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Abstract

In this paper, we address the problem of optimal measurement budget allocation to
estimate the state of a linear discrete-time dynamical system over a finite horizon. More
precisely, our aim is to select the measurement times in order to minimize the variance
of the estimation error over a finite horizon. In addition, we investigate the closely
related problem of finding a trade-off between number of measurements and signal to
noise ratio.
First, the optimal measurement budget allocation problem is reduced to a deterministic
combinatorial program. Then, we propose a genetic algorithm implementing a count
preserving crossover to solve it. On the theoretical side, we provide a one-dimensional
analysis that indicates that the benefit of using irregular measurements grows when
the system is unstable or when the process noise becomes important. Then, using the
duality between estimation and control, we show that the problem of selecting optimal
control times for a linear quadratic regulator can be reduced to our initial problem.
Finally, numerical implementations demonstrate that using measurement times
optimized by our genetic algorithm gives better estimate than regularly spaced
measurements. Our method is applied to a discrete version of a continuous-time
system and the impact of the discretization time step is studied. It reveals good
convergence properties, showing that our method is well suited to both
continuous-time and discrete-time setups.

Keywords: Kalman filtering, Optimal sampling, Genetic algorithms, Budget allocation

1 Introduction
Kalman filtering [1] is an algorithm that provides state estimation of a stochastic linear
system over time from noisy measurements. It has been applied for many estimation or
prediction problems [2–4]. For example, a Kalman filter is used in [5] to estimate the posi-
tion of a camera when the noise statistics are unknown. They propose an adaptive scheme
(called adaptative non-linear Kalman filtering) to estimate the noise statistics via sam-
pling the noises. They progressively adjust the filter parameters thanks to these samples.
The estimation of the parameters improves with the number of samples. On the other
hand, the computational complexity increases with the number of samples. The Kalman
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filter is also used for compressed sensing. In [6], the authors use an extended linearized
Kalman filter and the Steffensen’s acceleration method to optimally reconstruct sparse
data from noisy measurements. They show that their Kalman-based approach gives simi-
lar or better results than traditional methods for �1 minimization such as the primal-dual
algorithm or the Orthogonal Matching Pursuit method. The interest of their method is
particularly important in the case of high dimensional signals. However, this method is
restricted to the case where the signal is sufficiently sparse (the sparsity must be less than
half the dimension of the measurements). In most of these applications, measurements
are acquired in a regular way, i.e., measurements are equally spaced in time.
Several authors have studied the optimization of Kalman prediction in the presence of

a variable rate of measurements or in the presence of unknown statistical properties of
the measurement noise. For example, [7] have proposed solutions for the case of irregular
sampling rate based on a track to track Kalman filter fusion method. They combine the
information from two sensors, the first one is fast rate, regular, delay free but less accu-
rate, and the second one is slow rate, irregular, delayed but more accurate. Two Kalman
filters are used to estimate the states based on each type of measurement. Then, the esti-
mates are fused. They show on simulations and on a laboratory experiment that the fused
estimation is more precise than the individual ones. In these previous works, variable rate
and unknown noise statistics were considered as constraints to be solved while optimizing
Kalman prediction.
In this paper, on the contrary, we aim to optimally choice the measurement sampling

times and their noise level to minimize a measurement budget for operating an opti-
mal Kalman prediction. Sampling times and measurement noise levels are, for our case,
parameters to be optimized.
Reducing the number of measurements often has significant advantages. The first one

is to reduce the energy consumption that is linked to measurement acquisition. This is
essential for mobile applications. A second advantage could be economic if, for exam-
ple, each measurement acquisition is expensive. A third advantage is linked to acquisition
safety issues. That is the reason for relying on Kalman prediction to manage the radio-
therapy of mobile tumors, in which the goal is to target a tumor with ionizing radiation.
In the case of lung tumors, the target is constantly moving due to the patient’s breathing.
One option is to track the tumor with imaging X-rays. Unfortunately, with this option
each image acquisition also irradiates the patient, including health tissues [8]. The total
number of X-ray acquisitions used for tumor tracking must thus be kept below a cut-
off to prevent secondary cancer induction. In most cases, it is possible to optimize the
measurement times in order to maximize healing while staying below the maximal total
irradiation dose.
The claim of this paper is that when the number of measurements is restricted, Kalman

prediction will provide better results if the measurements can be selected at the optimal
times instead of a regular sampling. This paper addresses the problem of selecting the
optimal measurement times to predict the state of a stochastic linear dynamical system
from noisy measurements, over a finite time horizon, when the number of measure-
ments is fixed. The optimal measurement times are obtained by minimizing the mean
prediction error variance over the complete horizon. This paper focuses on prediction
instead of filtering and addresses real-time applications. Indeed, in our targeted applica-
tions, prediction allows real-time tracking by compensating for the measurement delay.
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However, the proposed method can be adapted straightforwardly for filtering or smooth-
ing applications.
The optimal measurement times can be formulated as the solution of a combinatorial

optimization problem. Evolutionary algorithms are a potential effective approach to solve
that kind of problem [9].We propose different variants of genetic algorithms (GA) to solve
this problem and demonstrate their efficiency compared to a random trial approach. GA
provides an effective approach because they are able to sample a population broadly.

1.1 Related works

There is a quite large body of work in the literature, focusing on measurements failures
arriving randomly according to a Bernouilli distribution [10–15]. In other papers, the
missing measurements can only arrive according to certain patterns, and the objective
is to design an estimator that is robust to all these patterns [16]. Under these assump-
tions, different problems have been studied. For example, [11] is interested in estimating
the state of a multi-rate multi-sensors system with random missing measurements. They
assume that they do not know when a dropout has occurred (when there is one dropout,
the received measurement is pure noise). Consequently, they propose a method to detect
dropouts. In [17], a system with multiple sensors is subject to denial-of-service (DoS) and
false data injection (deception) attacks. The proposed method first detects the attack and
isolates the concerned subsystems, then identifies the kind of attack, and uses a resilient
observer subsystem.
In [12], a distributed Kalman filter is used in the case of large-scale power systems with

random missing measurements. Kalman filtering with random missing measurements
has also been studied when the noise variances are only approximately known [13, 14].
Using a Lyapunov-based approach, they provide guarantees on the estimation variance.
In the above cited papers, measurement times (or equivalently, the dropout times) are

