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Abstract

A neighborhood-restricted mixed Gibbs sampling (MGS)-based approach is proposed
for low-complexity high-order modulation large-scale multiple-input multiple-output
(LS-MIMO) detection. The proposed LS-MIMO detector applies a neighborhood
limitation (NL) on the noisy solution from the MGS at a distance d— thus, named
d-simplified MGS (d-sMGS) — in order to mitigate its impact, which can be harmful
when a high-order modulation is considered. Numerical simulation results considering
64-QAM demonstrated that the proposed detection method can substantially improve
the MGS algorithm convergence, whereas no extra computational complexity per
iteration is required. The proposed d-sMGS-based detector suitable for high-order
modulation LS-MIMO further exhibits improved performance × complexity tradeoff
when the system loading is high, i.e., when K

N ≥ 0.75. Also, with increasing the number
of dimensions, i.e., increasing number of antennas and/or modulation order, a smaller
restriction of 2-sMGS was shown to be a more interesting choice than 1-sMGS.

Keywords: Massive MIMO, Low-complexity detector, Markov chain Monte Carlo,
Gibbs sampling

1 Introduction
In order to meet the demands of high transmission capacity, high reliability, and spec-
tral and energy efficiency requirements of modern wireless communication systems, the
multiple input and output (MIMO) technique has been proposed and considered an
appropriate solution due to their ability to provide multiplexing and diversity gains with-
out the need for additional spectral features. These advantages are further enhanced by
large-scale use, called large-scale MIMO (LS-MIMO), which has important application
in fifth-generation (5G) wireless communications. Such structures hold the same benefits
as conventional MIMO, however on a larger scale. More properly, LS-MIMO is defined
as a transmission/reception design using typically several tens or even hundreds of anten-
nas in at least one of the communication terminals, usually in the base station (BS) [1, 2].
This turns out to be convenient for the systems in question, since the reduced dimensions
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of user equipments (UEs) suggest a single-antenna arrangement in each UE; on the other
hand, a huge amount of antennas need to be is installed in each BS.
However, the LS-MIMO high capacity/spectral efficiency comes with a price: as the

number of antennas at BS increases, the computational complexity of data detection
tends to grow proportionally. Hence, efficient and low-complexity symbol detection tech-
niques becomes critical as the processing of large numbers of signals can become a system
bottleneck. It is well known that maximum likelihood (ML) detection could provide
optimum symbol detection, but its high complexity forbids it from a practical implemen-
tation for MIMO systems. Therefore, sub-optimal linear and non-linear detectors with
low complexity are often employed.Many low-complexity LS-MIMOdetectors have been
proposed in recent literature, including detectors based on (a) local neighborhood search,
such as likelihood ascent search (LAS) algorithm [3], and reactive tabu search (RTS)
algorithm [4]; (b) message passing (MP) algorithms, based on belief propagation (BP)
technique, such that LS-detectors inspired in graphical models, as factor graph (FG) [5]
and Markov random fields (MRF) [6]; (c) minimum mean square error (MMSE) approx-
imation techniques [7, 8], which result in low complexity at the price of achieving good
performance only at low system loading factor; (d) Markov Chain Monte Carlo (MCMC)
techniques, which are based onGibbs sampling (GS) [9] and its variations [10–13], emerg-
ing as a promising approach to deal with LS-MIMO structures, since such techniques
demonstrate a near-optimum performance while requiring a low-moderate complexity
(quadratic order) and also presenting a simple and effective way to solve the large-scale
detection problem.
From the GS-based techniques, in [10], a strategy of mixing between the conven-

tional GS solution and a random or noisy solution was proposed, which is controlled
by a mixing ratio parameter and is called mixed GS (MGS). The MGS has been shown
to solve the stalling problem of the GS detector in low order of modulation, i.e., 4-
QAM. With the modulation order increasement, the multiple restarts (MR) technique
is proposed, which restarts the algorithm with a new initial solution, taking advantage
of the random evolution of the algorithm and can result in a better cost solution. The
MGS-MR detector showed near-optimal performance in 16-QAM modulation; how-
ever, in high modulation order, the noisy solution interferes with the convergence of
the algorithm, requiring an extra strategy to avoid the impact of this solution. In [14] is
proposed the use of multiple samples, called averaged MGS (aMSG), in order to mini-
mize this impact, besides a simplification in the target distribution function. Numerical
results demonstrate a convergence improvement in high-order modulation and high
system loading; on the other hand, the choice of sample amount and mixing ratio
tends to be difficult. In the present work, a strategy for reducing the solution is also
addressed, through a limitation in the neighborhood of the random solution, which
presented superior performance to the aMGS, with marginally similar computational
complexity.
Also related to the MGS detector, in [15], an optimization on mixing time was intro-

duced to accelerate the finding of the optimal solution. Numerical results demonstrated
that a mixing time dynamic choice based on SNR can improve convergence, although
the stalling problem persisted when a fixed mixing time is adopted. Besides that, these
results did not consider the performance behavior in high-order modulation systems. A
QR decomposition approach within theMCMC detector was addressed in [16, 17], which
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demonstrated to reduce the number of operations due to the lower triangular matrix fea-
ture. Furthermore, based on the concept of multiple random parallel Markov chains, work
in [18] proposes a MR strategy through parallel chains; such strategy reduced the algo-
rithm’s running time compared to MGS-MR, despite the increasing of the number of real
operations per symbol.
The contribution of this work follows: (i) A neighborhood limitation (NL) strategy is

proposed aiming at improving the MGS convergence rate operating under higher-order
modulation and large-scale MIMO regime. The proposed strategy, called d-sMGS (d-
simplifiedMGS), performs a NL in the random solution coming from themixture used by
the MGS detector. As a result, the impact caused by this noisy solution is mitigated and
the convergence is increased. (ii) An analysis of the performance × complexity tradeoff
is carried out among the proposed d-sMGS, the conventional MGS [10], and the aMGS
(averagedMGS) [14], which the latter is an approach that also aims to alleviate the impact
caused by the random solution, although the procedure is based on multiple sampling
(MS) strategy, which samples the estimated symbol multiple times and performs a mean
operation to obtain the result.
The remainder of this paper is organized as follows. Section 2 presents the adopted

large-scale MIMO system model. A review on the MGS technique is presented in
Section 3 and the MGS-based approaches with noisy solution-reduced impact are dis-
cussed in Section 4, while the aMGS approach is described in Section 4.1 and the
proposed simplified MGS with NL detector for LS-MIMO is developed in Section 4.1.
Computational complexity is presented in Section 5 and extensive numerical simulation
results are analyzed in Section 6. Conclusion remarks are provided in Section 7.

