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Abstract

Most of the cost functions of adaptive filtering algorithms include the square error,
which depends on the current error signal. When the additive noise is impulsive, we
can expect that the square error will be very large. By contrast, the cross error, which
is the correlation of the error signal and its delay, may be very small. Based on this
fact, we propose a new cost function called the mean square cross error for adaptive
filters, and provide the mean value and mean square performance analysis in detail.
Furthermore, we present a two-stage method to estimate the closed-form solutions
for the proposed method, and generalize the two-stage method to estimate the
closed-form solution of the information theoretic learning methods, including least
mean fourth, maximum correntropy criterion, generalized maximum correntropy
criterion, and minimum kernel risk-sensitive loss. The simulations of the adaptive
solutions and closed-form solution show the effectivity of the new method.

Keywords: Adaptive filter, Mean square error (MSE), Maximum correntropy criterion
(MCC), Least mean fourth (LMF), Mean square cross error (MSCE)

1 Introduction
The mean square error (MSE) is probably the most widely used cost function for adap-

tive linear filters [1–5]. The MSE relies heavily on Gaussianity assumptions and per-

forms well for Gaussian noise. Recently, information theoretic learning (ITL) has been

proposed to process non-Gaussian noise. ITL uses the higher-order moments of the

probability density function and may work well for non-Gaussian noise. Inspired by

ITL, some cost functions, such as the maximum correntropy criterion (MCC) [6–11],

improved least sum of exponentials (ILSE) [12], least mean kurtosis (LMK) [13], least

mean fourth (LMF) [14–19], generalized MCC (GMCC) [20], and minimum kernel

risk-sensitive loss (MKRSL) criterion [21, 22] have been presented.

The LMK and LMF are robust to sub-Gaussian noise. One typical sub-Gaussian dis-

tribution is the uniform distribution. The MCC and ILSE are robust to larger outliers

or impulsive noise, which often take relatively more often values that are very close to

zero or very large. This means that impulsive noise has a super-Gaussian distribution

[23, 24].
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Altogether, the distribution of the additive noise in linear filtering can be divided into

three types: Gaussian, super-Gaussian, and sub-Gaussian. Super-Gaussian noise and

sub-Gaussian noise are both non-Gaussian.

From the viewpoint of performance, for example, the steady error, the MSE, MCC,

and LMF work well for Gaussian, super-Gaussian, and sub-Gaussian noise, respectively.

The MSE demonstrates similar performance for the three types of noise under the

same signal-to-noise ratio (SNR). For Gaussian noise, all the algorithms have similar

steady errors. For super-Gaussian noise, the steady error comparison under the same

SNR is MCC < MSE < LMF. For sub-Gaussian noise, the comparison is LMF < MSE <

MCC.

Note that the cost functions of the above algorithms all include the square error,

which is the correlation of the error signal. When impulsive noise is involved, we can

expect that the square error will be very large. By contrast, the cross error (CE), which

is the correlation of the error signal itself and its delay, may be very small for impulsive

noise.

In our early work [25–27], we proposed the mean square cross prediction error to ex-

tract the desired signal in blind source separation (BSS), where the square cross predic-

tion error was much smaller than the square prediction error. In this paper, we

propose a new cost function called the mean square CE (MSCE) for adaptive filtering

to process non-Gaussian noise. We expect that the proposed MSCE algorithm will per-

form well for non-Gaussian noise.

Note that the ITL methods can capture higher-order statistics of data. Thus, it is hard

to directly obtain the corresponding closed-form solutions. We present a two-stage

method to estimate the closed-form solutions for the LMF, MCC, GMCC, MKRSL, and

MSCE.

The contributions of this paper are summarized as follows:

i) We present a new cost function, that is, the MSCE, for adaptive filters, and provide

the mean value and mean square performance analysis in detail.

ii) We propose a two-stage method to estimate the closed-form solution of the pro-

posed MSCE algorithm.

iii) We generalize the two-stage method to estimate the closed-form solution of the

LMF MCC, GMCC, and MKRSL algorithms.

The paper is organized as follows: In Section 2, the problem statement is explained in

detail. In Section 3, the MSCE algorithm is presented with the adaptive algorithm and

closed-form solution. In Section 4, the closed-form solution of the LMF, MCC, GMCC,

and MKRSL are estimated. In Section 5, the mean behavior and mean square behavior

of MSCE are analyzed. Simulations are provided in Section 6. Lastly, a conclusion is

provided in Section 7.

2 Problem formulation
The absolute value of the normalized kurtosis may be considered as one measure of

non-Gaussianity of the error signal. Several definitions for a random variable of zero

means are presented as follows:
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Definition 1 (normalized kurtosis)

The normalized kurtosis of random variable x is defined as

κ4 ¼
E xj j4� �
E2 xj j2� � ‐3 ð1Þ

where x has zero mean.

