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Abstract

Algorithms are proposed to address the radar target detection problem of
compressed sensing (CS) under the conditions of a low signal-to-noise ratio (SNR)
and a low signal-to-clutter ratio (SCR) echo signal. The algorithms include a two-
stage classification for radar targets based on compressive detection (CD) without
signal reconstruction and a support vector data description (SVDD) one-class
classifier. First, we present the sparsity of the echo signal in the distance dimension
to design a measurement matrix for CD of the echo signal. Constant false alarm rate
(CFAR) detection is performed directly on the CD echo signal to complete the first-
order target classification. In simulations, the detection performance is similar to that
of the traditional matched filtering algorithm, but the data rate is lower, and the
necessary data storage space is reduced. Then, the power spectrum features are
extracted from the data after the first-order classification and converted to the
feature domain. The SVDD one-class classifier is introduced to train and classify the
characteristic signals to complete the separation of the targets and the false alarms.
Finally, the performance of the algorithm is verified by simulation. The number of
false alarms is reduced, and the detection probability of the targets is improved.

Keywords: Compressive detection, CFAR, Power spectrum feature, Two-stage
classification

1 Introduction
Modern radar is being developed with increasingly wide bandwidth and high resolution

[1]. These systems generate large amounts of data, require more storage space, and ne-

cessitate a higher level of data processing [2]. According to the classic Nyquist sam-

pling theorem, if undistorted reconstruction is performed on the signal, the sampling

frequency of the system must be at least twice the highest frequency of the sampled

signal; this is a challenge for real-time signal processing [3]. The proposed theory of

compressed sensing (CS) [4, 5] addresses the traditional Nyquist problems [6]. This

theory has been widely used in the field of radar signal processing

The radar target signal is sparse. According to the CS theory, when the signal is

sparse or compressible, solving an optimization problem can accurately or
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approximately reconstruct the original signal from low-dimensional observation data

[10]. Current signal reconstruction methods include the greedy algorithm [11, 12], or-

thogonal matching pursuit [13, 14], basis pursuit [4, 15], and other methods [16-18].

However, the process of signal reconstruction is difficult and involves complex iterative

algorithms that increase the amount of data. Therefore, a new signal processing method

based on compressive detection (CD) has attracted increasing attention [19–24].

Radar experiences interference from clutter in the process of detecting a target. A

constant false alarm rate (CFAR) detector adaptively changes the detection threshold as

the reference cell changes to achieve CFAR detection of targets [25]. Extensive radar

target detection results have been achieved with CFAR [26–28]. In radar target recogni-

tion, sparse representation research focuses on extracting accurate target feature infor-

mation from the received echo data [29]. Combining CS with traditional CFAR

detection has been a research trend for target detection [30, 31]. In [30] and [31], the

compressed signal is reconstructed first, and cell average CFAR (CA-CFAR) detection

is then performed. However, the reconstruction of the signal requires a high signal-to-

noise ratio (SNR). For the signal detection, it is necessary to determine only whether

the target exists; it is not necessary to perform the detection after the signal is recon-

structed [22, 32–35]. In [22, 32, 34], compressive detection algorithms based on trad-

itional matched filter methods were proposed. For unknown parameter signal

detection, providing all the signal information before detection is inefficient. Addition-

ally, the compression matched filter is greatly affected by the SNR. An algorithm for de-

tecting signals in the sub-space with a low SNR was proposed in [33]. The author

determined the subspace with a smaller dimension according to the known sparse char-

acteristics of signals, and then designed and determined the measurement matrix to

complete the detection of signals according to the properties of the subspace matrix.

However, the algorithm fails to detect unknown sparse signals. In [35], Bayesian CS is

studied in detail for signal detection, which needs the prior probability information of

the sparse signal. However, when the background distribution characteristics of clutter

are relatively complicated, it is difficult to detect the target in the clutter background

[28]. Therefore, based on the combination of CD and CFAR detection, in this paper, a

support vector data description (SVDD) is used to further classify the signal, which can

further reduce the amount of data and improve the detection accuracy [36].