2 Systemmodel and problem formulation
We consider an uplink (UL) single-cell MIMO communication system operating in multi-
plexing gain mode with K active single-antenna users and N receive antennas at the base
station (BS), as disposed in Fig. 1. We mainly investigate the performance × complexity
tradeoff of suitable LS-MIMO detection schemes and, for simplicity, the availability of the
channel state information at the BS is considered, which also aims to reach the pure effi-
ciency of each detection technique. Thus, the pilot training stage and the respective pilot
contamination effect have not taken into account in such context.
Moreover, for simplicity, the communication channel is assumed to be frequency-flat

fading, compound by the complex channel matrix Hc ∈ C
N×K . The elements of Hc are

all independent complex Gaussian random variables with zero mean and unit variance,
i.e., Hci,k ∼ CN [ 0; 1], where Hci,k denotes the element in the ith row and kth column of
the matrix Hc. Let sc be the K × 1 complex vector corresponding to the K symbols M-
QAM transmitted over the single-antenna users, sc ∈ A

K
c where Ac denotes the QAM

constellation adopted. The UL received signal, yci , at the ith BS antenna can be written as:

yci =
K∑

j=1
Hci,j scj + ηci , i = 1, . . . ,N (1)

= Hci,k sck︸ ︷︷ ︸
desired signal

+
K∑

j=1,j �=k
Hci,j scj

︸ ︷︷ ︸
intracellular interference

+ ηci︸︷︷︸
AWGN

,
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Fig. 1 Single-cell uplink LS-MIMO communication system with K single-antenna unit equipments (UEs) and a
base station (BS) with N receive antennas

where yci denotes the ith element of the complex received signal vector yc and scj is the
jth element of sc. In matrix form, the received signal vector at the BS is re-written as

yc = Hcsc + ηc, (2)

where ηc denotes the additive white Gaussian noise (AWGN) vector, assumed to be a
complex Gaussian random variable with zero mean and variance given by E

[
ηcη

H
c

] =
σ 2IN , where σ 2 is the noise variance at each receive antenna.
The average received SNR at each receive antenna can be modeled as γ = KPs

σ 2 , where
Ps is the power of the received symbols. For simplicity, it is considered that the large-scale
fading effect has been compensated in such a way that all K users’ signals are received
with equal power at the BS, and assumed equal to KPs, denoting the total sum power
available at the transmitters [19].
In this work, a real-valued systemmodel corresponding to (2) is adopted, which is given

by:

y = Hs + η, (3)

where y ∈ R
2N×1,H ∈ R

2N×2K , s ∈ R
2K×1, η ∈ R

2N×1, and defined as:

H =
[
R (Hc) −I (Hc)

I (Hc) R (Hc)

]
(4)

s =
[
R (sc)
I (sc)

]
, η =

[
R

(
ηc

)

I
(
ηc

)
]
, y =

[
R (yc)
I (yc)

]
.

For the QAM complex alphabet Ac, the elements of s assume integer values from the
underlying pulse-amplitude modulation (PAM) alphabet A, i.e., s ∈ A

2K .
Themaximum likelihood (ML) decision rule is given by: sML = argminŝ∈A2K ||y−Hŝ||2.

However, theML detector is exponentially complex in K, being prohibitive for large K ·N ,
which is the case of LS-MIMO systems [19].
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3 Conventional method: review of mixed Gibbs sampling detection
The LS-MIMO detector mixed Gibbs sampling (MGS) proposed in [10] is revisited in this
subsection, which is based on the motivation to solve the stalling problem presented in
the conventional GS detector.
To sample the estimated symbol at each position, a target distribution [20] is evaluated,

which is given by:

p
(
ŝ1, ŝ2, . . . , ŝ2K |y,H) ∝ exp

(
−||y − Hs||2

α2σ 2

)
, (5)

where ŝi denotes the ith position of the estimated symbols vector ŝ, α denotes a positive
parameter, which tunes the mixing time of the Markov chain [20] and is also called as
temperature. The conventional Gibbs sampling detector does not include the α parameter
in its sample process and thus can be viewed as a special case when α = 1. A larger
temperature speeds up the mixing and aims to reduce the higher moments of the number
of iterations when finding the correct solution. However, as stated in [10], the stalling
problem persists even with large α.
The MGS detector utilizes a mixing of (a) conventional Gibbs sampling (i.e., α = 1)

and (b) the infinite temperature version of (5) (i.e., α = ∞), resulting in a random and
uniform sample from all the possibilities, called a noisy or random solution in this paper.
In this way, the MGS follows a sampling distribution given by:

p
(
ŝ1, . . . , ŝ2K |y,H) ∼ (1 − q) ψ (α1) + qψ (α2) (6)

and

ψ(α) = exp
(

−||y − Hŝ||2
α2σ 2

)
, (7)

where q denotes the mixing ratio. The MGS detector of [10] considers the α1 = 1,
α2 = ∞ combination, which results in a near-ML performance, overcoming the stalling
problem of the GS, being also a simple implementation choice. On the other hand, in
high-order modulation, such as 64-QAM and 256-QAM, the noisy solution interferes in
the algorithm’s convergence, since there are a large number of symbols in the constellation
and a simple random solution in this signal space has a high possibility of being far from
the real solution, which causes the algorithm to require more iterations for convergence.
In this sense, the proposed d-sMGS detector acts to mitigate this harmful effect.
Regarding the mixing ratio parameter q, in [10], an analysis in low-order QAM con-

stellations is carried out and its suitable value choice is presented as the inverse of the
number of dimensions in the system, i.e., q = 1