Definition 2 (sub-Gaussian or platykurtic)

A distribution with negative normalized kurtosis is called sub-Gaussian, platykurtic,

or short-tailed (e.g., uniform).

Definition 3 (super-Gaussian or leptokurtic)

A distribution with positive normalized kurtosis is called super-Gaussian, leptokurtic,

or heavy-tailed (e.g., Laplacian).

Definition 4 (mesokurtic)

A zero-kurtosis distribution is called mesokurtic (e.g., Gaussian).

When the linear filtering problem is considered, there is an input vector u ∈ℝM, with

unknown parameter wo ∈ℝ
M and desired response d ∈ℝ1. Data d(i) are observed at

each time point i by the linear regression model:

d ið Þ ¼ wT
o u ið Þ þ v ið Þ; i ¼ 1; 2;⋯; L; ð2Þ

where v is zero-mean background noise with variance σ2v and L is the length of the se-

quence. The error signal for the linear filter is defined as

e ið Þ ¼ d ið Þ−wTu ið Þ; ð3Þ

where w is the estimate of wo. The distribution of the additive noise in linear filtering

can be divided into three types: Gaussian, super-Gaussian, and sub-Gaussian. Super-

Gaussian noise and sub-Gaussian noise are both non-Gaussian.

In this research, we made the following assumptions:

A1) The additive noise is white, that is,

E v ið Þv jð Þf g ¼ 0; i≠ j: ð4Þ

A2) Inputs u(t) at different time moments (i, j) are uncorrelated:
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E uH ið Þu jð Þ� � ¼ E uT ið Þu jð Þ� � ¼ 0; i≠ j: ð5Þ

A3) The inputs and additive noise at different time moments (i, j) are uncorrelated:

E uH ið Þv jð Þ� � ¼ 0; i≠ j: ð6Þ

The linear filtering algorithms of the MSE, MCC, and LMF are as follows: the cost

function based on the MSE is given by

JMSE wð Þ ¼ E e2
� �

; ð7Þ

where E denotes the expectation operator. The gradient is defined as

∂ JMSE

∂w
¼ −E euf g: ð8Þ

At the stationary point, E{eu} = 0. The closed-form solution denoted by wMSE is given

by the Wiener–Hopf equation:

wMSE ¼ R uð Þ½ �−1 Rdu½ �;
R uð Þ ¼ E uuH

� �
;

Rdu ¼ E duf g:
ð9Þ

The corresponding stochastic gradient descent, or LMS, algorithm is

wLMS iþ 1ð Þ ¼ wLMS ið Þ þ μe ið Þu ið Þ ð10Þ

where μdenotes the step size and μ > 0.

The cost function based on the LMF is given by

JLMF wð Þ ¼ E e4
� �

: ð11Þ

The corresponding stochastic gradient descent algorithm is

wLMF iþ 1ð Þ ¼ wLMF ið Þ þ μe3 ið Þu ið Þ: ð12Þ

The cost function based on the correntropy of the error, also called the MCC, is

given by

JMCC wð Þ ¼ E exp −
e2

2σ2

� �� �
ð13Þ

where σdenotes the kernel bandwidth. The corresponding stochastic gradient descent

algorithm is

wMCC iþ 1ð Þ ¼ wMCC ið Þ þ μ exp −
e2 ið Þ
2σ2

� �
e ið Þu ið Þ: ð14Þ

The cost function based on the GMCC is given by

JGMCC wð Þ ¼ γα; β 1‐E exp −λ e ið Þj jαð Þ½ �f g: ð15Þ

The corresponding stochastic gradient descent algorithm is

Zhang et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:24 Page 4 of 20



wGMCC iþ 1ð Þ ¼ wGMCC ið Þþ
μλα exp −λ e ið Þj jαð Þ e ið Þj jα‐1 sign e ið Þð Þu ið Þ: ð16Þ

The cost function based on the MKRSL is given by

JMKRSL wð Þ ¼ 1
Lλ

XL
i¼1

exp λ 1−κσ e ið Þð Þð Þð Þ;

κσ e ið Þð Þ ¼ exp −
e2 ið Þ
2σ2

� �
:

ð17Þ

The corresponding stochastic gradient descent algorithm is

wMKRSL iþ 1ð Þ ¼ wMKRSL ið Þþ
μ
σ2

exp λ 1−κσ e ið Þð Þð Þð Þκσ e ið Þð Þe ið Þu ið Þ: ð18Þ

3 Methods
3.1 Adaptive algorithm of the MSCE

The CE can be expressed as e(i)e(i-q), where q denotes the error delay. Because the CE

may be negative, we provide a new cost function, that is, the MSCE, as

JMSCE wð Þ ¼ 1
2
E e2 ið Þe2 i−qð Þ� � ð19Þ

where

e ið Þ ¼ d ið Þ−wTu ið Þ;
e i−qð Þ ¼ d i−qð Þ−wTu i−qð Þ: ð20Þ

The gradient of the MSCE can be derived as

∂ JMSCE

∂w
¼ −E e2 i−qð Þ e ið Þu ið Þ½ � þ e2 ið Þ e i−qð Þu i−qð Þ½ �� �

: ð21Þ

Then, the corresponding stochastic gradient descent algorithm is

wMSCE iþ 1ð Þ ¼ wMSCE ið Þþ
μe2 i−qð Þe ið Þu ið Þ þ μe2 ið Þe i−qð Þu i−qð Þ: ð22Þ

