 3 Estimation variance for θ as function of the noise power σ 2,
compared to the CRLB

Fig. 4 Estimation variance for s
′′′
31 as function of the noise power σ 2,

compared to the CRLB

We next evaluate the performance of the proposed
spoofing detection technique by plotting the probability
of detection versus the probability of false alarm for vari-
ous different values of M (or equivalently, different noise
power σ 2

M in the averaged range measurements). To gen-
erate the simulation results and find the threshold of the
GLRT, we proceed as follows. First, we run a case without
spoofers and empirically calculate the probability of false
alarm using the GLRT test in (14) for various values of γth.
Next, we simulate the presence of spoofers and calculate
the probability of detection using the GLRT test in (14)
for various values of γth. Finally, we plot the so-obtained
probabilities of detection and false alarm.
In the first simulation scenario, we investigate how the

difference between the true and spoofed positions of the
GNSS receivers affect the spoofing detection probability.
We present the probability of detection versus false alarm
in Figs. 5 and 6 for different values of the spoofed trans-

Fig. 5 Probability of detection versus probability of false alarm for
N = I = 3 and bsp0 = 103 × [0.5, 0.5]
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Fig. 6 Probability of detection versus probability of false alarm for
N = I = 3 and bsp0 = 103 × [5, 5]

lation vector, bsp0 . The results show that as the adversary
tries tomislead the victimsmore from their true locations,
the chance to spot the spoofing attack increases.
In the next scenario, we quantify the performance of

the proposed technique when the position of each spoofer
deviates from the optimal designed positions. The prob-
ability of detection versus false alarm is shown in Fig. 7
when each spoofer is moved by 2pAi /

∥
∥pAi

∥
∥ from the

optimal position. As we see, the probability of detec-
tion increases as the spoofers fail to occupy their optimal
locations.
Finally, we investigate the effect of the number of GNSS

receivers on the performance of the proposed algorithm.
We consider the same satellite formation with I = 3 and

Fig. 7 Probability of detection versus probability of false alarm for
N = I = 3 and bsp0 = 103 × [0.5, 0.5] when the spoofer locations

deviate by
2pAi∥
∥pAi

∥
∥

three spoofers, i.e., A = 3, while increasing the number
of GNSS receivers from three to five. The performance of
the proposed algorithm when increasing the number of
GNSS receivers is shown in Fig. 8. Compared to Fig. 5,
we see that adding two extra GNSS receivers increases
the detection performance of the proposed scheme
considerably.
As we see in Figs. 5-8, increasing the number of samples

taken by the GNSS receivers consistently increases the
detection probability for a given false alarm probability.

7 Conclusions
We proposed an anti-spoofing approach for GNSS
based on a statistical test. The test exploits multi-
ple GNSS receivers mounted on a rigid-body platform
(with a priori unknown position and orientation) and
essentially performs a consistency check between all
pairs of measured receiver-satellite distances and avail-
able prior knowledge about the relative positions of
the receivers on the platform. Numerical simulations
proved the feasibility of our method and specifically
showed that the more the spoofers try to manipulate
the estimated GNSS receiver positions from their nom-
inal locations, the higher is the probability of attack
detection. Also, the more GNSS receivers on the plat-
form, the higher the probability of detecting a spoofing
attack.
We furthermore showed that using multiple GNSS

receivers limits the feasible attacker position to few loca-
tions, and we designed a framework for finding the opti-
mal attack positions as well as the artificial time delays of
the spoofers. Simulations showed that when the spoofers
do not occupy their optimal locations, it is easier to detect
them.

Fig. 8 Probability of detection versus probability of false alarm for
N = 5 and I = 3 and bsp0 = 103 × [0.5, 0.5]
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For analytical tractability and to achieve a first proof-
of-concept of our statistical test methodology, we con-
sidered a two-dimensional geometry. Future work may
include extensions to a three-dimensional world or
combining our approach with anomaly detection in
the autocorrelation function of the received signals,
in order to enhance overall detection performance. In
addition, new analysis can be performed by consid-
ering synchronization errors among the clocks of the
GNSS receivers and the satellites. Also, the noise vari-
ance may be treated as an unknown parameter in the
GLR tests.
It would be interesting to test our proposed approach

in practice. We hope that this paper will stimulate both
further theoretical research and experimental work.