2K , which is also employed in the proposed
detector during our numerical simulations.
In the MGS algorithm, an initial solution ŝ(t=0) is considered for the estimated symbols

vector, where t represents the current iteration. Indeed, the initial solution may be chosen
either by a random symbols vector or as the output of a linear low-complexity detector,
such as zero forcing (ZF) or MMSE. The index i, in addition to the position of the vector
ŝ, also denotes the coordinate referring to the MGS algorithm, where i = 1, 2, . . . , 2K .
Therefore, each iteration requires 2K coordinate updating. At each iteration, updating the
2K coordinates is performed by sampling the distributions given by:

ŝ(t)i ∼ p
(
ŝi|ŝ(t)1 , . . . , ŝ(t)i−1, ŝ

(t−1)
i+1 , . . . , ŝ(t−1)

2K , y,H
)
. (8)
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One can notice that by (8) each updated coordinate is fed, in the same iteration, to the
next coordinate.
The probability of the ith symbol assuming the value aj ∈ A, ∀j = 1, . . . , |A| can be

written as:

p
(
ŝi = aj|ŝi−1, y,H

) =
exp

(
−||y−Hŝi,j||2

α2σ 2

)

∑|A|
l=1 exp

(
−||y−Hŝi,l||2

α2σ 2

) , (9)

where the cardinality of set A is expressed as |A|, while ŝi,j denotes the vector ŝ(t) with its
ith position changed to the symbol aj.
The sampling process based on (9) can lead to a numerical limitation due to the

exponential function. In this sense, such implementation was carried out through a
logarithmic intermediate step, as:

log
(
p(ŝi = aj|ŝi−1, y,H)

) =
=f (i,j)−

[
f ord0 +log

(
1+∑|A|−1

m=1 exp
(
f ordm −f ord0

))]

= g(i, j) (10)

where f (i, j) = −||y−Hŝi,j||2
α2σ 2 and f ordi is ith position of f in descending order, for i =

1, . . . , |A|. A practical and computationally efficient evaluation of MGS target Function is
summarized in Algorithm 1.

Algorithm 1MGS Target Distribution Function Calculation
1: //Coordinate update process
2: for i = 1 to 2K do
3: //MGS target distribution function calculation
4: for j = 1 to |A| do
5: fj = ||y−Hŝ(t)i,j ||2

α2σ 2
6: end for
7: Ordinate f in descending order and denote ford

8: f ′ = f ord1 + log
(
1 + ∑|A|

m=2 exp
(
f ordm − f ord1

))

9: for j = 1 to |A| do
10: gj = fj − f ′
11: p

(
ŝi = aj|ŝi−1, y,H

) = exp
(
gj

)

12: end for
13: end for
14: //Terminate

The MGS algorithm ends after a certain amount of iterations, and the vector of esti-
mated symbols is chosen as the vector that presented the lowest ML cost, considering all
iterations. In the next subsections, the additional strategy of multiple restarts (MR) [10]
and the stopping criteria for the iterations and the restarts are addressed.

3.1 Multiple restarts

In medium QAM order modulations, such as 16-QAM, the mixing strategy of MGS is
unable to achieve near-optimal performance [21] in a reasonable number of iterations,
while MR procedure, as proposed in [10], has demonstrated promising results, leading
the MGS-MR under 16-QAM to near-optimal performance.
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In the aMGS and d-sMGS detectors, the MR strategy is also incorporated, namely
aMGS-MR and d-sMGS-MR detectors. Thus, Algorithms 2 and 3 run either a maximal
number of restarts Rmax times or it is limited by a stopping criterion and the lowest cost
found considering all restarts is the final solution. As discussed in Section 6, the MR
strategy can improve the convergence of the algorithm compared to the same number of
iterations in a single execution, resulting in a better performance-complexity tradeoff.

3.2 Stopping criterion

Given that the mixing strategy provides the local minimum escaping feature, the evolu-
tion of the cost function values across iterations becomes unpredictable and the optimal
solution can be found before the maximum number of iterations I has been reached [14].
In this sense, an efficient stopping criterion is paramount in reducing the complexity of
the MGS detector.
Similarly, the decision to set a restart in the algorithm requires a criterion definition,

since the optimal solution may already have been found, not requiring an extra execu-
tion of the algorithm. Hence, MR strategy must be balanced aiming to achieve a better
performance-complexity tradeoff.
Stopping criteria have been proposed in the literature. For instance, in [10], the stopping

criterion is based on the difference between the best ML cost found so far and the noise
variance. Moreover, the QAM constellation size could be taken into account. The main
idea in [10] is to stop the detection iterations if a maximum number of iterations I is
attained or if the iteration in stalling mode is larger than a maximum of �s iterations.
Assume the estimated symbol vector, in the tth iteration, is ŝ(t). The quality metric of

ŝ(t) is defined as

φ
(
ŝ(t)

)
= ||y − Hŝ(t)||2 − Nσ 2

√
Nσ 2

. (11)

Hence, the stalling limit for iterations, �s, is given by

�s
(
φ

(
ŝ(t)

))
= cs · eφ

(
ŝ(t)

)
, (12)

where cs is a constant depending upon the M-QAM constellation size, which increases
withM. Although (12) is suitable as a stopping criterion, a minimum number of iterations
cmin must be defined to ensure the quality of symbol detection. Therefore, �s can be
rewritten as

�s
(
φ

(
ŝ(t)

))
=

⌈
max

(
cmin, cs · eφ

(
ŝ(t)

))⌉
,

with cs = c1 log2(M), (13)

where c1 is a tunning constant which defines the allowed number of iterations in stalling
mode.
For the MR strategy, the criterion set the allowable number of restarts �r , which also is

based on quality metric φ
(
ŝ(t)

)
:

�r
(
φ

(
ŝ(t)

))
=

⌈
max

(
0, cr · φ

(
ŝ(t)

))⌉
+ 1,

with cr = c2 log2(M) , (14)

and c2 is the tuning constant adjusting the maximum number of restarts.
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At the end of each restart, �r is computed and checked if the actual number of repeti-
tions is less than �r . If yes, go to another run of the algorithm; else, output the solution
vector with the minimum cost so far as the final solution.
For the aMGS and d-sMGS detectors presented below, aMGS and d-sMGS, we also

assume the stop criteria described in this subsection.