not design variables: they are suffered and not chosen. On the contrary, sensor schedul-
ing problems consist in designing the behavior of the sensors. Typically, a set of sensors is
available but only a few of them can be used at the same time. This problem has been stud-
ied in the case of an infinite horizon in both the discrete [18–23] and the continuous-time
settings [24]. Most of the time, the objective is to minimize the average of the variance of
the estimation error. In the continuous-time case, Ha et al. show in [24] that the infinite
horizon optimal cost and optimal scheduling are independent of the initial error covari-
ance. In addition, they prove that a periodic scheduling can approximate arbitrarily the
cost of an optimal scheduling. Similar results are obtained in the discrete-time case in
[20, 22]. Some works consider a cost associated to the use of the sensors [19, 25]. Other
works dealing with periodic scheduling associate a usage budget per period to each sensor
[21, 23].
The finite horizon problem has also received attention in both discrete [25, 26] and

continuous-time [27–29] settings. In 1972, Athans [27] studied the best prediction at the
end of an horizon (and not on average over the horizon). In their framework, different
sensors are available and a cost is associated with each of them. The goal is to select
sensors (one at a time) in order to minimize a trade-off between the sensors’ cost and
the prediction error. In [28], Lee et al. consider that different sensors are available for
measurements and the user has to choose only a few of them at each time. Optionally,
each sensor switch can be associated with a cost. In the work described in Woon et al.’s
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[29] published in 2010, different sensors are available but only one can be chosen at the
same time. There is no budget constraint on the use of each measurement process. In
2012, Vitus et al. [26] proposed an efficient algorithm to choose a sensor among a given
set at each discrete time step. No measurement cost or budget constraint on the number
of uses of each sensor is considered.
Due to the diverse potential applications mentioned above, several contributions

related to the problem of optimal selection of the measurement times have appeared in
different fields of the engineering literature. In 1970, Sano et al. [30] proposed a solu-
tion to the problem of selecting optimal measurement times in the continuous-time
one-dimensional case. They proposed an explicit formula when there was only one mea-
surement and proposed a numerical method when the number of measurements was
greater than one. Still in the one-dimensional case, Tanaka et al. [31] selected the mea-
surement times to minimize the maximum over time of the error variance. They provided
an explicit formula for the measurement times. More recently, Aksenov et al. studied the
Brownian motion over similar assumptions [32, 33].

1.2 Contributions

Despite the attention paid to these related problems for decades, the problem of select-
ing a given number of measurement times to minimize the average over a finite horizon
of the estimation error variance is, to the best of our knowledge, not resolved in the
multivariate case. This paper covers that topic. To summarize, the contributions of this
paper are the following: (i) three different GAs are proposed and compared to efficiently
solve the combinatorial optimization problem; (ii) an analysis of the impact of the model
(stability, process noise and measurement noise variances) on the obtained solutions in
the one-dimensional case is proposed and interpreted; (iii) links are illustrated between
the solutions of the problem and the rank of the observability matrix of the system; (iv)
the discretization of a continuous-time system is considered and numerical experiments
show that our method is well suited to both discrete-time and continuous-time frame-
works; (v) a related problem concerning the trade-off between quality and quantity of
measurements is mathematically formalized and illustrated by an example; and (vi) the
optimal intermittent linear quadratic regulator (LQR) problem is handled through the
duality between estimation and control.
In the conference proceedings [34], we proposed an initial method for optimal inter-

mittent prediction. However, contributions (ii)–(vi) are completely new. In addition, we
propose here two new GAs and one of them significantly outperforms the previous one.
Finally, a more general definition of the model is used: measurements are not directly
related to the quantity to be estimated.

1.3 Paper outline

The rest of the paper is organized as follows: Section 2 formalizes the problem mathe-
matically (Sections 2.1 to 2.3) and presents different algorithms to solve it (Section 2.4).
Then, a continuous-time version of the problem is presented (Section 2.5). The problem
of optimal intermittent LQR is addressed and we show that it can be solved by reduc-
tion to the problem of the optimal intermittent Kalman predictor (Section 2.6). Finally,
a related problem concerning the compromise between the quality and the quantity of
measurements is presented (Section 2.7). Section 3 compares the different proposed
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algorithms (Section 3.1); numerical examples are extensively studied (Section 3.2); links
with the observability matrix are illustrated (Section 3.3); a continuous-time exam-
ple is presented with a particular focus on the impact of the discretization time step
(Section 3.4); then, the impact of the system characteristics (stability, variances of
the process noise and the measurement noise) on the obtained solution is illustrated
(Section 3.5); and finally, the compromise between quality and quantity is illustrated by
an example (Section 3.6).
Finally, Section 4 presents our conclusions and proposes further avenues of work.

2 Materials andmethods
2.1 Problem description

We consider the discrete-time framework: t = 0, . . . ,T . The set of measurement times
is denotedM ⊂ {0, . . . ,T − 1} and is constrained to contain only N measurements, i.e.,
|M| = N with N ≤ T . The evolution dynamic, quantity to estimate and measurements
are described by the following equations,

x(t + 1) = Ax(t) + b + Gw(t) t = 0, . . . ,T − 1, (1)

y(t) = Bx(t) t = 0, . . . ,T , (2)

z(t) = Cx(t) + d + v(t) t ∈ M, (3)

x(0) ∼ N (x̄0, P̄0), (4)

where w(t) and v(t) are independent zero-mean white Gaussian noises with covariances
E[w(t1)w(t2)�]= Qδ(t1 − t2) and E[ v(t1)v(t2)�]= Rδ(t1 − t2), and δ(·) is Kronecker’s
delta. Column vectors x(t), y(t), z(t) and w(t) have sizes m, n, p and q respectively. The
dimensions of other quantities are deduced from compatibility. Matrices and vectors A,
b, G, B, C, d, x̄0, P̄0, Q and R are known and could be time-dependent. Equation (1)
describes the dynamic of internal state x, Eq. (2) gives the quantity to estimate y and Eq. (3)
expresses the measurement z. Note that the last holds only for t ∈ M, whereM is the set
of measurement times. Relation (4) indicates that the initial state follows a known normal
distribution with mean x̄0 and covariance matrix P̄0.
Let us introduce the best a priori mean squared estimator of y(t) according to M,

namely, ŷM(t|t − 1) := E[ y(t)|z(τ ) : τ ∈ M, τ < t]. The set M is chosen to minimize
the variance of the prediction error norm averaged for each t from 1 to T, it is

min
M⊂{0,··· ,T−1}

1
T

T∑

t=1
E

[‖y(t) − ŷM(t|t − 1)‖2] subject to |M| = N , (5)

where ‖ · ‖ is the Euclidean norm.