Equation (19) may not be robust against outliers. We provide the generalized MSCE

(GMSCE) as

JMSCE wð Þ ¼ E G e ið Þ½ �G e i−qð Þ½ �f g ð23Þ

where G(x) is an x2-like function. The stochastic gradient descent algorithm for the

GMSCE is

wGMSCE iþ 1ð Þ ¼ wGMSCE ið Þ
þμG e ið Þ½ �g e i−qð Þ½ �u i−qð Þ
þμG e i−qð Þ½ �g e ið Þ½ �u ið Þ

ð24Þ

where g(.) is the derivative of G(.).
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3.2 A suitable criterion for cost function

Combining the references of ICA [23, 24, 28–30] with those of the MCC [6–11], ILSE

[12], and LMF [14–19], we determined that there are three cost functions in the fast

ICA [30] algorithm:

G1 uð Þ ¼ 1
α1

log cosh α1uð Þ; ð25Þ

G2 uð Þ ¼ −
1
α2

exp −
α2u2

2σ2

� �
; ð26Þ

G3 uð Þ ¼ 1
4
u4: ð27Þ

G2(u) is used to separate the super-Gaussian source in ICA, and works as the cost

function of the MCC. G3(u) is used to separate the sub-Gaussian source in ICA when

there are no outliers, and works as the cost function of the LMF. G1(u) has not been

used in adaptive filtering, but cosh(α1u) works as the cost function of the ILSE.

This motivated us to explore ICA or BSS algorithms to determine a suitable criterion

for adaptive filtering. Here, we use G1(u) in the proposed GMSCE algorithm:

G xð Þ ¼ 1
α

log cosh αxð Þ ð28Þ

where 1 ≤ α ≤ 2, and α = 1in the simulations. The derivative of G(x) is

g xð Þ ¼ tanh αxð Þ: ð29Þ

Substituting (28)–(29) into (24) with α = 1, we obtain

wGMSCE iþ 1ð Þ ¼ wGMSCE ið Þ
þμ log cosh e ið Þ½ � tanh e i−qð Þ½ �u i−qð Þ
þμ log cosh e i−qð Þ½ � tanh e ið Þ½ �u ið Þ:

ð30Þ

3.3 Closed-form solution of the MSCE and GMSCE

We can estimate the closed-form solution of the MSCE from the stationary point

∂JMSCE/∂w = 0:

∂ JMSCE

∂w
¼ −E e2 i−qð Þ e ið Þu ið Þ½ � þ e2 ið Þ e i−qð Þu i−qð Þ½ �� � ¼ 0: ð31Þ

Substituting (20) into (31), we obtain

∂ JMSCE

∂w
¼ −E e2 i−qð Þ d ið Þu ið Þ−u ið ÞuT ið Þw� 	� �

−E e2 ið Þ d i−qð Þu i−qð Þ−u i−qð ÞuT i−qð Þw� 	� � ¼ 0:
ð32Þ

It is difficult to solve w from (32) because e2(i) contains the second-order term of w.

We present a two-stage method to estimate w.

In the first stage, we estimate e(i) and e(i − q) from (9):

wMSE ¼ R uð Þ½ �−1 Rdu½ �;
ê i−qð Þ ¼ d i−qð Þ−wT

MSEu i−qð Þ;
ê ið Þ ¼ d ið Þ−wT

MSEu ið Þ; i ¼ 1; 2;⋯; L
ð33Þ

where êðiÞand êði−qÞ are the estimates of e(i) and e(i − q), respectively.
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In the second stage, we estimate w from (32).

If we define

F1 wð Þ ¼ ∂ JMSCE

∂w
;

then we can rewrite (33) as

F1 wð Þ ¼ −E ê2 i−qð Þ d ið Þu ið Þ−u ið ÞuT ið Þw� 	� �
−E ê2 ið Þ d i−qð Þu i−qð Þ−u i−qð ÞuT i−qð Þw� 	� � ¼ 0

ð34Þ

where F1(w) is the estimate of F1(w).