4 Reducing the impact of noisy solution
Originally, the mixture between the target distribution function solution and the ran-
dom solution, proposed by MGS detector of [10], attempted to escape local minima that
degrade system performance. In fact, this procedure showed to significantly improve the
performance, specially in low-ordermodulation scenarios, as 4- or 16-QAM.On the other
hand, in high-order modulation systems, the large number of symbols causes the random
solution to degrade the convergence of the algorithm since it is based on a coordinate
update process which requires the global solution; thus, one or more positions that con-
sider a random solution (probably erroneous and far from the real solution) interfere in
the convergence in the other positions and, consequently, in the global one. This condi-
tion is aggravated in high-dimension problems, i.e., combining high-order modulations
and number of antennas, which is the case of interest in this work.
In this sense, two approaches that tries to alleviate the harmful impact of the noisy

solution are described below. Figure 2 summarizes the coordinate update process on the
aMGS and d-sMGS detectors. The strategy of multiple samples in mitigating the noisy
solution also runs the risk of nullifying this solution if many samples are employed; this
can happen since a mean among many terms from a r.v. with probabilities q and (1−q) —
with q << (1 − q) — tends to be an average value in which the term with probability q is
nullified. In this sense, the noisy solution would be ineffective and the condition of stalling
problem could happen, since the mixing of the MGS is a strategy to specifically tackle it.

4.1 Approach #1: Averaged MGS LS-MIMO detector

The aMGS proposed in [14] is addressed herein and is based on the following improve-
ments:

1 Averaged multiple sampling on each coordinate: differently from the single
sampling strategy [10], the aMGS employs an average between Le number of

Fig. 2 A brief description of the coordinate update process on the aMGS and the proposed d-sMGS detectors
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samples at each coordinate during the update process. By employing an averaged
calculation, an intermediate (averaged) point between the target function symbol
and the random symbol is more likely to be chosen, instead of a pure random
symbol. As a result, the benefit of local minima escape is maintained, whereas the
negative impact on the algorithm’s convergence is smoothed.

2 Target function simplification: to reduce the computational complexity related to
target function calculation of (9), the aMGS adopts a minimumML cost approach.
This simplification performs less mathematical operations, since the ||y − Hŝ||
computation is already performed in (9). Thus, the aMGS target function, in the
tth iteration is evaluated as:

ξ
(
ŝ(t)i , y,H

)
= argmin

j∈{1,...,|A|}
||y − Hŝi,j|| , (15)

where ŝ(t)i denotes the updated estimated symbol vector until the (i− 1) position at
the tth iteration, whereas the other remaining i, (i + 1), . . . , 2K positions assume
the values from the previous iteration, i.e.,

ŝ(t)i =
[
ŝ(t)1 , . . . , ŝ(t)i−1, ŝ

(t−1)
i , . . . , ŝ(t−1)

2K

]T

Compared to (9), the calculation of (15) performs less operations while achieving the
same BER performance [14].

4.1.1 MS in coordinate update process

The coordinate update process of aMGS is defined by:

ŝ(t)i = 1
Le

Le∑

m=1
ρm,i

(
ŝ(t)i , y,H

)
, (16)

where Le is the number of samples (realizations), and the random variable (r.v.) ρm,i is a
mixture of two r.v. with weight given by the mixing ratio q, defined by:

ρm,i
(
ŝ(t)i , y,H

)
∼ (1 − q) · ξ

(
ŝ(t)i , y,H

)
+ q · ψ(∞). (17)

It is important to note that, being (15) a deterministic function, during the Le realiza-
tions on each coordinate, (15) is calculated only once, when m = 1. After that, each m
realization has the computational cost of generating a random number (relative to the
mixing ratio).
At the end of algorithm iterations, the vector with the lowest cost is assumed the best

global solution. Due to the mean operation, a slicer for M-QAM constellation is needed
at the end of the detection procedure. Thus,

ŝbest = slicer
(
ŝf−best

)
, (18)

where ŝf−best is the “floating-best” solution which represents the estimated vector related
to the best global cost attained after I iterations, and ŝbest is the final estimated symbol
vector. A pseudocode for the aMGS is described in Algorithm 2.

4.2 Approach #2: Simplified MGS with neighborhood limitation LS-MIMO detector

We propose a different approach which is based on a neighborhood limitation of distance
d in the random solution and is named d-sMGS LS-MIMO detector. The term simplified
refers to the simplified target function of Eq. 15, which is also employed in this scheme.
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Algorithm 2 aMGS for LS-MIMO detection
1: //Initialization
2: s(t=0) : initial random vector; Le # samples; I : max. number of iterations; t = 1; q: mixing

ratio; A = {
a1, a2, . . . , a|A|

}

3: //Iterative process
4: while t < I do
5: //Coordinate update process
6: for i = 1 to 2K do
7: //Simplified target function calculation
8: for j = 1 to |A| do
9: fj = ||y − Hŝ(t)i,j ||

10: end for
11: fmin = argminjfj
12: ξ

(
ŝ(t)i , y,H

)
= afmin

13: // Le samples on each coordinate
14: form = 1 to Le do
15: generate ui,m ∼ U[ 0, 1]
16: if (ui,m > q) then
17: ρm,i