2.2 Intermittent Kalman predictor

In this section, we show that problem (5) can be reformulated in a more explicit way,
thanks to the Kalman formalism. The latter provides explicit formula to compute, for a
given measurement set M, the best mean squared estimator x̂M(t|t − 1) of x(t) from
which one can compute ŷM(t|t − 1).
Let us introduce x̂M(t|t − 1) := E[ x(t)|z(τ ) : τ ∈ M, τ < t] as the best a priori

mean squared estimator of x(t) and x̂M(t|t) := E[ x(t)|z(τ ) : τ ∈ M, τ ≤ t] as the
best a posteriori mean squared estimator of x(t). In addition, define the a priori and the a
posteriori covariancematrices as P(t|t−1) := E[ (x(t)−x̂M(t|t−1))(x(t)−x̂M(t|t−1))�]
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and P(t|t) := E[ (x(t) − x̂M(t|t))(x(t) − x̂M(t|t))�], respectively. The classical Kalman
filtering theory [1] states how to update these four quantities recursively in the case where
a measurement is acquired at each time step, i.e., when N = T . In addition, by the linear
relation (2) between x(t) and y(t), it holds that

ŷM(t|t − 1) = Bx̂M(t|t − 1).

We consider the intermittent case by replacing the measurement matrix C with the null
matrix when no measurement is available, i.e., when t /∈ M. In view of Eq. (3), it models
the fact that z(t) does not contain any information about the state x(t). Then the equations
of the Intermittent Kalman predictor are the time update equations

P(t + 1|t) = AP(t|t)A� + GQG�, (6)

x̂M(t + 1|t) = Ax̂M(t|t) + b, (7)

ŷM(t + 1|t) = Bx̂M(t + 1|t), (8)

for t = 0, . . . ,T − 1. In addition, themeasurement update equations are

K(t) =
{
P(t|t − 1)C�[CP(t|t − 1)C� + R]−1 if t ∈ M
0 else,

(9)

P(t|t) = (I − K(t)C)P(t|t − 1), (10)

x̂M(t|t) = x̂M(t|t − 1) + K(t)[ z(t) − Cx̂M(t|t − 1) − d] , (11)

ŷM(t|t) = Bx̂M(t|t), (12)

for t = 0, . . . ,T . Note that when t /∈ M, z(t) is not defined in Eq. (11) but can be set to
any arbitrary value because it is multiplied by K(t) = 0. In addition, one can see from (9)-
(11) that when no measurement is available, i.e., when t /∈ M, each a posteriori quantity
is simply the a priori one, which could have been expected intuitively. The initialization
of these recurrence equations are

P(0| − 1) = P̄0, x̂M(0| − 1) = x̄0, ŷM(0| − 1) = Bx̄0. (13)

The intermittent Kalman predictor is summarized by Eqs. (6) to (13).
We call a Kalman predictor for which the N measurement times are selected as equally

spaced as possible a Regular Kalman predictor. It is

MREG :=
{
Round

[
kT
N

]∣∣∣∣ k = 0, . . . ,N − 1
}
, (14)

where Round[ ·] is the rounding operator.

2.3 Optimal intermittent Kalman predictor

The optimal intermittent Kalman predictor is the intermittent Kalman predictor for
which the set of measurement times M is chosen to minimize the mean error variance,
i.e., it is the solution of problem (5).
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Let us denote the a priori error ỹ(t) := y(t) − ŷM(t|t − 1). Its covariance matrix can be
written

S(t) := E

[
ỹ(t)ỹ(t)�

]

= E

[
(y(t) − ŷM(t|t − 1))(y(t) − ŷM(t|t − 1))�

]

= E

[
(Bx(t) − Bx̂M(t|t − 1))(Bx(t) − Bx̂M(t|t − 1))�

]

= BE
[
(x(t) − x̂M(t|t − 1))(x(t) − x̂M(t|t − 1))�

]
B�

= BP(t|t − 1)B�.

Then, the variance of the prediction error norm ‖ỹ(t)‖ can be written in terms of P(t|t−1)
as

E[ ‖ỹ(t)‖2] = Tr[ S(t)]= Tr[BP(t|t − 1)B�] ,

where Tr[ ·] is the trace operator.
Thanks to the previous equations, problem (5) can be reformulated as

min
M⊂{0,...,T−1}

1
T

T∑

t=1
Tr[BP(t|t − 1)B�] subject to

|M| = N , Eqs. (6), (9) and (10) with P(0| − 1) = P̄0, (15)

where constraint (6) holds for t = 0, . . . ,T − 1 and constraints (9) and (10) hold for
t = 0, . . . ,T .

Remark 1 The equations that govern covariance matrices, i.e., Eqs. (6), (9) and (10), are
independent of the measurements z(t). Consequently, the optimization problem (15) can
be solved before measurements are made, i.e., offline. In addition, they are independent of
b and d.

Remark 2 Contrary to Eqs. (1) through (4) which are stochastic, problem (15) is
deterministic.
In addition, the equations involving x̂M and ŷM can be ignored during selection of the

measurement times, i.e., the resolution of problem (15), and used only for prediction. Con-
sequently, using the optimal intermittent Kalman predictor consists in firstly computing
the optimal measurement times offline and then, doing online prediction.

Remark 3 Note that x(t) and y(t) are linearly related by relation (2). However an opti-
mal set of measurement times given for estimating the y(t), i.e., an optimal solution of
problem (15), is not necessarily optimal for estimating the state x(t). Indeed, the objective
function of the problem depends on the matrix B that connects y(t) to x(t).

Remark 4 It is possible to compute the distribution of the norm of the squared predic-
tion error ‖ỹ(t)‖2. First, consider the following eigendecomposition, S(t) = ����, where
� is a diagonal matrix whose diagonal entries are the eigenvalues λ1(t), . . . , λn(t) of the
symmetric matrix S(t) = BP(t|t)B�, and where � is a unitary matrix, i.e., ��� = I.
Define ζ := �−1/2��ỹ(t). Note that�,� and ζ depend on t but this dependency is omit-

ted for clarity. Each random variable ζ follows a standard normal distribution N (0, I).
Indeed, it is a linear transformation of a centered Gaussian random variable so it is also a
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central Gaussian random variable. In addition, its covariance matrix is identity. It can be
computed using the commutativity of diagonal matrices and the fact that � is unitary, so
that we obtain,

E

[
ζ ζ�]

= E

[(
�−1/2��ỹ(t)

) (
�−1/2��ỹ(t)

)�]

= �−1/2��
E

[
ỹ(t)ỹ(t)�

]
��−1/2

= �−1/2��������−1/2

= I.

The random variable ‖ỹ(t)‖2 can be expressed in terms of ζ , yielding

‖ỹ(t)‖2 = ỹ(t)�ỹ(t)
= (��1/2ζ )�(��1/2ζ )

= ζ��1/2����1/2ζ

= ζ��ζ

=
n∑

i=1
λi(t)ζ 2

i ,

where all ζ 2
i follow an independent chi-squared distribution with one degree of freedom,

i.e., ζ 2
i ∼ χ2. It shows that ‖ỹ(t)‖2 is a linear combination with non-negative coefficients of

independent random variables following a chi-squared distribution with one degree of free-
dom. Then, a closed form formula can be obtained for the cumulative distribution function
P[ ‖ỹ(t)‖2 < ξ ] using the theorem of [35]. From a practical point of view, this quantity can
be efficiently estimated using the method proposed in [36].