In this paper, the signal is not reconstructed after compression and detection, and

the sparseness of the target in the distance cell in the radar echo signal is used to de-

sign a deterministic measurement matrix. Then, CFAR detection is directly performed

to complete the first-order classification of the signal. This method has better detection

performance than the compressive matched filter (CMF) algorithm in [32]. Compared

with the traditional matched filtering (MF) algorithm, the data storage space is reduced

under the premise of ensuring the detection probability. To address the problem of

false alarms after first-order CFAR processing, the SVDD one-class classifier is used to

train and classify the characteristic signal to achieve target detection through extraction

of the feature difference between the target and the false alarm signal in the power

spectrum.
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2 System model descriptions
2.1 CD model

From the theory of CS [4, 5], a discrete signal x of length L can be represented by a lin-

ear combination of a set of bases Ψ∈½ψ1;ψ2;⋯;ψN�

x ¼
XN
i¼1

θiψi ¼ Ψθ ð1Þ

in which θ ∈ RN× 1 is the sparse vector, θi = 〈x, ψi〉, x∈RL�1 is the signal to be detected,

and ΨL�N is the sparse basis or sparse dictionary. If θ has only KðK¼NÞ nonzero ele-

ments, then θ is termed the K-sparse representation of the signal x. K is the sparsity of

the signal.

When the signal x can be sparsely represented [22], the problem of CD can be

expressed by the following mathematical model of hypothesis testing

H0 : y ¼ Φsn
H1 : y ¼ Φ xþ snð Þ

�
ð2Þ

in which Φ∈RM�NðM¼NÞ is the measurement matrix and sn is the Gaussian white noise.

The hypothesis H0 is that the signal does not exist, and the hypothesis H1 is that the

signal exists. Using Eq. (1), Eq. (2) can be rewritten as

H0 : y ¼ Φsn
H1 : y ¼ Φ Ψθ þ snð Þ

�
ð3Þ

2.2 Sparse representation model for radar signals

Assuming that the radar target contains a number K of strong scattering centers lo-

cated at different distance cells, the model of the pulse signal emitted sT(t) ∈ R
L × 1 by

the radar is

sT tð Þ ¼ rect t=TPð Þ exp j2π f 0t þ jπKrt
2

� � ð4Þ

The complex base-band echo signal received by the radar system xR(τ, t) can be de-

scribed as

xR τ;tð Þ ¼
XK
k¼1

σk exp − j4πf0rk τð Þ=c½ �
�rect t − 2rk τð Þ=cð Þ=TP½ �

� exp jπKr t − 2rk τð Þ=c½ �2� �
þsc tð Þ þ sn tð Þ

ð5Þ

in which σk is the backscattering coefficient of the scattering point k; TP is the time

width of the pulse signal; f0 is the center frequency of the signal; rk(τ) is the distance

between the scattering point k and the radar platform at the moment of pulse emission;

c is the speed of light; Kr is the frequency modulation coefficient; sc(t) is the clutter,

which generally follows the Weibull distribution; and sn(t) is the Gaussian white noise

[37].

With s0(t) = [rect(t/TP)/(TP|Kr|)] ⋅ exp(jπKrt
2) substituted into Eq. (5), the following is

obtained

Liu et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:23 Page 3 of 15



xR τ; tð Þ ¼
XK
k¼1

αk τð Þs0 t − 2rk τð Þ=c½ �f g
þsc tð Þ þ sn tð Þ

¼ sr tð Þ þ sc tð Þ þ sn tð Þ
ð6Þ

in which αkðτÞ ¼ TPjKr jσk exp½ − j4πf0rkðτÞ=c�.
For the entire radar scene, the position occupied by the target is very small and is

sparse for the total scanning area. The distance resolution of the radar in the observa-

tion interval [r1, r2] is denoted Δr, and thus, the target scattering center in the distance

cell can be represented by a one-dimensional vector θ

θT ¼ 1; 2;⋯; l;⋯; L − 1; L½ � ð7Þ

in which θl = σl exp[−j4πf0rl(τ)/c], σl is the backscattering coefficient of the scattering

center of distance cell rl, rl = r1 + lΔr, l ∈ [1 : L], and L = 1 + (r2 − r1)/Δr. When there is

no target in a certain distance cell k, θk = 0. Through the delay of s0(t), the sparse dic-

tionary basis Ψ ∈ RL ×N of the radar signal is constructed:

ψi ¼ s0 ti − 2
r1
c

� �h
s0 ti − 2

r1 þ Δr
c

	 


⋯s0 ti − 2
r1 þ lΔr

c

	 


⋯s0 ti − 2
r2 − Δr

c

	 

s0 ti − 2

r2
c

� ��H

¼ s ti − τ1ð Þs ti − τ2ð Þ⋯s ti − τLð Þ½ �H

ð8Þ

Ψ = [ψ1, ψ2,⋯, ψN], in which i = 1, 2, ⋯, N, and τi is the time delay corresponding to

each distance cell. Given that the clutter and noise are not considered, according to