Note that the expectation can be estimated by averaging over the samples using

E f xð Þf g ≈
1
L

XL
i¼1

f xið Þ: ð35Þ

Equation (34) can be estimated by

F1 wð Þ ≈ −
1
L

XLþq

i¼qþ1

ê2 i−qð Þ d ið Þu ið Þ−u ið ÞuT ið Þw� 	� �

−
1
L

XLþq

i¼qþ1

ê2 ið Þ d i−qð Þu i−qð Þ−u i−qð ÞuT i−qð Þw� 	� �

¼ −
1
L

XLþq

i¼qþ1

ê2 i−qð Þd ið Þu ið Þ þ ê2 ið Þd i−qð Þu i−qð Þ� �

þ 1
L

XLþq

i¼qþ1

ê2 i−qð Þu ið ÞuT ið Þ þ ê2 ið Þu i−qð ÞuT i−qð Þ� �
w ¼ 0:

ð36Þ

Furthermore, we have

1
L

XLþq

i¼qþ1

ê2 i−qð Þd ið Þu ið Þ þ ê2 ið Þd i−qð Þu i−qð Þ� � ¼

1
L

XLþq

i¼qþ1

ê2 i−qð Þu ið ÞuT ið Þ þ ê2 ið Þu i−qð ÞuT i−qð Þ� �
w:

ð37Þ

If we define Rdu(q) and Ruu(q) as

Rdu qð Þ ¼ E e2 i−qð Þd ið Þu ið Þ þ e2 ið Þd i−qð Þu i−qð Þ� �
;

Ruu qð Þ ¼ E e2 i−qð Þu ið ÞuT ið Þ þ e2 ið Þu i−qð ÞuT i−qð Þ� �
;

ð38Þ

then we can estimate them as

Rdu qð Þ ¼ 1
L

XLþq

i¼qþ1

ê2 i−qð Þd ið Þu ið Þ þ ê2 ið Þd i−qð Þu i−qð Þ� �
;

Ruu qð Þ ¼ 1
L

XLþq

i¼qþ1

ê2 i−qð Þu ið ÞuT ið Þ þ ê2 ið Þu i−qð ÞuT i−qð Þ� �
;

ð39Þ

where Rdu(q) and Ruu(q) are the estimates of Rdu(q) and Ruu(q), respectively.

We can estimate the closed-form solution of the MSCE as
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wclose MSCE ¼ Ruu qð Þ½ �−1 Rdu qð Þ½ �: ð40Þ

Note than tanh(x) ≈ x when x is small. We can estimate the closed-form solution of

the GMSCE in the same way.

If we define RGdu(q) and RGuu(q) as

RGdu qð Þ ¼ E G e i−qð Þð Þd ið Þu ið Þ þ G e ið Þð Þd i−qð Þu i−qð Þf g;
RGuu qð Þ ¼ E G e i−qð Þð Þu ið ÞuT ið Þ þ G e ið Þð Þu i−qð ÞuT i−qð Þ� �

;
ð41Þ

then we can estimate them as

RGdu qð Þ ¼ 1
L

XLþq

i¼qþ1

G ê i−qð Þð Þd ið Þu ið Þ þ G ê ið Þð Þd i−qð Þu i−qð Þf g;

RGuu qð Þ ¼ 1
L

XLþq

i¼qþ1

G ê i−qð Þð Þu ið ÞuT ið Þ þ G ê ið Þð Þu i−qð ÞuT i−qð Þ� �
:

ð42Þ

We can estimate the closed-form solution of the GMSCE as

wclose GMSCE ¼ RGuu qð Þ½ �−1 RGdu qð Þ½ �: ð43Þ

4 Closed-form solution of the LMF, MCC, GMCC, and MKRSL
Based on the two-stage methods, we can also estimate the closed solution of the LMF,

MCC, GMCC, and MKRSL algorithms as follows.

4.1 Closed-form solution of the LMF

We can estimate the closed-form solution of the LMF from the stationary point ∂JLMF/

∂w = 0:

∂ JLMF

∂w
¼ −E e2 ið Þ d−wTu ið Þ� 	

u ið Þ� �
: ð44Þ

In the first stage, we estimate e(i) from (9):

wMSE ¼ R uð Þ½ �−1 Rdu½ �
ê ið Þ ¼ d ið Þ−wT

MSEu ið Þ; i ¼ 1; 2;⋯; L:
ð45Þ

In the second stage, we estimate w from (44).

If we define

F2 wð Þ ¼ ∂ JLMF

∂w
; ð46Þ

then we can rewrite (44) as

F2 wð Þ ¼ −E ê2 ið Þ d ið Þu ið Þ−u ið ÞuT ið Þw� 	� � ð47Þ

where F2(w) is the estimate of F2(w).