(
ŝ(t)i , y,H

)
= ξ

(
ŝ(t)i , y,H

)

18: else
19: r ∼ �(U[ 1, |A|] )�
20: ρm,i

(
ŝ(t)i , y,H

)
= ar

21: end if
22: end for
23: //Averaging between samples
24: ŝ(t)i = 1

Le
∑Le

m=1 ρm,i
(
ŝ(t)i , y,H

)

25: //Storage of cost and temporary vectors
26: βi = ||y − Hŝ(t)i ||
27: S:,i = ŝ(t)i
28: end for
29: //Best cost in the t-th iteration
30: βmin = minβi
31: //Best global solution test
32: if (βmin < βbest) then
33: βbest = βmin
34: imin = argminiβi
35: ŝf−best = S:,imin
36: end if
37: t = t + 1
38: bt = βbest
39: //Stop criterion for iterations
40: if (bt == bt−1) then
41: m = �s(ŝbest)
42: if (m < t) then
43: if (bt == bt−m) then
44: ŝbest = slicer(ŝf−best)
45: //Terminate
46: end if
47: end if
48: end if
49: end while
50: ŝbest = slicer(ŝf−best)
51: //Terminate
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The proposed d-sMGS detector acts in the symbol constellation performing a NL, with
distance d in relation to the symbol estimated in the previous iteration, when sorting the
random symbol. This procedure showed to significantly improve the convergence when a
modulation of high-order is considered, as disposed in Section 6, and presents the lowest
per-symbol complexity among MGS and aMGS, since it considers the simplified target
function (overcoming theMGS inmathematical operations) and performs a single sample
(overcoming the multiple sampling aMGS), as showed in Section 5.

4.2.1 NL in coordinate update process

The d-sMGS coordinate update process is based on a mixture between the simplified
target function, Eq. 15, and a limited random solution. Thus, the estimated symbol in the
t-iteration at the ith coordinate is given by:

ŝ(t)i = χi
(
ŝ(t)i , y,H

)
, (19)

where χi(·) is the mixed r.v. with weight q, defined by:

χi
(
ŝ(t)i , y,H

)
∼ (1 − q) · ξ

(
ŝ(t)i , y,H

)
+ q · υ

(
ŝ(t−1)
i , d

)
, (20)

the r.v. υ
(
ŝ(t−1)
i , d

)
denotes an uniform sorted symbol in the constellation neighborhood

of ŝ(t−1)
i , with distance d.

In this algorithm, the neighborhood of the current solution ŝ(t−1)
i is defined as

N
(
ŝ(t−1)
i , d

)
=

{
s′ ∈ A | κd

(
ŝ(t−1)
i , s′

)
≤ d

}
, (21)

where κd is the symbol distance function in the real-valued constellation considered, for
example, let A = {−7,−5,−3,−1,+1,+3,+5,+7}, ŝ(t−1)

i = −3 and s′ = +1, then the
symbol distance function results in κd

(
ŝ(t−1)
i , s′

)
= 2.

Thus, the r.v. υ
(
ŝ(t−1)
i , d

)
samples from a discrete uniform distribution on the set

N
(
ŝ(t−1)
i , d

)
= {

n1, . . . , n|N |
}
.

A pseudocode for the proposed d-sMGS is described in Algorithm 3. The multiple
restarts additional strategy is omitted, since it simply restarts the algorithm with another
initial solution.

5 Computational complexity
The computational complexity is described in terms of real number of operations
(rops), in which one rop denotes the computational complexity of the real mathemati-
cal operations: addition, subtraction, multiplication, or division. For the exponential and
logarithmic functions, an approximation through Taylor Series with 18 terms has been
considered to calculate the computational complexity. Table 1 describes the per-symbol
computational complexity (CT ) involved in each step of d-sMGS algorithm. Addition-
ally, the total per-symbol complexity of the aMGS and the conventional MGS has been
evaluated. The per-symbol complexity of the initial solution is denoted by CI , which is
adopted in this work as the output of anMMSE detector, which has also its total complex-
ity described in Table 1 [22]. From Table 1, one can notice that the d-sMGS algorithm and
aMGS and MGS algorithms have the same asymptotic per-symbol complexity order of
O(K2), although the conventional MGS algorithm may require an additional complexity
dependent on constellation size due to the exponential function, which is represented by
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Algorithm 3 d-sMGS for LS-MIMO detection
1: //Initialization
2: s(t=0) : initial random vector; d: constellation distance; I : max. number of iterations; t = 1;

q: mixing ratio; A = {
a1, a2, . . . , a|A|

}

3: //Iterative process
4: while t < I do
5: //Coordinate update process
6: for i = 1 to 2K do
7: //Evaluation of χi (·), Eq. 20
8: generate ui ∼ U[ 0, 1]
9: if (ui > q) then

10: //Simplified target function calculation, Eq. 15
11: for j = 1 to |A| do
12: fj = ||y − Hŝ(t)i,j ||
13: end for
14: fmin = argminjfj
15: ξ

(
ŝ(t)i , y,H

)
= afmin

16: χi
(
ŝ(t)i , y,H

)
= ξ

(
ŝ(t)i , y,H

)

17: else
18: //Generation of the d-limited set
19: N

(
ŝ(t−1)
i , d

)
=

{
s′ ∈ A | κd

(
ŝ(t−1)
i , s′

)
≤ d

}

20: //Sampling from a discrete uniform distribution on the set N
(
ŝ(t−1)
i , d

)
=

{
n1, . . . , n|N |

}

21: υ
(
ŝ(t−1)
i , d

)
∼ U

[
n1, n|N |

]

22: χi
(
ŝ(t)i , y,H

)
= υ

(
ŝ(t−1)
i , d

)

23: end if
24: //Updating the estimated symbol vector in the i-position
25: ŝ(t)i = χi

(
ŝ(t)i , y,H

)