Eqs. (1) and (8), the target scattering center can be sparsely expressed as

θr ¼ ΨΗsr tð Þ ð9Þ

2.3 Measurement matrix model

According to the theory of CS, with the complex base-band echo signal sr(t) and

through the design of the measurement matrix, the signal after CD can be directly de-

tected. Let the measurement matrix be

Φ ¼ Φ1ΨΗ ð10Þ

in which Φ1 ∈ R
M ×N, N/M = l, and l is an integer. Then, Φ1 is defined as

Φ1 ¼
1

1
⋱

1

⋯

1
1

⋱
1

2
664

3
775

¼ eye M;Mð Þ ⋯ eye M;Mð Þ½ �

ð11Þ

According to Eq. (3), the following is obtained

H0 : y ¼ Φ1ΨH sc þ snð Þ
H1 : y ¼ Φ1ΨH xþ sc þ snð Þ

�
ð12Þ

Substituting Eq. (11) into Eq. (12), the signal expression of hypothesis H1 is obtained:
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y ¼ Φ1ΨH xþ sc þ snð Þ
¼ Φ1 θr þDð Þ

¼ eye M;Mð Þ ⋯ eye M;Mð Þ½ �

�

0
⋮
σ21
⋮
0
σ2L
⋮
0

2
66666666664

3
77777777775
þ

D 1ð Þ
D 2ð Þ

⋮

D N − 1ð Þ
D Nð Þ

2
6666666666664

3
7777777777775

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð13Þ

Therefore, D =ΨH(sc + sn). Since the radar target signal x is sparse, Eq. (13) shows

that σ21;⋯; σ2L are L targets’ projections on the dictionary basis. When the i-th line (1 ≤

i ≤ L) element 1 of Φ1 is multiplied by σ2
i and D, the results are all 0 except D multi-

plied by the i-th element 1 of Φ1. Good noise reduction performance is thus achieved.

The noise reduction performance increases with increasing M. Through the CD of the

echo signal, the sampling rate is reduced. Additionally, a storage space savings of 1/l is

achieved, and the direct detection of the compressed signal is realized without

reconstruction.

2.4 SVDD model

Currently, the classifier is divided into a one-class classifier and a multiclass classifier

according to the number of categories of training samples [38]. The multiclass classi-

fiers are used mainly for classification problems where the training samples are suffi-

cient and the data of different categories are relatively balanced. Different types of

training samples are needed to construct the classification function, and the sample

classification is achieved by determining the optimization points between different cat-

egories. A one-class classifier is mainly used in scenarios where multiple types of train-

ing samples cannot be obtained or are too expensive to obtain. This classifier needs a

training sample from only one target category. The training sample of this category is

used to construct a closed cover. The unknown test sample is determined as a target or

non-target. An SVDD is often used in the field of abnormal data detection and is a very

typical classifier. In the training phase, training samples from only one type of target

are needed to obtain the optimal classification surface [36]. Assuming that the radius of

the hypersphere found in the high-dimensional feature space is Rϕ and that the sphere

center vector of the hypersphere is aϕ , the expression for any point on the hypersphere

ϕ(xi) is kϕðxiÞ − aϕk2 ¼ R2
ϕ . Therefore, the solution process for the optimal classifica-

tion surface of the SVDD can be expressed as

minR2
ϕ þC

Xl

i¼1

ξ i

s:t: ϕ xið Þ − aϕ
�� ��2≤R2

ϕ þ ξ i; ξ i≥0; i ¼ 1; 2;⋯; l

8>><
>>:

ð14Þ

in which l is the number of sample points, C is the penalty coefficient, and ξi is the La-

grange multiplier corresponding to the i-th sample. With the Lagrange multiplier

method, we can obtain the dual optimization problem
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max
Xl

i¼1

βiK xi;x j
� �

‐
Xl

i¼1

Xl

j¼1

βiβ jK xi;xj

� �

s:t:
Xl

i¼1

βi ¼ 1; βi∈ 0;C½ �; i ¼ 1; 2;⋯; l

8>>>><
>>>>:

ð15Þ

in which the kernel function K(xi, xj) = ϕT(xi)ϕ(xi) and βi is the Lagrange multiplier. In

the process of solving the dual optimization problem, the expression of the sphere cen-

ter vector of the hypersphere is obtained:

aϕ ¼
Xl

i¼1

βiϕ xið Þ ð16Þ

With the Lagrange multiplier and any support vector on the hypersphere ϕ(x), the ra-

dius of the hypersphere can be obtained:

Rϕ ¼ K x; xð Þ − 2
Xl

i¼1

βiK xi; xð Þ

þ
Xl

i¼1

Xl

j¼1

βiβ jK xi; x j
� � ð17Þ

Any sample point x becomes ϕ(x) after being mapped to the high-dimensional feature

space, and the decision-making method is

f ϕ xð Þ ¼ ϕ xð Þ − aϕ
�� ��2 − R2

ϕ ð18Þ

When fϕ(x) ≤ 0, x is the target sample. Otherwise, x is an abnormal sample.