With the help of (35), Eq. (47) can be estimated by

F1 wð Þ ≈ −
1
L

XL
i¼1

ê2 ið Þ d ið Þu ið Þ−u ið ÞuT ið Þw� 	� �
: ð48Þ

If we define Rdu2 and Ruu2 as
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Rdu2 ¼ E e2 ið Þd ið Þu ið Þ� �
;

Ruu2 ¼ E e2 ið Þu ið ÞuT ið Þ� �
;

ð49Þ

then we can estimate them as

Rdu2 ¼ 1
L

XL
i¼1

ê2 ið Þd ið Þu ið Þ� �
;

Ruu2 ¼ 1
L

XL
i¼1

ê2 ið Þu ið ÞuT ið Þ� �
;

ð50Þ

where Rdu2 and Ruu2 are the estimates of Rdu2 and Ruu2, respectively.

We can estimate the closed-form solution of the LMF as

wclose LMF ¼ Ruu2½ �−1 Rdu2½ �: ð51Þ

4.2 Closed-form solution of the MCC

We can estimate the closed-form solution of the MCC from the stationary point

∂JMCC/∂w = 0:

∂ JMCC

∂w
¼ 1

σ2
E exp −e2 ið Þ=2σ2
 �

d−wTu ið Þ� 	
u ið Þ� � ¼ 0: ð52Þ

In the first stage, we estimate e(i) from (45). In the second stage, we estimate w from

(52).

If we define

F3 wð Þ ¼ σ2
∂ JMCC

∂w
; ð53Þ

then we can rewrite (52) as

F3 wð Þ ¼ E exp −ê2 ið Þ=2σ2
 �
d ið Þu ið Þ−u ið ÞuT ið Þw� 	� � ð54Þ

where F3(w) is the estimate of F3(w).

With the help of (35), Eq. (54) can be estimated by

F1 wð Þ ≈ −
1
L

XL
i¼1

exp −ê2 ið Þ=2σ2
 �
d ið Þu ið Þ−u ið ÞuT ið Þw� 	� �

: ð55Þ

Denote by

Rdu3 ¼ 1
L

XL
i¼1

exp −ê2 ið Þ=2σ2
 �
d ið Þu ið Þ� �

;

Ruu3 ¼ 1
L

XL
i¼1

exp −ê2 ið Þ=2σ2
 �
u ið ÞuT ið Þ� �

:

ð56Þ

We can estimate the closed-form solution of the MCC as

wclose MCC ¼ Ruu3½ �−1 Rdu3½ � ð57Þ

4.3 Closed-form solution of the GMCC

The closed-form solution of the GMCC is given by [20]:
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wclose GMCC ¼ E h1 e ið Þð Þu ið ÞuT ið Þ
 �� 	−1
E h1 e ið Þð Þd ið Þu ið Þð Þ½ �;

h1 e ið Þð Þ ¼ exp −λ e ið Þj jαð Þ e ið Þj jα−2: ð58Þ

In the first stage, we estimate e(i) from (45), and we have

h1 ê ið Þð Þ ¼ exp −λ ê ið Þj jαð Þ ê ið Þj jα−2: ð59Þ

In the second stage, we estimate w from (59). Denote by

Rdu4 ¼ 1
L

XL
i¼1

h1 ê ið Þð Þd ið Þu ið Þf g;

Ruu4 ¼ 1
L

XL
i¼1

h1 ê ið Þð Þu ið ÞuT ið Þ� �
:

ð60Þ

We can estimate the closed-form solution of the GMCC as

wclose GMCC ¼ Ruu4½ �−1 Rdu4½ � ð61Þ

4.4 Closed-form solution of the MKRSL

The closed-form solution of the MKRSL is given by [22]:

wclose MKRSL ¼ E h2 e ið Þð Þu ið ÞuT ið Þ
 �� 	−1
E h2 e ið Þð Þd ið Þu ið Þð Þ½ �;

h2 e ið Þð Þ ¼ exp λ 1−κσ e ið Þð Þð Þð Þκσ e ið Þð Þ: ð62Þ

In the first stage, we estimate e(i)from (45), and we have

h2 ê ið Þð Þ ¼ exp λ 1−κσ ê ið Þð Þð Þð Þκσ ê ið Þð Þ: ð63Þ

In the second stage, we estimate w from (63). Denote by

Rdu5 ¼ 1
L

XL
i¼1

h2 ê ið Þð Þd ið Þu ið Þf g;

Ruu5 ¼ 1
L

XL
i¼1

h2 ê ið Þð Þu ið ÞuT ið Þ� �
:

ð64Þ

We can estimate the closed-form solution of the MKRSL as

wclose MKRSL ¼ Ruu5½ �−1 Rdu5½ �: ð65Þ

5 Performance analysis of MSCE
5.1 Mean value behavior

To compare the performance of the MSE and MSCE, we define the total weight error

as

E ε ið Þj j2� � ¼ E εT ið Þε ið Þ� � ð66Þ

where

ε ið Þ ¼ wo−wMSCE ið Þ: ð67Þ

Substituting (22) into (67), we obtain
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ε iþ 1ð Þ ¼ ε ið Þ−μe2 i−qð Þ u ið ÞuT ið Þε ið Þ þ u ið Þv ið Þ� 	
−μe2 ið Þ u i−qð ÞuT i−qð Þε ið Þ þ u i−qð Þv i−qð Þ� 	
¼ I−μe2 ið Þu i−qð ÞuT i−qð Þ−μe2 i−qð Þu ið ÞuT ið Þ� 	

ε ið Þ
− μe2 ið Þv i−qð Þu i−qð Þ þ μe2 i−qð Þv ið Þu ið Þ� 	 ð68Þ

where I is the identity matrix.