2.4 Optimization algorithms

Solving the combinatorial optimization problem (15) by means of an exhaustive search
would require evaluating T ! /(N ! (T −N)! ) times the cost function. That is computation-
ally intractable. In this section, we propose a random trial (RT) algorithm and various
genetic algorithms (GAs) to tackle this problem.
The RT algorithm randomly samples a given number of admissible solutions M,

computes their cost and keeps the best one.
In the GA nomenclature, a feasible solutionM = {t1, . . . , tN } of the optimization prob-

lem is called an individual and its corresponding measurement times ti are called its
genes. A set of several individuals is called a population.
The GA [37] implements the following steps.

1. Initialization: An initial population is uniformly sampled on the admissible set of
problem (15).

2. Evaluation: For each individual in the population, the cost is evaluated according
to the objective function of problem (15).

3. Selection: Individuals with low costs are preferably selected according to
stochastic universal sampling [37].

4. Crossover: Selected individuals are mixed to produce new individuals called the
offspring. This reconstitutes a complete population. Three different types of
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crossover are considered: the shuffle crossover (SC), replace crossover (RC) and
count preserving crossover (CPC). They are described below.

5. Mutation: Each gene of each individual mutates according to a probability. When
a mutation occurs, some measurement times are replaced by random times. This
step could create duplicates, i.e., an individual could have repeated times ti = tj
with i �= j. To avoid this situation, the random times are selected uniformly in
{0, . . . ,T − 1}\M.

6. Repeat: Come back to step 2 until a convergence criterion is reached.

One pass of steps 2 to 5 is called a generation.
Let us present the three different crossover operators. Each of them gives a variant of

the genetic algorithm. They are described and a brief example is given.

Shuffle crossover (SC) For each parent pair, the SC [38] method picks the genes to
exchange (each gene has the same probability to be selected) randomly. For example, let
two parents (that is, two sets of measurement timesM),

P1 = 0 1 3 5 6 7 and P2 = 0 1 2 3 5 8, (16)

where indicates the location of genes selected for the crossover. The obtained offspring
are

O1 = 0 1 3 3 5 7 and O2 = 0 1 2 5 6 8. (17)

First, one can observe thatO1 contains a duplication of 3, which corresponds to choosing
the same measurement time twice. That is not allowed in problem (15) and has to be
considered a wasted measurement. In other words, fewer measurements are acquired,
which is suboptimal, because adding a new distinct measurement can only decrease the
cost.
A second observation is that the second offspring O2 does not contain a 3, while both

parents P1 and P2 contain one. That means that common heritage is lost during the
crossover, which possibly deteriorates the convergence of the algorithm.
These two observations motivate a careful choice of the crossover method and leads

naturally to the next two crossover methods.

Replace crossover (RC) The RC method is an SC followed by a random replacement of
duplicates, taking care to avoid new duplicates. Duplicates are replaced by picking genes
uniformly at random in {0, . . . ,T − 1}\M. The offspring (17) become, for example

O1 = 0 1 3 5 7 8 and O2 = 0 1 2 5 6 8,

where indicates the new gene. Note that the second offspring remains unchanged
because it does not contain duplicates.
With this crossover, the obtained offspring have no duplicates. However, the second

offspring O2 does not contain a 3 while this gene was common to both parents. This
illustrates that, like SC, this RC can also suffer from a loss of common heritage.

Count preserving crossover (CPC) The CPC [38, 39] represents each individual by a
set (unordered) instead of a vector (ordered). It implements an SC between subsets P1\P2
and P2\P1. It allows transmission of the common measurement times P1 ∩ P2 to both
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Fig. 1 Venn diagram representing the count preserving crossover on parents P1 and P2 described in (16). The
crossover allows gene exchanges between the two filled regions. The underlined genes are exchanged, the
result is given in (18)

offspring. For parents in example (16), the SC is executed between subsets P1\P2 = {6, 7}
and P2\P1 = {2, 8} (see Fig. 1). Possible offspring are then

O1 = 0 1 2 3 5 6 and O2 = 0 1 3 5 7 8. (18)

This crossover method makes it possible both to transmit the common genes to all the
offspring and to avoid duplicates.
All GA implementations use sigma scaling [37] with the sigma factor equal to 1 (stan-

dard value). The crossover operation is applied systematically and mutation occurs with a
probability by gene of 0.003 (standard value). The population size is set to 100 individuals
and the algorithm stops after 100 generations.

2.5 Discretization of a continuous-time system

Many real-world problems are modeled as continuous-time systems. For this reason, we
study the continuous-time equivalent of problem (5). It is1,

inf
0≤τ0<τ1<···<τN−1≤τ̄

1
τ̄

∫ τ̄

0
E[ ‖y(τ ′) − ŷ(τ ′)‖2] dτ ′, (19)

such that
dx
dτ

(τ ) = Acx(τ ) + bc + Gcwc(τ ) τ ∈[ 0, τ̄ ] ,
y(τ ) = Bcx(τ ) τ ∈[ 0, τ̄ ] ,
z(τk) = Cx(τk) + d + v(τk) k = 0, . . . ,N − 1,
x(0) ∼ N (x̄0, P̄0),

(20)

1An infimum is used because the admissible set of the optimization problem is not compact due to constraint τk < τk+1 .
This constraint models the fact that two measurements can not be acquired at the same time. When the time is
discretized at time step δ, this constraint becomes τk + δ ≤ τk+1 which makes the set compact. Then, the corresponding
infimum exists and is a minimum.
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where wc(τ ) ∼ N (0,Qc) and v(τk) ∼ N (0,R) are independent Gaussian white noises.
Finally, ŷ(τ ) = E[ y(τ )|z(τk) : τk < τ ] is the best mean squared estimator of y(τ ). The
exponent c emphasizes that time is continuous. Note that this is a stochastic differential
equation for which derivatives have a non-classical sense. The reader is referred to [40]
for details.
This problem can be exactly discretized at a time step δ = τ̄ /T to fit the formalism of

Eqs. (1) through (5). The corresponding quantities are [41],

A = eA
cδ , B = Bc, b =

∫ δ

0
eA

cτdτbc, (21)

Q =
∫ δ

0
eA

cτGcQc(Gc)�e(Ac)�τdτ , G = 1, (22)

where e· is the matrix exponential operator.
In Section 3.4, we study the impact of the discretization time step on the obtained

solution.