Appendix A
Proof of CRLB forH0

In this appendix, we calculate the CRLB for estimated
parameters under hypothesis H0. Since the range mea-
surements in (5) follow a normal distribution, we can
use the Slepian-Bang formula [56] to calculate the
CRLB as,

[I (α)]jk =
[

∂μ (α)

∂αj

]T
C−1 (α)

[
∂μ (α)

∂αk

]
, (59)

where

α = [b01, b02, θ ]T ,
[μ (α)]n,i,m = ∥

∥b0 + Tpn0 − si
∥
∥ ,

∂μ (α)

∂αj
=

[
∂[μ(α)]1

∂αj
, ∂[μ(α)]2

∂αj
, ..., ∂[μ(α)]NIM

∂αj

]T
, (60)

and C−1 (α) = σ−2 since the noises across the GNSS
receivers and the measurements are assumed to be inde-
pendent.
To calculate the CRLB for H0, first, we calculate the

values of ∂μ(α)
∂αj

for j = 1, 2, 3. After some algebraic calcu-
lations, these values are derived as

∂[μ (α)]n,i,m
∂b01

= b01 + pn1 cos θ − pn2 sin θ − si1∥
∥b0 + Tpn0 − si

∥
∥ ,

∂[μ (α)]n,i,m
∂b02

= b02 + pn1 sin θ + pn2 cos θ − si2∥
∥b0 + Tpn0 − si

∥
∥ ,

∂[μ (α)]n,i,m
∂θ

= An,i cos θ + Bn,i sin θ
∥
∥b0 + Tpn0 − si

∥
∥ , (61)

where

An,i = b02pn1 − b01pn2 − si2pn1 + si1pn2,
Bn,i = −b02pn2 − b01pn1 + si1pn1 + si2pn2. (62)

By inserting the calculated values of (61) into the
Slepian-Bang formula in (59), the elements of the Fisher
information matrix are derived as

[I (α)]11 =M
N∑

n=1

I∑

i=1

(b01 + pn1 cos θ − pn2 sin θ − si1)2
∥
∥b0 + Tpn0 − si

∥
∥2

,

[I (α)]12 =M
N∑

n=1

I∑

i=1

(b01 + pn1 cos θ − pn2 sin θ − si1)
∥
∥b0 + Tpn0 − si

∥
∥2

× (b02 + pn1 sin θ + pn2 cos θ − si2) ,

[I (α)]13 =M
N∑

n=1

I∑

i=1

(b01 + pn1 cos θ − pn2 sin θ − si1)
∥
∥b0 + Tpn0 − si

∥
∥2

× (
An,i cos θ + Bn,i sin θ

)
,

[I (α)]22 =M
N∑

n=1

I∑

i=1

(b02 + pn1 sin θ + pn2 cos θ − si2)2
∥
∥b0 + Tpn0 − si

∥
∥2

,

[I (α)]23 =M
N∑

n=1

I∑

i=1

(b02 + pn1 sin θ + pn2 cos θ − si2)
∥
∥b0 + Tpn0 − si

∥
∥2

× (
An,i cos θ + Bn,i sin θ

)
,

[I (α)]33 =M
N∑

n=1

I∑

i=1

(
An,i cos θ + Bn,i sin θ

)2
∥
∥b0 + Tpn0 − si

∥
∥2

,

(63)

and [I (α)]21 = [I (α)]12, [I (α)]31 = [I (α)]13, [I (α)]32 =
[I (α)]23. Using the calculated elements of the Fisher
matrix, we can derive closed-form expressions for the
CRLB by inverting the Fisher information matrix. For
the sake of conciseness, here, we avoid showing these
expressions.

Appendix B
Proof of CRLB forH1

In this appendix, we calculate the CRLB for the parame-
ters under hypothesis H1. Since the range measurements
in (5) follow a normal distribution, we can use the Slepian-
Bang formula [56] to calculate the CRLB.
Based on Algorithm 2, the first step is to find initial val-

ues of the parameters τi for i = 1, .., I. As we see in (45),
estimation of s′′′

i depends on r2n,i for n = 1, ...,N where r2n,i
depends on τi for n = 1, ...,N . Hence, only τi is used in (43)
to estimate s′′′

i for i = 1, ...I.
In the next step of Algorithm 2, calculated values of s′′′

i
are used to estimate τi for i = 1, .., I. Based on (50), only
s′′′
i is used to estimate τi for i = 1, .., I. According to the
previous explanations, each pair (s′′′

i , τi) is estimated inde-
pendently for i = 1, ..., I. In the following, we provide the
details to calculate the CRLB forH1.
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Similar to the calculations for H0, we use the Slepian-
Bang relation (59) to calculate the CRLB for H1. The
problem parameters and the mean of the hypothesis are
defined as