3 Two-stage classification algorithm
3.1 Algorithm flow

The traditional CFAR detectors mainly include CA-CFAR, ordered statistic CFAR (OS-

CFAR), etc. [39] CA-CFAR, which is the most widely used CFAR detection algorithm,

detects whether or not the signal exists by comparing the arithmetic mean values of

the measured cell and several adjacent reference cells. OS-CFAR sorts the data in the

reference cell, then selects the value of the k-th element as an estimate of cell’s the clut-

ter level and multiplies this value by a scale factor T as the detection threshold to de-

tect whether or not the signal exists. In addition, we still need to establish how to set

the detection threshold, which references [25, 39] show how to do. In the CA-CFAR

detector, the estimate of the background clutter power level is the sum of 2n reference

cells.

Z ¼
X2n
i¼1

yi ð19Þ

The CFAR condition can be obtained by multiplying the scale factor T by the esti-

mated background level. The detection probability of the CA-CFAR detector is

Pd ¼ 1þ T
1þ S

	 
 − 2n

ð20Þ
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Here, T is a scale factor, and S is the average SNR. In the OS-CFAR detector, the 2n

reference cell signals are sorted by amplitude (y1 ≤ y2 ≤⋯ ≤ yk ≤⋯ ≤ y2n); the k-th value

is taken as the background noise estimate:

Z ¼ yk ð21Þ

The detection probability of OS-CFAR can be expressed as

Pd ¼
Yk − 1

i¼0

2n − i
2n − iþ T= 1þ Sð Þ ð22Þ

The CFAR models used in this algorithm are CA-CFAR and OS-CFAR, and the clas-

sifier is the SVDD one-class classifier. Figure 1 shows the detection scheme of the two-

stage classification algorithm. The overall algorithm is divided into two stages.

The first stage of classification:

Step 1: Design the sparse dictionary basis according to the complex base-band echo

signal, and then design the measurement matrix Φ =Φ1Ψ
H with Eq. (10);

Step 2: Compress and detect the echo signal by the measurement matrix of Eq. (10) to

obtain Eq. (12) y;

Step 3: Send the CD signal y to the CFAR detector, and perform CA-CFAR or OS-

CFAR processing on the 2n data except for the measured cell to obtain the result Z. If

the signal is greater than the threshold (Y > TZ), the state is H1, namely, the target

exists; otherwise, the state is H0, and the target does not exist.

The second stage of classification (divided into training section and test section):

Step 4: Take the non-target signal (H0) in the first stage as the training data, extract

the power spectrum feature of each group of training samples to form a feature vector,

Fig. 1 Detection scheme of the two-stage classification algorithm
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and form the feature vector matrix using the feature vectors of all training samples.

Then, train the SVDD classifier;

Step 5: Use the target or false alarm echo data (H1) in the first stage as the test data,

then extract the power spectrum feature for each set of test samples, send the feature

vector to the trained SVDD classifier, and complete the target detection.

Through the two-stage classification algorithm for radar targets, after the radar echo

signal is compressed and detected in the first stage after the CFAR processing, the sig-

nal is divided into background clutter and target signals (including false alarm signals).

In the second stage, the power spectrum feature is used to perform SVDD classification

and to achieve classification of the target signals and false alarm signals.

3.2 Power spectrum feature extraction

For radar echo signals, the power spectrum of the signal can be obtained by using the

fast Fourier transform. In the SVDD classifier, the power spectrum of the radar echo

signal is extracted as a feature vector for target algorithm classification. Since the power

spectrum is high-dimensional data, extensive calculations will be needed if the power

spectrum is directly used as a feature vector. Therefore, in this paper, dimensionality

reduction is performed on the power spectrum feature vector, and the two-dimensional

features are extracted; that is, the second-order central moment of the power spectrum

and the power spectrum entropy are used to describe the dispersion characteristics of

the power spectrum, which is used as a feature vector. Let the radar echo signal be x =

[x1, x2,⋯, xK]. Then, the frequency spectrum is F = FFT(x) = [F1, F2,⋯, FK]
T, and the

power spectrum is p = |F|2 = [p1, p2,⋯, pK]
T, where K is the dimension of the signal.