2.6 Optimal intermittent linear quadratic regulator

Duality between estimation and control problems has been known for decades [42].
Roughly, it states that instead of solving a control problem directly, one can solve a related
estimation problem and deduce the solution to the control problem from the solution of
the estimation problem. The converse is also possible.
In this section, we formalize the problem of optimal intermittent LQR and use duality

to show that it can be handled by computing an optimal intermittent Kalman predictor.
Let us consider a controlled linear system with known initial state,

x(t + 1) = Ãx(t) + σ̃ (t)B̃u(t), for t = 0, . . . ,T − 1, (23)

x(0) = x̃0, (24)

where σ̃ (t) ∈ {0, 1}. This control signal σ̃ (·) determines the times at which the system is
controlled. Note that Ã and B̃ can be time-dependent.
The optimal intermittent LQR problem consists of the following minimization,

σ̃ ∗(·) = argmin
σ̃ (·)

V (σ̃ (·)) such that
T−1∑

t=0
σ(t) = N , (25)

with

V (σ̃ (·)) = min
u(·)

{
x(T)�Q̃f x(T) +

T−1∑

t=0
x(t)�Q̃x(t) + u(t)�R̃u(t)

}

subject to (23) and (24),

where Q̃ and R̃ can be time-dependent. This problem has been studied in [43] where a
closed form formula is provided under some restrictive conditions.
The following theorem formalizes how to compute this optimal LQR by computing an

optimal intermittent Kalman predictor. Note that at each optimal set of measurement
timesM can be associated with a signal σ(·) such that σ(t) = 1 if t ∈ M and 0 otherwise.
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Theorem 1 The optimal solution σ̃ ∗(·) of the problem (25) is given by σ̃ ∗(t) = σ ∗(T− t)
where σ ∗(·) is the optimal solution of the estimation problem (15) solved for parameters

A(t) = Ã(T − t)�, Q(t) = Q̃(T − t), R(t) = R̃(T − t), (26)

b(t) = 0, G = I, C(t) = B̃(T − t)�, P̄0 = Q̃f , d(t) = 0, and (27)

B(t) = δ(T − t)x̃�
0 , (28)

where δ(T − t) is 1 if t = T, and 0 otherwise.
In addition, the optimal control law is

u(t) = −Kσ ∗(·)(t)�A(t)�x(t), (29)

where Kσ ∗(·)(t) is given by (9).

Proof We want to use Theorem 2.1 from [42]. However, these authors’ formalism has
two differences from ours.
First, they do not considermissing control times (ormissingmeasurement times). How-

ever, this is not restrictive because for a given σ̃ (t), Eq. (23) can reduce to the form of [42]
by considering σ̃ (t)B̃ as a known time-varying control matrix B̄(t). Similarly, the mea-
surement matrix C in Eq. (3) can be seen as the null matrix when no measurement is
acquired, i.e., when σ(t) = 0 or equivalently t /∈ M.
The second difference with [42] is that they limit the estimation problem to the case

where B = I, i.e., y(t) = x(t). However, as shown by Eqs. (6), (9), and (10), the prediction
error covariance matrix P(t|t − 1) does not depend on B. Consequently, results from
Theorem 2.1 from [42] that concern P(t|t − 1) can be used.
Thus, for a given signal σ̃ (·), Theorem 2.1 from [42] states that V (σ̃ (·)) = x̃�

0 P̃σ̃ (·)x̃0
where P̃σ̃ (·) = Pσ(·)(T |T − 1) and the last is given by Eqs. (6), (9), and (10), under
transformations σ(t) = σ̃ (T − t), (26) and (27).
Then, under transformation (28), the objective function of the estimation problem (15)

is

T∑

t=1
Tr[B(t)Pσ(·)(t|t − 1)B(t)�] =

T∑

t=1
Tr[ δ(T − t)x̃�

0 Pσ(·)(t|t − 1)x̃0]

= x̃�
0 Pσ(·)(T |T − 1)x̃0

= x̃�
0 P̃σ̃ (·)(0)x̃0

= V (σ̃ (·)),

where the trace operator has been removed because its argument is one-dimensional.
Taking theminimum overall admissible σ(·) (on the left-hand side) and the corresponding
σ̃ (·) (on the right-hand side) gives equality between problems (15) and (25).
Once the signal σ̃ ∗(·) is fixed, finding the optimal command u(t) is a classic LQR

problem. Theorem 2.1 form [42] gives the relation (29).

2.7 Quality or quantity of measurements

Instead of considering a fixed number ofmeasurements, an alternative problem is to reach
a trade-off between many low-quality measurements and a small number of high-quality
measurements. This problem can be handled in the presented formalism.
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Allowing the choice of the quantity of measurements corresponds to making the num-
ber of measurements N a variable to optimize and no longer a given of the problem.
However, with only this modification, the optimal solution will always be to take a
maximum number of measurements, i.e., N = T . To model the compromise between
measurement quality and quantity, an increase in the number of measurementsN implies
an increase in the noise of measurements, i.e., an increase in R.
In other words, the measurement covariance matrix Rmust depends on N. We assume

R = f (N) for a given function f : {1, . . . ,T} → Sp×p
+ where Sp×p

+ is the set of p×p positive
semi-definite matrices. Then, the problem can be formalized similarly to (15), it gives,

min
1≤N≤T

min
M⊂{0,...,T−1}

1
T

T∑

t=1
Tr[BP(t|t − 1)B�] subject to

|M| = N , Eqs. (6), (9) and (10), P(0| − 1) = P̄0 and R = f (N), (30)

where, as previously, constraint (6) holds for t = 0, . . . ,T − 1 and constraints (9) and (10)
hold for t = 0, . . . ,T .
This problem is studied in Section 3.6.

3 Results and discussion
Several results will be illustrated on a discretized spring-mass system. The derivation of
these equations will be detailed in Section 3.4. For readability, we anticipate the system
finally obtained; it is defined by

A =
(

cos δ sin δ

− sin δ cos δ

)
, B = (1 0) , b =

(
0
0

)
, G = 1, (31)

Q = 1
80

(
δ − sin δ cos δ sin2 δ

− sin2 δ δ + sin δ cos δ

)
, (32)

where δ is the discretization time step.