Substituting (39) into (67), we obtain

E ε iþ 1ð Þf g ¼ I−μRuu qð Þ½ �E ε ið Þf g
−μE e2 ið Þv i−qð Þu i−qð Þ þ e2 i−qð Þv ið Þu ið Þ� 	

:
ð69Þ

Note that Ruu(q) is positive definite; thus, (69) is stable for a sufficiently small step

size μ.

The eigenvalue decomposition of Ruu(q) is Ruu(q) =UΛUT. Then, we have the first-

order moment of ε(i)

E ε ið Þf g ≈ U I−μΛ½ �iUT ε 0ð Þ;
Λ ¼ diag d1; d2;⋯dMf g: ð70Þ

Let dmax denote the maximum eigenvalue of Ruu(q). The step size should be selected

as

0 < μ < 2=dmax ð71Þ

so that the iterations will converge.

5.2 Mean square behavior

If we define

δ ið Þ ¼ UT ε ið Þ;
U ¼ U1; U2;⋯; UM½ �; ð72Þ

where Um is the mth column of U, then we can rewrite (56) as

δ iþ 1ð Þ ≈ I−μΛ½ �δ ið Þ
−μUT e2 ið Þv i−qð Þu i−qð Þ þ e2 i−qð Þv ið Þu ið Þ� 	

;
ð73Þ

which is composed of M decoupled difference equations:

δm iþ 1ð Þ ≈ 1−μdmð Þδm ið Þ
−μUT

m e2 ið Þv i−qð Þu i−qð Þ þ e2 i−qð Þv ið Þu ið Þ� 	
;

m ¼ 1; 2;⋯;M:
ð74Þ

The second-order moment of δm(i + 1) can be derived from (74) as

E δ2m iþ 1ð Þ� �
≈ 1−μdmð Þ2E δ2m ið Þ� �

þμ2E e2 ið Þv2 i−qð ÞUT
me

2 ið Þu i−qð ÞuT i−qð ÞUm
� �

þμ2E e2 i−qð Þv2 ið ÞUT
me

2 i−qð Þu ið ÞuT ið ÞUm
� �

:

ð75Þ

From (2), (3), and (67), we obtain

e ið Þ ¼ εT ið Þu ið Þ þ v ið Þ;
e i−qð Þ ¼ εT ið Þu i−qð Þ þ v i−qð Þ: ð76Þ

Thus, we have
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e2 ið Þ ¼ uT ið Þε ið ÞεT ið Þu ið Þ þ v2 ið Þ ≈ v2 ið Þ;
e2 i−qð Þ ¼ uT i−qð Þε ið ÞεT ið Þu i−qð Þ þ v2 i−qð Þ ≈ v2 i−qð Þ: ð77Þ

Substituting (77) into (75) yields

E δ2m iþ 1ð Þ� �
≈ 1−μdmð Þ2E δ2m ið Þ� �

þμ2E e2 ið Þe2 i−qð ÞUT
me

2 ið Þu i−qð ÞuT i−qð ÞUm
� �

þμ2E e2 i−qð Þe2 ið ÞUT
me

2 i−qð Þu ið ÞuT ið ÞUm
� �

:

ð78Þ

Let

ruu qð Þ ¼ e2 i−qð Þu ið ÞuT ið Þ þ e2 ið Þu i−qð ÞuT i−qð Þ; ð79Þ

then we have

Ruu qð Þ ¼ E ruu qð Þf g: ð80Þ

Substituting (79) into (80) yields

E δ2m iþ 1ð Þ� �
≈ 1−μdmð Þ2E δ2m ið Þ� �

þμ2E e2 ið Þe2 i−qð ÞUT
m ruu qð Þ½ �Um

� �
≈ 1−μdmð Þ2E δ2m ið Þ� �
þμ2E e2 ið Þe2 i−qð Þ� �

E UT
m ruu qð Þ½ �Um

� �
¼ 1−μdmð Þ2E δ2m ið Þ� �
þμ2E e2 ið Þe2 i−qð Þ� �

UT
mRuu qð ÞUm:

ð81Þ

Note that UT
mRuuðqÞUm ¼ dm, and we have

E δ2m iþ 1ð Þ� �
≈ 1−μdmð Þ2E δ2m ið Þ� �

þμ2E e2 ið Þe2 i−qð Þ� �
dm:

ð82Þ

Then the second-order moment of δm(i + 1) can be rewritten as

E δ2m ið Þ� �
≈ 1−μdmð Þ2iE δ2m 0ð Þ� �

þ
Xi

j¼0

1−μdmð Þ2 jμ2dmE e2 ið Þe2 i−qð Þ� �

¼ 1−μdmð Þ2iE δ2m 0ð Þ� �
þ 1− 1−μdmð Þ2i

2−μdmð Þμdm
μ2dmE e2 ið Þe2 i−qð Þ� �

¼ 1−μdmð Þ2iE δ2m 0ð Þ� �
þ 1− 1−μdmð Þ2i

2−μdmð Þ μE e2 ið Þe2 i−qð Þ� �
≈ 1−μdmð Þ2iE δ2m 0ð Þ� �
þ 1− 1−μdmð Þ2i

2−μdmð Þ μE v2 ið Þv2 i−qð Þ� �
:

ð83Þ

Thus, the steady state error of the MSCE algorithm is given by

lim
i→∞

XM
m¼1

E δ2m ið Þ� �
≈

XM
m¼1

1
2−μdmð Þ μE v2 ið Þv2 i−qð Þ� �

: ð84Þ

When μ < < 1/dmax, we have
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lim
i→∞

XM
m¼1

E δ2m ið Þ� �
≈

1
2
μME v2 ið Þv2 i−qð Þ� �

: ð85Þ

For comparison, we can write the steady state error of the MSE algorithm as

lim
i→∞

XM
m¼1

E δ2m ið Þ� �
≈

1
2
μME v2 ið Þ� �

: ð86Þ

For impulsive noise, its variance E{v2(i)} may be very large, but its MSCE E{v2(i)v2(i −

q)} may be small. Thus, the proposed MSCE algorithm may have a smaller steady error

than the MSE for impulsive noise.

5.3 Selection of delay q

After obtaining the estimate of e(i) using (33), we can estimate the MSCE for q = 1, 2,

⋯, Q:

JMSCE w; qð Þ ≈ 1
2L

XLþq

i¼qþ1

ê2 i−qð Þê2 ið Þ� � ð87Þ

whereJMSCE is the estimate of JMSCE. Because the mean-square performance of the

MSCE algorithm is proportional to E{v2(i)v2(i − q)} according to (85), we should select

q with the smallest JMSCEin (87).

6 Simulation results and discussion
In this section, the performance of the MSE, MSCE, GMSCE, LMF, MCC, GMCC, and

MKRSL will be evaluated by simulations. All the simulation points were averaged over

100 independent runs. The performance of the adaptive solution was estimated by the

steady-state mean-square deviation (MSD)

MSD ¼ lim
i→∞

E wo−w ið Þk k22
� �

: ð88Þ

The performance of the closed-form solution is

MSD ¼ wo−wk k22: ð89Þ

We concluded that the smaller the MSD, the better the performance.

6.1 Closed-form solutions comparison

The closed-form solutions of the MSE, MSCE, GMSCE, LMF, MCC, GMCC, and

MKRSL are expressed by (9), (40), (43), (51), (57), (61), and (65), respectively. The

GMCC with α = 2, 4, and 6 are denoted by GMCC1, GMCC2, and GMCC3, respect-

ively. The MKRSL with λ = 0.1 and 32 are denoted by MKRSL1 and MKRSL2,

respectively.

In the experiments, we compared the MSDs of the closed-form solutions of the ten

algorithms with different non-Gaussian noises. The input filter order was M = 5, and

the sample size had length L = 3000. When the SNRs are ranged from − 20 to 20 dB,

we obtain similar performance comparisons. Here the SNR was set to 6 dB.

Figures 1 and 2 partly show the four types of sub- and super-Gaussian noise,

respectively.
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Fig. 1 Four types of sub-Gaussian noises

Fig. 2 Four types of super-Gaussian noises
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Figure 1a–c shows the periodic noises, and Fig. 1d shows the noise with uniform dis-

tribution. The kurtoses of the noises shown in Fig. 1a–d are − 1.5, − 1.0, − 1.4, and −

1.2, respectively.

Figure 2a, b shows the periodic super-Gaussian noises, and Fig. 2c, d shows impulsive

noise. The impulsive noise v(i) is generated as v(i)=b(i)*G(i), where b(i) is Bernoulli

process with a probability of success P{b(i)=1}=p. G(i) in Fig. 2c is zero-mean Rayleigh

noise, and G(i) in Fig. 2d is zero-mean Gaussian noise. The kurtoses of the noises

shown in Fig. 2a–d are 3.0, 4.1, 14.4, and 7.3, respectively.