Feature 1: The second-order central moment of the power spectrum is

S1 ¼
XK
k¼1

k − ~k
� �2

bk ð23Þ

in which bk ¼ pk=
PK

k¼1xk and ~k ¼ PK
k¼1k � bk . In the random process, the second-

order central moment describes the distribution of the power spectrum energy distribu-

tion relative to its geometric centroid. If the second-order central moment is smaller,

the energy distribution is more scattered relative to the centroid.

Feature 2: The power spectrum entropy is

S2 ¼ −
XK
k¼1

bk lg bkð Þ ð24Þ

The power spectrum entropy is used to describe the energy distribution characteris-

tics of the power spectrum. The more concentrated the power spectrum energy distri-

bution is, the lower the entropy.

4 Experiment results and discussion
4.1 First-order target classification experiment

In this section, simulation experiments are conducted on two kinds of radar echo in 15

km scenarios (a single-target radar echo scenario and a multi-target radar echo sce-

nario) and compared with the performance of the traditional MF and CMF [32]
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detection algorithms to evaluate the detection performance of the proposed algorithm.

In all the simulations, the radar echo signal is

sr tð Þ ¼
Xm
i¼1

exp jπKr t − τið Þ2� �þ sc tð Þ þ sn tð Þ ð25Þ

in which m is the number of targets, τi is the time delay of the i-th target, sc(t) is the

Weibull background clutter, and sn(t) is the Gaussian white noise.

In Experiment 1, the minimum detection distance of the radar was Rmin = 5000 m,

the maximum detection distance was Rmax = 15000m, the pulse width was B = 30MHz,

the frequency modulation slope was Kr = B/T = 3 × 1012 Hz/s, the sampling frequency

was fs = 150MHz, and a single target location was set at R = 9000 m. In Experiment 2,

four target positions were set at R = [6000 6500 7000 8000] m, and the sparse dictionary

base Ψ is designed based on Eq. (8). Fig. 2 is the detection effect of the algorithm on

the direct CD of CFAR for a single-target radar echo signal. Fig. 3 represents the detec-

tion effect of the algorithm on the direct CD of CFAR for multi-target radar echo sig-

nals. Fig. 4 compares the performances of the algorithm in this paper, the traditional

MF detection algorithm, and the CMF algorithm [32]. Fig. 5 compares the detection

performances of the three detection algorithms in CA-CFAR and OS-CFAR. The vari-

ation curve of the detection probability with the SNR ratio and different compressive

ratios over 1,000 Monte Carlo experiments is depicted in Fig. 6.

Figure 2 compares the CD signal and the CFAR detection threshold for SNR = −

10 dB, a signal-to-clutter ratio SCR = − 10 dB, M/N = 0.5. For a low SNR, the direct

compression and detection of the signal can still clearly determine the target position

without reconstruction of the signal.

Figure 3 compares the multi-target CD signal and the CFAR detection threshold for

SNR = − 10 dB, SCR = − 10 dB, and M/N = 0.5. With four targets, in the case of a low

SNR and a low SCR, the first-order classification of the target can be completed

through CFAR detection.

Figure 4 compares the detection performances of the algorithm in this paper, the

traditional MF algorithm and the CMF algorithm. Under the same compressive ratio,

Fig. 2 Comparison between single target radar echo signal CD and CFAR detection threshold
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the detection performance of the algorithm in this paper is significantly better than that

of the CMF algorithm (Fig. 4). When SNR = − 15 dB, the detection probability of the

algorithm in this paper reaches 96%; this detection performance is close to that of the

traditional MF algorithm, while its data storage requirement is reduced by half.

Figure 5 illustrates a comparison of the detection performance of the three detection

algorithms in CA-CFAR and OS-CFAR, where SCR = − 10 dB, M/N = 0.5, and the false

alarm probability Pf = 10−3. With the same false alarm probability, the detection per-

formance of CA-CFAR and OS-CFAR is similar. Additionally, the algorithm in this

paper reduces the data calculations to half of those of the traditional MF algorithm.

Figure 6 gives the detection probabilities for different compressive ratios with the

SNR when SCR = − 10 dB and the false alarm probability Pf = 10−3. Under the same

SNR, the detection probability of the signal increases as the compressive ratio increases.