3.1 Comparison of optimization methods

In this section, the different optimization algorithms presented in Section 2.4 are com-
pared. The random trial (RT) method and the three variants of Genetic Algorithms (GA)
are compared, i.e., Shuffle Crossover (SC), Replace Crossover (RC), and Count Preserving
Crossover (CPC).
Figure 2 presents the mean cost and the minimum cost obtained by the four algorithms

with respect to the number of cost function evaluations in the case of the spring-mass
system described in Section 3.4 by Eqs. (31) and (32) with a discretization time step δ =
0.1 [ s]. The number of measurements is set to N = 70 and the number of time steps is
T = 100. The mean and minimum costs obtained with RT are also printed. In addition,
the cost for regularly spaced measurement times is printed.
Firstly, one can observe that the minimum and average of the GA with SC has bad

convergence behavior (its average cost quickly rises out of the figure). This confirms our
previous comments in Section 2.4 about the flaws of this crossover operator (creation
of duplicates and loss of common heritage). All other algorithms found a solution bet-
ter than the regular one in few generations. The regular cost is close to the average RT
cost, meaning that regular measurement times are ’typical’ random measurement times
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Fig. 2 Comparison of the mean and minimum (min) cost for the random trial (RT) method, the genetic
algorithm (GA) with shuffle crossover (SC), the GA with replace crossover (RC), the GA with count preserving
crossover (CPC) and the regular Kalman predictor (regular cost) with respect to the number of cost function
evaluations. For the genetic algorithms, one generation corresponds to 100 cost function evaluations

in this example. The GAs with RC and CPC outperform the RT algorithm. Finally, the
GAwith CPC quickly outperforms all other proposed algorithms. In addition, the average
cost converges to the minimal cost only for the CPC. This means that the entire pop-
ulation converges to a single individual—assumed to be optimal—which is the desired
behavior for a GA. Table 1 prints the averages and standard deviations of the optimal
costs found by the different algorithms over 100 resolutions. The advantage of the CPC
crossover is confirmed and the small standard deviations indicate the reproducibility of
the results.
In the following, all experiments use the GA that implements CPC.

3.2 Numerical examples

To continue the analysis of our method, predictions using our method are compared with
the ones obtained with a Kalman predictor with regularly spaced measurement times (see
Eq. (14)). After an analysis on the spring-mass system, we will apply our method to a 50-
dimensional system. To conclude this section, some links with the observability matrix
will be highlighted.

Table 1 Average and standard deviation of the optimal costs found by the different algorithms on
100 resolutions. The algorithms are the random trial (RT) method, the genetic algorithm (GA) with
shuffle crossover (SC), the GA with replace crossover (RC), the GA with count preserving crossover
(CPC). The cost obtained with regularly spaced measurements (see (14)) is also indicated

RT SC RC CPC Regular

0.115 ± 6 · 10−4 0.120 ± 10−3 0.113 ± 10−4 0.112 ± 2 · 10−6 0.128
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3.2.1 Spring-mass system

The set of measurement times found by the genetic algorithm is denotedMGA and the set
of regularly spaced measurements is denoted MREG. The corresponding mean squared
tracking errors are denoted, MSE(MGA) and MSE(MREG), respectively.
For the same system as in the previous section, i.e., Eqs. (31) and (32) with a discretiza-

tion time step δ = 0.1 [ s] and with T = 100 time steps and N = 5 measurements,
Fig. 3a presents the real y(t) and the predictions obtained with the two predictors. In
additions, the regular measurement times MREG and the GA measurement times MGA
are printed. One can see that the main difference occurs at the beginning of the track-
ing. Indeed, our method gets closer faster. Intuitively, this can be understood by the
fact that for the intermittent predictor, all measurement times are selected close to the
beginning. Over the complete time horizon, the regular approach has a mean squared
error of MSE(MREG) = 0.46 whereas the mean squared error with our method is
MSE(MGA) = 0.36. This is a significant improvement. However, these results are valid
only for this particular realization of the dynamic system.
On the contrary, Fig. 3b presents the squared error with respect to time over 100,000

realizations. The mean and the 95% quantile are indicated for the regular Kalman pre-
dictor and for our optimal intermittent Kalman predictor method. One can see that the
remarks about Fig. 3a hold for the mean and the 95% quantile behavior: our method
rapidly produces a better estimate than the Kalman predictor with regular measurements.
Let us introduce the benefit as B = MSE(MREG) − MSE(MGA). A positive benefit

indicates that our method outperforms the regular Kalman predictor. Figure 4 presents
the histogram of the benefit B computed over 100,000 realizations. It shows that the
mean benefit is 0.12 and the benefit is positive in 64% of the cases, i.e., our method
outperforms the regular Kalman predictor. The results are summarized in the second
column of Table 2. Note that the optimal costs correspond to the average mean squared
errors.

(a) (b)
Fig. 3 a Evolution of a particular realization of y(t) and its estimates with both regular Kalman predictor
(Regular) and optimal intermittent Kalman predictor (GA). bMean squared prediction error with respect to
time and 95% quantile over 100,000 realizations for the regular Kalman predictor (Regular) and for our
optimal intermittent Kalman prediction method (GA). Regular measurement times and the GA measurement
times are also printed on both graphs. Simulations are realized on the system described by Eqs. (31) and (32)
with T = 100 time steps and N = 5 measurements
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Fig. 4 Histogram of the benefitB = MSE(MREG) − MSE(MGA) computed over 100,000 realizations for
system (31) and (32) with T = 100 time steps and N = 5 measurements. The histogram approximates the
probability density function of the benefit. The red vertical line indicates a null benefit. The mean and
standard deviation of the benefit are 0.12±0.38 and the benefit is positive in 64% of the realizations

3.2.2 A large dimensional system

We propose here to apply our method to a 50-dimensional system. To this end, we gener-
ate a random system as follows: each entry of the matrix A ∈ R

50×50 is picked at random
independently from a Gaussian distribution with standard deviation 0.25. We consider
b = 0 and G = Q = I. Ten components of the state x(t) are uniformly picked at random
to form the objective vector z(t). In other words, each row of the matrix B ∈ {0, 1}10×50

contains only one 1 and all lines are different. The measurement matrix C ∈ {0, 1}10×50

is picked at random in the same way but independently of B. We consider d = 0 and
the covariance matrix of the process noise is the identity, i.e., R = I. Finally, we con-
sider x̄0 = 0 and P̄0 = I. This system is studied over T = 50 time steps and N = 25
measurements are allowed.