26: end for
27: //Storage of cost and temporary vectors
28: βi = ||y − Hŝ(t)i ||
29: S:,i = ŝ(t)i
30: //Best cost in the t-th iteration
31: βmin = minβi
32: //Best global solution test
33: if (βmin < βbest) then
34: βbest = βmin
35: imin = argminiβi
36: ŝbest = S:,imin
37: end if
38: t = t + 1
39: bt = βbest
40: //Stop criterion for iterations
41: if (bt == bt−1) then
42: m = �s(ŝbest)
43: if (m < t) then
44: if (bt == bt−m) then
45: //Terminate
46: end if
47: end if
48: end if
49: end while
50: //Terminate
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Table 1 Per-symbol computational complexity of aMGS, conventional MGS, and MMSE algorithms

Procedure Step Complexity

d-MGS—Algorithm 3
Target function calculation Lines 11–16 16KN − 4N + |A| (16N + 2)
Generation of the d-limited set Line 19 negligible
Cost computation at each coordinate Line 28 20N
�s , Eq. (13) Line 41 24

K

Total per-symbol complexity: CT = CI + Ieff
[
16KN + 16N + |A| (16N + 2) + 24

K

]

aMGS—Algorithm 2
Target function calculation Lines 8–12 16KN − 4N + |A| (16N + 2)
Averaging between samples Line 24 2Le + 2
Cost computation at each coordinate Line 26 20N
�s , Eq. (13) Line 41 24

K

Total per-symbol complexity: CT = CI + Ieff
[
16KN + 16N + |A| (16N + 2) + (2Le + 2) + 24

K

]

MGS— target distribution function calculation on Algorithm 1
Target distribution function calculation Lines 4–6 16KN − 4N + |A| (16N + 12)
Evaluation of each symbol probability Lines 8–12 1238|A|
Cost computation of estimated vector 10N

K
�s , Eq. (13) 24

K

Total per-symbol complexity: CT = CI + Ieff

[
16KN − 4N + |A| (16N + 1450) + 10N+24

K

]

MMSE algorithm

Total per-symbol complexity: CT = ( 1
6

)
K2 + ( 3

2

)
NK + ( 3

2

)
N + ( 5

6

)

the cardinality |A|. On the other hand, the additional complexity due to the averaged strat-
egy of the aMGS represents a negligible impact, since it requires only (2Le + 2) rops per
iteration, whereas such additional complexity is not dependent on the problem size. The
proposed d-sMGS algorithm combines advantages of both by using a single sample such
as the MGS and the simplified aMGS target function. The complexity increment given
by the neighborhood constraint is considered negligible, since the symbol is already pre-
viously estimated and such procedure represents only a random sampling in a restricted
vector.
From Table 1, it may be noted that the proposed d-sMGS has its per-symbol complexity

independent of the parameter d, so the use of larger neighborhoods in the random symbol
generation has no impact on complexity. With respect to the per-symbol complexity of
the initial solution, CI , in this work, we adopted the output of an MMSE detector, which
has also its total complexity described in Table 1.
It is important to emphasize that the complexity of the d-sMGS, aMGS, and MGS algo-

rithms is defined by the number of iterations, which is controlled by the stopping criterion
�s, with the upper limit I . Similarly, the amount of restarts is controlled by �r , with an
upper limit Rmax. In terms of complexity, theMR procedure can be interpreted as an extra
amount of iterations necessary for each new restart. In this sense, an Ieff is considered in
Table 1, which denotes the total amount of iterations (including all restarts) performed at
each symbol period. Since Monte Carlo method is employed in simulations, in Section 6,
a mean value of Ieff considering all realizations is evaluated and is called effective number
of iterations (ENI):

ENI = 1
T

T∑

i=1
Ieff,i , (22)
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where T denotes the total number of realizations (symbol periods) during the Monte
Carlo method simulation and Ieff,i denotes the Ieff in the i-realization.

5.1 Quality metric

Due to the large number of parameters involved in the presented LS-MIMO detec-
tors, a simple performance-complexity tradeoff metric is considered [14], which aims to
establish a fair comparison analysis between different detection strategies:

χ(BER, CT ) = −10 log10 (BER)

10−8 · CT = − BERdB
10−8 · CT (23)

where BERdB denotes the bit error rate in dB. Higher values of χ(·) imply more efficient
and effective LS-MIMO detector.

6 Numerical results and discussion
In this section, the uncoded BER performance related to the d-sMGS algorithm for LS-
MIMO detection is evaluated through Monte Carlo simulations. The simulations are
performed for a large-scale MIMO operating in multiplexing mode and assuming that a
perfect channel state information is available at the receiver side. Table 2 summarizes the
main system and channel parameter values deployed in this section.
As proposed in [10], the mixing ratio parameter is adopted as the inverse of the number

of dimensions in the system, i.e., q = 1
2K . For the stopping criterion parameters, we have

adopted c1 = 10, c2 = 1.0, and cmin = 10 [14].
This numerical simulation section has been divided into two main parts: in Section 6.1,

the mixing ratio q and number of samples Le parameters of the aMGS detector are dis-
cussed, as it denotes a technique that also aims at reducing the impact of the noisy
solution; in Section 6.2, we present numerical results of performance and computational
complexity of the proposed d-sMGS detector against the aMGS and MGS techniques,
addressed in this work.