When the SNR = − 12 dB and M/N = 0.25, the target detection probability reaches 95%.

Fig. 3 Comparison between multi-target radar echo signal CD and CFAR detection threshold

Fig. 4 Comparison of the detection performance of the three detection algorithms
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4.2 Two-stage target classification experiment

Since radar targets are usually non-cooperative, there are usually no target training

samples or false alarm signals available in advance, and only targets such as background

clutter are used as training samples. Therefore, the SVDD one-class classifier is selected

to classify the targets. In this section, the first-stage target after CD of CFAR is further

classified by the SVDD one-class classifier to differentiate targets and false alarm sig-

nals. For the second-stage classification experiment, the signal is set as x = [x1, x2,⋯,

xK], the signal dimension K = 200, and the power spectrum features of the signal are ex-

tracted. Figures 7(a) and 7(b) show the average power spectra (APS) of the background

clutter, false alarm signals, and target signals in the first-stage target classification

experiment.

The target signal exhibits obvious feature differences from the background clutter

and false alarm signal in the power spectrum domain (Fig. 7). The overall distribution

trends of the power spectra of the three signals show that the shape of the power

spectrum curve of the target signal changes relatively smoothly. However, the power

spectrum curves of the false alarm signal and the background clutter change more

Fig. 5 Comparison of the detection performance of the three detection algorithms in CA-CFAR and OS-CFAR

Fig. 6 CFAR detection probability under different compressive ratios
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quickly, and their distribution characteristics are very similar and consistent, which is

obviously different from that of the target signal. The power spectrum of the target sig-

nals in Fig. 7 is more even than its centroid distribution, and the second-order central

moment of its power spectrum is larger than the second-order central moments of the

false alarm signals and background clutter. From an energy perspective, the power

spectrum energy distribution of the target signals is more even and its entropy is

greater than those of the false alarm signals and background clutter.

For a given training set that contains n target samples, X = {x1, x2,⋯, xn}, the goal of

SVDD is to find a hypersphere with the smallest volume in a high-dimensional space

so that all target samples or as many as possible are enclosed in the hypersphere in-

stead of the scenario where the target sample is as small as possible or none of the tar-

get samples are in the hypersphere. In this experiment, according to the SVDD model,

the Gaussian kernel function is selected. After the feature vector of the background

clutter is selected as the training data, the SVDD one-class classifier is trained to obtain

the optimal classification surface. Figures 8(a) and 8(b) show the results of using the

SVDD optimal classification to classify the test sample during the test phase. In

addition to the background clutter in the training sample, false alarm signals are

Fig. 7 APS of the background clutter, the false alarm signal, and the target signal. a Power spectrum of
single target scene. b Power spectrum of multi-target scene
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present in the test sample that are determined to be background clutter inside the clas-

sification surface. The test samples outside the classification surface are determined to

be the target signals.

The SVDD experiment results show that the target signals are all outside the optimal

classification surface and that the classification results are correct (Fig. 8). All of the

false alarm signals are included inside the optimal classification surface and are deter-

mined to be background clutter. In single-target and multi-target scenarios, the pro-

posed algorithm can effectively reduce the number of false alarms and increase the

probability of signal detection. In the radar target detection process, false alarms usually

increase the detection workload, but a missed alarm can cause a serious accident. The

algorithm in this paper has good adaptability to such situations. The amount of data

storage is reduced, and the number of false alarms can be effectively lowered.

5 Conclusions
In this paper, the CD CFAR is used and combined with an SVDD classifier to form a

two-stage classification algorithm for radar target detection. In the distance domain,

through the design of the measurement matrix, the radar echo signal is directly com-

pressed and detected without reconstruction of the signal, and the first-stage classifica-

tion of the radar echo signal is then completed through the CFAR detection structure.

To separate false alarm signals and target signals after the first stage of classification,

the SVDD is introduced as the second stage of classification. Features of the signal

power spectrum are extracted after compression and detection of CFAR, and the SVDD

one-class classifier is used in the feature domain. The background clutter is used as

training data to complete the classification of false alarm signals and target signals. The

analysis of the experimental results shows that the algorithm in this paper can still de-

tect the target position under the conditions of a low SNR and a low SCR. Additionally,

under the premise of ensuring a high detection probability, the necessary data storage

space is reduced. The detection performance is improved, the number of false alarms is

effectively lowered, and good adaptability is maintained.

Fig. 8 Two-dimensional feature classification results for the power spectrum. a Single target scene features.
b Multi-target scene features
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