Table 2 Results for the spring-mass system (Section 3.2.1) and the random system (Section 3.2.2).
The cost using regularly spaced measurements and the optimal cost found by the GA are indicated.
The mean square errors are indicated (mean and standard deviation over 100,000 realizations). The
benefitB = MSE(MREG) − MSE(MGA) is also indicated (mean, standard deviation and proportion
of positive)

Spring-mass system Random system

Cost regular 0.52 16,817.80

Cost GA 0.39 10,621.31

MSE(MREG) (mean ± std) 0.51 ± 0.42 16, 506.12 ± 3212.83

MSE(MGA) (mean ± std) 0.39 ± 0.33 10, 421.00 ± 1866.53

BenefitB (mean ± std) 0.12 ± 0.38 6085.12 ± 3391.64

Proportion of positive benefitB 64% 97%
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The eigenvalues of the randomly sampled matrix A are depicted in Fig. 5a. Among the
50 eigenvalues, 17 are stable and 33 are unstable. Their modulus varies from 0.12 to 2.09.
The optimal measurement times for this problem are computed using the GA with the

CPC. Then, the mean squared prediction error using the optimal intermittent Kalman
predictor is compared to the one with regular measurements on 100,000 realizations.
The average and standard deviation of the mean squared error in the regular case
MSE(MREG) are 10, 374.91 ± 1655.75. Using the optimal measurement times, the aver-
age and standard deviation of MSE(MGA) are 8947.08 ± 1785.55. The benefit B =
MSE(MREG) − MSE(MGA) is computed and its distribution is depicted in Fig. 5b. The
mean benefit is 1427.83 and the benefit is positive for 76% of the realizations. These
results are summarized in the third column of Table 2.

3.3 Links with observability matrix

To make the results more intuitive, let us present a simple system defined by

A =
(
0 −1
1 0

)
, B = Q = P̄0 =

(
1 0
0 1

)
, C = (1 0) , R = G = 1, b = d = 0, (33)

and consider T = 20 time steps and N = 10 measurements.
Jungers et al. show in [44] that the observability matrix of a linear system with missing

measurements is given by

OT (A,C,M) =

⎛

⎜⎜⎜⎜⎝

σ(0)C
σ(1)CA

...
σ(T − 1)CAT−1

⎞

⎟⎟⎟⎟⎠
,

where σ(t) = 1 if t ∈ M and 0 otherwise. For system (33), because the transition matrix
A is a 90 degree rotation matrix, the observability matrix has the following structure,

(a) (b)
Fig. 5 Outcomes of the experiment described in Section 3.2.2. a Eigenvalues of the randomly sampled
matrix A. b Histogram of the benefitB = MSE(MREG) − MSE(MGA) computed over 100,000 realizations
for the problem described in Section 3.2.2. The histogram approximates the probability density function of
the benefit. The red vertical line indicates a null benefit. The mean and standard deviation of the benefit are
6085.12 ± 3391.64 and the benefit is positive for 97% of the realizations
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OT (A,C,M) =
(

σ(0) 0 −σ(2) 0 σ(4) · · · 0
0 −σ(1) 0 σ(3) 0 · · · σ(19)

)�
. (34)

From definition (14), a regular measurement set isMREG = {0, 2, . . . , 18}, which leads to
the following observability matrix

OT (A,C,MREG) =
(
1 0 −1 0 1 · · · 0
0 0 0 0 0 · · · 0

)�
. (35)

With such regular set of measurement times, the observability matrix is rank deficient.
That means that even in the absence of any noise, the state can not be completely
determined.
Bearing in mind that the trace of a matrix is the sum of its eigenvalue, then the objective

function of problem (15) can be rewritten
∑T

t=1(λ1(t) + λ2(t))/T . Figure 6, presents the
eigenvalues λ1(t) > λ2(t) of the prediction error covariance matrix S(t) = BP(t|t − 1)B�

with respect to time. They are presented for regular measurementsMREG, for the optimal
measurements found by the genetic algorithm but also when a measurement is acquired
at each time, i.e.,M = {0, . . . ,T −1} and when no measurement is acquired, i.e.,M = ∅.
In addition, the measurement times are printed for both the regular and the intermittent
cases.
One can observe that the largest eigenvalue λ1 has the same evolution with regular mea-

surements as when no measurement are used. This shows that the regular measurements

Fig. 6 The two eigenvalues λ1 > λ2 of the covariance matrix of the prediction error S(t) with respect to time
t when no measurement is acquired, i.e.,M = ∅ (No); when regular measurement timesMREG are used
(Regular); when optimal measurement timesMGA are used (GA); and when there is measurement at each
times, i.e.,M = {0, . . . , T − 1} (All). Regular measurement times and the GA measurement times are also
printed. The considered system is described by (33) with T = 20 time steps and N = 10 measurements for
the regular and the GA cases
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have no effect on the largest eigenvalue λ1. This observation is compatible with the rank
deficiency of the observability matrix (35). On the contrary, in the case of the measure-
ment times found by the genetic algorithm, both eigenvalues remain significantly smaller
than the ones without measurements. In addition, the measurement times selected by
the GA are composed of five pairs of successive measurements. The structure of the
observability matrix (34) ensures that each line is non zero.

3.4 Continuous-time example

This subsection presents an example of the continuous-time case presented in
Section 2.5. More precisely, we are interested in the impact of the number of discretiza-
tion steps T (or equivalently, the impact of the discretization step size δ) on the obtained
solution.
We want to solve the problem defined by Eqs. (19) and (20) for the spring-mass system

subject to a random force wc,

d2x
dτ 2

(τ ) = − k
m
x(τ ) + 1

m
wc(τ ) with wc(τ ) ∼ N (0, 1), (36)

y(τ ) = x(τ ), (37)

z(τk) = x(τk) + v(τk) with v(τk) ∼ N (0, 1), (38)

x(0) ∼ N (0, 1),
dx
dτ

(0) ∼ N (0, 1), (39)

where m is the mass, expressed in [ kg] and k is the stiffness of the spring, expressed in
[N/m]. x(τ ) is the elongation of the mass (in [m]) at time τ (in [ s]). In the formalism of
(20), it corresponds to

Ac =
(

0 1
−k/m 0

)
, Bc = C = (1 0), bc = x̄0 =

(
0
0

)
, Gc =

(
0 0
0 1/m

)
,

Qc =
(
0 0
0 1

)
, P̄0 =

(
1 0
0 1

)
, d = 0, R = 1.

The corresponding discrete system can be obtained thanks to (21) and (22) and, in the
particular case k = m, it gives Eq. (31) and

Q =
∫ δ

0

1
m

(
sin2 τ sin τ cos τ

− sin τ cos τ cos2 τ

)
dτ = 1

2m

(
δ − sin δ cos δ sin2 δ

− sin2 δ δ + sin δ cos δ

)
.

We set m = 40 [ kg] and k = 40 [N/m] and finally obtain Eqs. (31) and (32), which had
been anticipated at the beginning of Section 3.
In this subsection, the time horizon is τ̄ = 100 [ s] and the number of measurements is

fixed to N = 5.
Themeasurement times are computed by solving the discretized problem using the GA.