Table 2 LS-MIMO system and channel parameters

Parameter Value

LS-MIMO system

Link direction Uplink (UL)

# Rx antennas (BS) N ∈ {64, 128}
# Tx antennas (MTs)

K ∈ {48, 96}
(single user-antenna)

System loading β = K
N ∈[ 0.3125, 0.90625]

Modulation order 64-QAM

SNR ranges γdB ∈ [0, 25] dB

Channel

Channel type Flat Rayleigh

Channel availability Perfectly known at receiver

Specific detector parameters

Max. number of iterations I = 8K
√
M

Max. number of restarts Rmax = 20

NL distance d ∈ {1, 2, 3}
Mixing ratio q = 1

2K

Stop criterion parameters c1 = 10; c2 = 1; cmin = 10
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6.1 aMGS parameter discussion

The aMGS-MR BER performance for different mixing ratios q = {1/2K , 1/3K , 1/4K},
considering Rmax = {1, 5, 10}, is presented in Fig. 3 for each fixed Le ∈ {1, 2, 4, 8} sample
scenario [14]. The number of users is equal to K = 96 while N = 128 BS antennas (β =
0.75). The system is operating under medium-high SNR, γdB = 25 dB. First, it is evident
that the choice of different mixing ratio values impact both performance and complexity
(represented by the ENI quantity at convergence). In addition, one can notice that the
large amount of Le = 8 samples becomes harmful to the algorithm, once convergence
is achieved with larger ENI. Among the other results, the best performance-complexity
tradeoff is presented with Le = 2 samples and q = 1/4K , which results in: χ |Le=2 = 44.89;
against χ |Le=4 = 37.85 with 4 samples and q = 1/2K ; and χ |Le=1 = 39.66 with 1 sample
and q = 1/4K . A detailed analysis of the aMGS performance/complexity gain in relation
to the mixing ratio and the number of samples can be found in [14].
It can also be concluded that with increasing number of samples Le, the curve repre-

sented by q = 1/2K has its convergence improved, resulting in less complexity. That is,
when the impact of the noisy solution is reduced, the choice of q = 1/2K is presented as
the best performance-complexity tradeoff. In this sense, the value q = 1/2K is adopted
for the proposed detector d-sMGS.
Through the analysis performed in [14], the parameter values summarized in Table 3

have been adopted for the aMGS in the reminder of this work. For the MGS-R, the fol-
lowing parameters have been adopted: q = 1/2K , I = 8K

√
M, Rmax = 50, c1 = 10, and

c2 = 0.5 [10].

Fig. 3 BER performance convergence of different mixing ratios, q, of aMGS in medium number of antennas
scenario (K = 96, N = 128) at γdB = 25 dB, 64-QAM, Rmax = {1, 5, 10}, I = 6000, and different Le samples: a
Le = 1, b Le = 2, c Le = 4, and d Le = 8 [14]
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Table 3 Best parameters for aMGS-MR detector presented in [14]

# aMGS samples, Le

Parameter BS antennas 1 2 4 8

Mixing N <= 64: 1
4K

1
4K

1
3K

1
2K

ratio, q N > 64: 1
4K

1
4K

1
2K

1
2K

Max. # iterations, I 3000

Max. restarts, Rmax 5

Iterations stop criterion, c1 10

Restarts stop criterion, c2 1

In Fig. 4, the convergence of the aMGS algorithm adopting best q values, from Table 3,
is analyzed against the average rops complexity, with 96×128 antennas and 64-QAM [14].
For comparison purpose, a single sampling result using the optimal mixing ratio value
as proposed in [10], i.e., q = 1/2K (curve [E]), is also included. One can notice that a
less number of samples has shown to be beneficial in this LS-MIMO scenario, since the
single sample case presented the best performance combined to the lowest asymptotic
complexity, followed by the two- (Le = 2) and four-fold (Le = 4) sampling case. Nev-
ertheless, due to a slightly convergence gain observed with Le = 2 samples, the tradeoff
metric for Le = 1 is found to be χ |Le=1 = 39.83 against χ |Le=2 = 44.22 with Le = 2
samples. A detailed analysis of the aMGS performance/complexity gain in relation to the
mixing ratio and the number of samples can be found in [14]. An in-depth analysis of the
performance-complexity tradeoff of aMGS can be found in [14].

6.2 Analysis on the proposed d-sMGS

First of all, we focus on finding the maximum number of iterations I aiming at maximiz-
ing tradeoff performance x complexity. In the literature, the quantity I = 8K

√
M adopted

Fig. 4 BER performance and complexity vs. convergence for the aMGS algorithm considering 64-QAM
modulation, best mixing ratio q (curves [A] to [D]) from Table 3 and optimal value as proposed in [10], i.e.,
q = 1/2K and Le = 1 (curve [E]) [14]
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in [10] is quite reasonable since it takes into account the number of active users and the
modulation order. In this sense, Fig. 5 shows the performance convergence of the pro-
posed algorithm with the increase of the maximum number of iterations. We considered
K = N = 16 antennas in 64-QAM with NL distance d = {1, 2, 3} and used the parameter
a to denote the maximum number of iterations, so that I = aK

√
M = 128a. It can be

clearly seen that the increase in the NL distance is not beneficial to the algorithm’s per-
formance, which is easily explained by the fact that, with increasing d, the neighborhood
of the random solution increases, approaching the condition of unrestricted solution in
the constellation, retaking its negative impact on algorithm’s convergence. Thus, observ-
ing the 1-sMGS curve, it can be seen that its convergence is reached with a equal to 8,
which coincides with the result adopted in [10]. Therefore, this value I = 8K

√
M will be

adopted for the proposed d-sMGS detector in the reminder of this work.
Figure 6 shows the SNR vs. performance-computational complexity of the addressed

detectors. A high system loading, i.e., β ≈ 0.9, in 64-QAM modulation is adopted with
(a) K = 58, N = 64 and (b) K = 87, N = 96 antennas. The parameters used for the
MGS-MR and aMGS-MR detectors follow in their respective works: for the MGS-MR,
I = 8K

√
M and Rmax = 50 [10]; for the aMGS-MR, I = 3000, Rmax = 5 and the

choice of the mixing ratio value is given according to the best option criterion published
by the author [14]. One can notice in Fig. 6a that both proposed detectors presented sig-
nificant performance gain in the region of high SNR in relation to the other detectors,
equivalent to approximately one decade against the second best performance detector
aMGS-MRwith Le = 8 samples. Differently from that observed previously, the increase in
the NL distance did not cause a loss of performance, since the 2-sMGS detector resulted
in a marginally similar performance to the 1-sMGS. Thus, it denotes a tendency that the
increase of the NL distance can be beneficial in scenarios with greater number of anten-
nas, such as LS-MIMO. Related to the computational complexity, it can be observed that