α =
[
s
′′′
11, s

′′′
12, τ1, ..., s

′′′
I1, s

′′′
I2, τI

]
,

[μ (α)]n,i =
∥∥
∥pn0 + s

′′′
i

∥∥
∥ + τi, (64)

and C−1 (α) = σ−2 since the noises across the GNSS
receivers and the measurements are assumed to be inde-
pendent. As we see, α depends on different parameters of
one specific satellite for each value of i. To avoid confu-
sion, we can assume that for [μ (α)]n,i the parameters with
index i = 1, ..., i−1, i+1, ..., I have coefficient zero. Hence,
the FIMwill be block diagonal and each block is 3×3 since
three parameters from each satellite need to be estimated.
Considering that M samples are captured from the same
satellite by the same GNSS receiver, we factor outM.
The derivative of [μ (α)]n,i with respect to the parame-

ters related to the ith satellite are defined as

[μ (α)]n,i
∂s′′′i1

= pn01 + s′′′i1∥∥pn0 + s′′′
i
∥∥ ,

[μ (α)]n,i
∂s′′′i2

= pn02 + s′′′i2∥
∥pn0 + s′′′

i
∥
∥ ,

[μ (α)]n,i
∂τi

= 1. (65)

The elements of the FIM are calculated as

[I (α)]11 =
N∑

n=1

(
pn01 + s′′′11

)2

∥
∥pn0 + s′′′

1
∥
∥2

,

[I (α)]12 =
N∑

n=1

(
pn01 + s′′′11

) (
pn02 + s′′′12

)

∥
∥pn0 + s′′′

1
∥
∥2

,

[I (α)]13 =
N∑

n=1

pn01 + s′′′11∥∥pn0 + s′′′
1
∥∥ ,

[I (α)]14, ..., [I (α)]1(3I) = 0,

[I (α)]21 = [I (α)]12

[I (α)]22 =
N∑

n=1

(
pn02 + s′′′12

)2

∥
∥pn0 + s′′′

i
∥
∥2

[I (α)]23 =
N∑

n=1

pn02 + s′′′12∥
∥pn0 + s′′′

1
∥
∥

[I (α)]24, ..., [I (α)]2(3I) = 0,

[I (α)]31 = [I (α)]13

[I (α)]32 = [I (α)]23
[I (α)]33 = N
[I (α)]34, ..., [I (α)]3(3I) = 0,

[I (α)]41 = [I (α)]42 = [I (α)]43 = 0

[I (α)]44 =
N∑

n=1

(
pn01 + s′′′21

)2

∥
∥pn0 + s′′′

2
∥
∥2

,

[I (α)]45 =
N∑

n=1

(
pn01 + s′′′21

) (
pn02 + s′′′22

)

∥
∥pn0 + s′′′

2
∥
∥2

,

[I (α)]46 =
N∑

n=1

pn01 + s′′′21∥∥pn0 + s′′′
2
∥∥ ,

[I (α)]47, ..., [I (α)]4(3I) = 0,

[I (α)]51 = [I (α)]52 = [I (α)]53 = 0
[I (α)]54 = [I (α)]45,

[I (α)]55 =
N∑

n=1

(
pn01 + s′′′22

)2

∥
∥pn0 + s′′′

2
∥
∥2

,

[I (α)]56 =
N∑

n=1

pn01 + s′′′22∥
∥pn0 + s′′′

2
∥
∥ ,

[I (α)]57, ..., [I (α)]5(3I) = 0,

[I (α)]61, ..., [I (α)]63 = 0
[I (α)]64 = [I (α)]46
[I (α)]65 = [I (α)]56
[I (α)]66 = N
[I (α)]67, ..., [I (α)]6(3I) = 0

[I (α)](3I−2)1 = [I (α)](3I−2)(3I−3) = 0

[I (α)](3I−2)(3I−2) =
N∑

n=1

(
pn01 + s′′′I1

)2

∥
∥pn0 + s′′′

I
∥
∥2

,

[I (α)](3I−2)(3I−1) =
N∑

n=1

(
pn01 + s′′′I1

) (
pn02 + s′′′I2

)

∥∥pn0 + s′′′
I
∥∥2

,

[I (α)](3I−2)(3I) =
N∑

n=1

pn01 + s′′′I1∥
∥pn0 + s′′′

I
∥
∥ ,

[I (α)](3I−1)1 = [I (α)](3I−1)(3I−3) = 0
[I (α)](3I−1)(3I−2) = [I (α)](3I−2)(3I−1),

[I (α)](3I−1)(3I−1) =
N∑

n=1

(
pn01 + s′′′I2

)2

∥
∥pn0 + s′′′

I
∥
∥2

,
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[I (α)](3I−1)(3I) =
N∑

n=1

pn01 + s′′′I2∥
∥pn0 + s′′′

I
∥
∥ ,

[I (α)](3I)(1), ..., [I (α)](3I)(3I−3) = 0.
[I (α)](3I)(3I−2) = [I (α)](3I−2)(3I).
[I (α)](3I)(3I−1) = [I (α)](3I−1)(3I).
[I (α)](3I)(3I) = N . (66)

Similar as in Appendix A, we can build the FIM matrix
using the above derivations and calculate the inverse to
derive the CRLB for the parameters s′′′

i and τi for i =
1, ..., I.

Abbreviations
GNSS: Global navigation satellite systems; GLRT: Generalized likelihood ratio
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