Then, the quality of the obtained solution is assessed by looking at the cost function of
the continuous-time problem (19). It is done thanks to the continuous-discrete Kalman
filter [45]. The results are presented in Fig. 7. Figure 7a presents the measurement times
found by the GA and the measurement times for the regular Kalman predictor.
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(a) (b)
Fig. 7 For the discrete-time system corresponding to the continuous system (36)-(39), graph a presents the
regular measurement timesMREG given by (14) and the timesMGA found by the genetic algorithm (GA)
with respect to the number of discretizarion steps T. Graph b presents the corresponding cost function
values (19)

Firstly, the measurement times found by the GA seem to converge when the number
of discretization steps T increases (or equivalently, when δ decreases). In addition, they
are more concentrated at the beginning. Furthermore, one can observe that even for the
regular Kalman predictor, the measurement times vary with the number of discretization
steps T. This is due to the fact that the measurement times are constraints to belong in the
discrete-time set. Algebraically, it is the Round operator in Eq. (14). When the number of
discretization steps T increases, the rounding effect decreases.
Figure 7b depicts the corresponding cost values for the continuous-time problem (19). It

shows that the cost for optimal intermittent measurements is systematically smaller than
in the regular case. This should be expected because the regular measurement times are
in the admissible domain of problem (19)–(20). If the regular measurements had smaller
cost function value, the GA would probably have selected it. The roughly decreasing
and converging behavior of the cost function with respect to the number of discretiza-
tion steps shows that our method can be used for continuous-time systems using an
appropriate discretization scheme.

3.5 Impact of stability, process noise variance andmeasurement noise variance

In this section, the impact of the system’s stability, process noise varianceQ and measure-
ment noise variance R on the solutions are studied in the one-dimensional case. More
precisely, we compare the intermittent Kalman predictor to the regular Kalman predictor
for different values of Q and R. The experiments are restricted to one-dimensional sys-
tem, for the stable case |A| < 1, the marginally stable case |A| = 1 and the unstable case
|A| > 1. Finally, we comment on the performance in the different cases.
The studied system is a simple version of (1)–(4) where all quantities are one-

dimensional and with b = 0, G = 1, B = 1, C = 1, d = 0. This problem is studied for
all A ∈ {1/2, 1, 2} and for Q and R in the range [ 0.01, 100]. Results are presented in Fig. 8.
For graphs a–c, A = 1/2; for graphs d–f, A = 1, and for graphs g–i, A = 2. In graphs a, d,
and g, Q and R vary. In graphs b, e, and h, R = 50 and Q varies. Finally, in graphs c, f, and
i, Q = 50 and R varies.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Cost function of (15) for both regular measurement times and times found by the GA for varying
process noise variance Q and/or measurement noise variance R. It corresponds to a one-dimensional version
of model (1)-(4) with b = 0, G = 1, B = 1, C = 1, d = 0. For a–c, A = 1/2; for d–f, A = 1; for g–i, A = 2. In a,
d, and g, Q and R vary. In b, e, and h, R = 50 and Q varies. In c, f, and i, Q = 50 and R varies

In all cases, the optimal intermittent Kalman predictor gives a smaller cost than with
regular measurements. For the stable system, i.e., A = 1/2 in graphs a–c, the inter-
mittent Kalman predictor gives results very similar to the regular Kalman predictor. In
other cases, i.e., A ∈ {1, 2} in graphs d–i, the improvement due to the use of inter-
mittent measurements instead of regular ones is greater. This improvement increases
when R increases. The unstable case, i.e., A = 2 in graphs g–i, is the one in which the
improvement is the most significant. This improvement increases when either Q or R
increase.

3.6 Quality or quantity of measurements: an example

In this section, we study the compromise between few precise measurements and many
more noisy measurements presented in Section 2.7. The problem (30) is studied for the
dynamical system (31) and (32) for T = 100 time steps. The measurement noise variance
is related to the number of measurements as R = f (N) = Nα for different α > 0. The
larger the α, the more an additional measurement increases the measurement noise.
Figure 9 presents the cost (30) for all N ∈ {1, . . . ,T} and for the regular mea-

surements (14) and the irregular measurements found by the genetic algorithm. In
each case, the minimum is indicated. Results are presented for all values of α ∈
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Fig. 9 Cost (30) for all N ∈ {1, . . . , T} and for the regular measurements (14) and the irregular measurements
found by the genetic algorithm (GA). The minimum cost with respect to N is depicted in each case. The
considered dynamic system is (31) and (32) with T = 100 and f (N) = Nα . Results are presented for
α ∈ {0.2, 0.5, 0.75, 1, 1.25, 2, 5}

{0.2, 0.5, 0.75, 1, 1.25, 2, 5}. Firstly, observe that the irregular measurements found by the
GA give smaller cost than regular measurements for all α and all N.
For the tested values of α, the optimal number of measurement times for the regular

measurements is N = 1 when α ≥ 1.25 and N = 20 = T when α ≤ 1. In comparison, for
the intermittent measurements the optimal number of measurements is N = 1 only for
α ≥ 2 and increases progressively when α decreases. These observations illustrate that
when measurements are expensive, i.e., α is high, only few measurements will be acquire.
Conversely, when measurements are cheap, i.e., α is small, many measurements will be
acquired.
Another observation is that the cost difference between the regular measurements and

the intermittent varies with N. When N = T , the regular and intermittent measurements
sets are the same because the only admissible set is the set with all measurement times,
i.e.,M = {0, . . . ,T−1}. More generally, the size of the admissible domain of the optimiza-
tion problem (30) is smaller when N is close to 1 or T. Using intermittent measurements
is most justified when N is between 10 and 60.

4 Conclusion
This paper addresses the problem of selecting the optimal measurement times for Kalman
prediction over a finite time horizon. A random trial algorithm and three variants of
genetic algorithms are proposed to solve it and the genetic algorithm that implements
a count preserving crossover is shown to outperform the others. The tracking perfor-
mances are extensively demonstrated on a numerical example, showing an improvement
in 64% of the cases in comparison with regularly spaced measurement times. Then,
the case of continuous-time systems is considered through a spring-mass system. The
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solution is shown to converge with respect to the discretization step size, making
our method suitable for both discrete-time and continuous-time systems. Finally, the
influence of noise variance is studied in the one-dimensional case, showing that the
improvement is the most significant in the unstable case and when the process noise
becomes important.
Thanks to duality, we have shown that the problem of selecting optimal control times

for a LQR can be reduced to the proposed problem. Then, we studied the optimal
compromise between a lot of noisier measurements and less more precise measurements.
Further work will consider extending this work to the infinite time-horizon case and to

the non-linear case. A reinforcement learning approach will be explored. From an exper-
imental point of view, we will apply our method to the problem of tumor tracking from
X-ray images, as suggested in [34].
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