Fig. 5 Performance convergence against the maximum number of iterations I of the proposed d-sMGS
detector, with 16 × 16 antennas in 64-QAMmodulation among different NL distance values. The number of
iterations is related to parameter a, where I = aK

√
M
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Fig. 6 SNR vs. BER performance/average number of rops in d-sMGS-MR detector against aMGS-MR approach
and MGS-MR. Parameters: a K = 58, N = 64, 64-QAM, β ≈ 0.9 and b K = 87, N = 96, 64-QAM, β ≈ 0.9
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the complexity of the 1-sMGS, 2-sMGS, and aMGS detectors with Le = 2, 4, and 8 sam-
ples are marginally equivalent, although the aMGS with 8 samples presented the least
number of rops (excluding the linear MMSE detector). Considering that both d-sMGS
and aMGS have marginally the same complexity per iteration, it is shown that the strat-
egy of multiple samples converged with fewer iterations, on the other hand, with inferior
performance to that reached by d-sMGS.
With increasing antenna numbers, Fig. 6b, it is reiterated the hypothesis that the

increase of theNL distance results in a performance gain. One can notice a significant per-
formance gain in the 4-sample aMGS detector, surpassing the result with Le = 8, which
corroborates the hypothesis that a smaller restriction in the noisy solution becomes ben-
eficial with the increase in the number of antennas. In fact, in the region of high SNR,
γdB = 25 dB, it can be seen that the 2-sMGS and aMGS with Le = 4 achieve similar per-
formance, although in the medium SNR region (γdB = 23 dB), the proposed d-sMGS still
appear superior. With respect to the complexity in terms of rops, it is noticed that the 2-
sMGS-MR and aMGS-MR detectors with Le = 4 and 8 samples presented a marginally
equal complexity in γdB = 25 dB; however, the least complexity is again reached by the
aMGS, specially in medium SNR region (γdB = [21, 23] dB). Therefore, it can be con-
cluded that the proposed d-sMGS detection technique presented the best performance in
both scenarios, and the smaller restriction of neighborhood with d = 2 was a more inter-
esting choice with increasing number of antennas; in addition, there was no significant
increase of complexity compared to the multiple sample detector aMGS; in other words,
the complexity of the 2-sMGS detector was marginally equal to the lowest complexity
techniques: aMGS with Le = 4 and 8 samples.

Fig. 7 Performance and complexity versus system loading, considering γdB = 25 dB, 64-QAM: a Performance
for N = 64. b Performance for N = 128 antennas. c Average rop complexity for N = 64. d Average rop
complexity for N = 128
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A system loading analysis against BER and rops complexity is depicted in Fig. 7 under
γdB = 25 dB. It may be first noted that at high loading, i.e., β ≈ 0.9, the proposed
detection scheme showed a significant gain in performance over the aMGS. In the other
regions, there is no clearly outstanding technique; however, a lower restriction in the
noisy solution demonstrated better results, which are represented by the 2-sMGS over-
passing the 1-sMGS and aMGS with Le = 1 or 2 in front of the Le = 4 and 8 samples. In
relation to the computational complexity with N = 64 antennas (Fig. 7b), one can notice
that in the medium-high loading region (β ≥ 0.75), the proposed d-sMGS strategy pre-
sented less complexity both with respect to multiple sampling aMGS and conventional
MGS. In the medium-low system loading results (β ≤ 0.5), multiple sampling schemes
presented lower computational complexity. Therefore, one can highlight the superiority
of the proposed strategy in both performance and complexity in medium-high loading
configurations, demonstrating the potential of this strategy when the LS-MIMO system
operates under high loading crowded scenarios. This can be explained as the number of
mobile users increases, approaching the full-loading system condition β → 1, the set of
possible symbol combinations becomes larger, such that the noisy solution from the mix-
ture has its negative effect aggravated, affecting the algorithm’s convergence, whereas the
NL strategy is able to mitigate this effect, having a beneficial effect on the convergence
which results in improvement in performance and complexity reduction.
With the increasing number of antennas atN = 128, the system loading analysis reflects

a clear superiority of the 2-sMGS detector in high loading configurations, both in perfor-
mance and in complexity. This performance behavior corroborates the hypotheses raised
in Fig. 6 regarding performance improvement with increasing NL distance. On the other
hand, in medium-low loading, the complexity of 2-sMGS was shown to be greater than
aMGS and 1-sMGS, equating only to the conventional MGS-MR.

7 Conclusions
A neighborhood-limited d-sMGS detector for large-scale MIMO systems has been pro-
posed based on the neighborhood constraint of the noisy solution at a distance of
d.
The proposed LS-MIMO d-sMGS detection scheme demonstrated the ability to mit-

igate the impact caused by the noisy solution from the mixture, which is aggravated
and can become harmful when the full system loading condition is present or when a
high-order modulation is implemented.
The modifications in the MGS technique proposed here have demonstrated effective-

ness in achieving convergence improvements in the detection algorithm, which resulted
in significant gains in performance and complexity compared to both the multiple sam-
pling aMGS technique as well as the conventional MGS. These advantages are especially
obtained when the system loading is high and there are a large number of antennas, con-
dition favorable to LS-MIMO. Moreover, with increasing the number of dimensions, i.e.,
increasing number of antennas and/or modulation order, a smaller restriction of 2-sMGS
was shown to be a more interesting choice than 1-sMGS.
In addition, the NL strategy represented less complexity per iteration compared to

aMGS orMGS, since only one sample is calculated and the simplified objective function is
considered. On the other hand, when a low system loading is considered, the NL strategy
resulted in a slight increase in complexity.
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