The MSDs of the closed-from solutions for sub- and super-Gaussian noise were

shown in Tables 1 and 2, respectively. From the above two tables, we can observe the

following three conclusions: firstly, the existing algorithms (MSE, LMF, MCC, GMCC

and MKRSL) do not perform better than the MSE method for sub and super-Gaussian

noise simultaneously. The MCC, GMCC1, MKRSL1 and MKRSL2 performs better

(worse) than the MSE method for super-Gaussian (sub-Gaussian) noise, whereas the

LMF and GMCC2 perform better (worse) than the MSE for sub-Gaussian (super-

Gaussian) noise. Simulations demonstrated that the proposed MSCE and GMSCE algo-

rithm may perform better than the MSE algorithm both for sub and super-Gaussian

noise. Secondly, the MCC performs as well as the MKRSL, whose parameters,λ and σ,

did not influence the MSDs of the closed-form solution. Thirdly, the parameters,λ and

α, have great influence on the GMCC. When α = 2 and λ = 0.031, GMCC1 performs

better than the MSE for super-Gaussian noise. When α = 4 and λ = 0.005, GMCC2 per-

forms better than the MSE for sub-Gaussian noise.

6.2 Adaptive solution for sub-Gaussian noise

In the simulation, the input filter order was M = 5, the sample size had length L = 10,

000 and SNR was set to 6 dB. The proposed algorithms (22) and (30) are denoted by

MSCE and GMSCE, respectively.

Table 1 The MSDs (dB) of the closed-form solutions of the MSCE, GMSCE, MSE, LMF, and MCC
with different sub-Gaussian noises at SNR = 6 dB (L = 3000)

Algorithms Sub-G noise
(1)

Sub-G noise
(2)

Sub-G noise
(3)

Sub-G noise
(4)

Averaged
MSDs

MSCE − 31.0 − 28.4 − 31.4 − 26.9 − 29.4

GMSCE − 31.0 − 28.4 − 31.1 − 27.1 − 29.4

MSE − 28.4 − 28.6 − 28.6 − 28.2 − 28.5

LMF − 31.3 − 26.7 − 31.4 − 30.2 − 29.9

MCC (σ = 1) − 24.7 − 25.7 − 24.9 − 25.7 − 25.3

GMCC1 (α = 2, λ =
0.031)

− 28.0 − 28.4 − 28.2 − 28.0 − 28.2

GMCC2 (α = 4, λ =
0.005)

− 32.0 − 27.1 − 31.7 − 30.5 − 30.3

GMCC3 (α = 6, λ =
0.001)

− 20.7 − 19.2 − 20.7 − 21.1 − 20.4

MKRSL1 (λ = 0.1, σ = 1) − 24.7 − 25.8 − 24.9 − 25.7 − 25.3

MKRSL2 (λ = 32, σ =
1.7)

− 24.7 − 25.8 − 24.9 − 25.7 − 25.3
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For sub-Gaussian noise shown in Fig. 1a, d, we compared the performance of the

LMS, LMF, MCC, GMCC1-3, MKRSL1-2, MSCE, and GMSCE. The step-sizes were

chosen such that all the algorithms had almost the same initial convergence speed, and

other parameters (if any) for each algorithm were experimentally selected to achieve

desirable performance.

The comparisons were shown in Figs. 3 and 4. From the two figures we can observe:

Table 2 The MSDs of the closed-form solutions of the MSCE, GMSCE, MSE, LMF, and MCC with
different super-Gaussian noises at SNR = 6 dB (L = 3000)

Algorithms Super-G noise
(1)

Super-G noise
(2)

Super-G noise
(3)

Super-G noise
(4)

Averaged
MSDs

MSCE − 78.4 − 73.2 − 22.2 − 22.6 − 49.1

GMSCE − 74.4 − 71.7 − 23.6 − 23.8 − 48.4

MSE − 28.0 − 28.2 − 28.2 − 27.5 − 28.0

LMF − 14.9 − 12.4 − 1.62 − 7.13 − 9.01

MCC (σ = 1) − 36.5 − 36.5 − 35.9 − 37.1 − 36.5

GMCC1 (α = 2, λ =
0.031)

− 28.9 − 29.1 − 31.1 − 29.6 − 29.7

GMCC2 (α = 4, λ =
0.005)

− 14.4 − 12.4 − 9.12 − 12.0 − 12.0

GMCC3 (α = 6, λ =
0.001)

− 14.4 − 9.12 − 5.68 − 9.63 − 9.71

MKRSL1 (λ = 0.1, σ =
1)

− 36.5 − 36.5 − 35.9 − 37.1 − 36.5

MKRSL2 (λ = 32, σ =
1.7)

36.5 − 36.5 − 35.9 − 37.1 − 36.5

Fig. 3 Comparisons of the algorithms under sub-Gaussian noise shown in Fig. 1a
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First, the GMCC1-3, LMF, and MSCE performed better than LMS for sub-Gaussian

noises. GMCC1 and GMCC2 perform best among the algorithms.

Second, the MKRSL1-2 and MCC performed worse than the LMS. The performance

curves of MKRSL1 and MCC were almost overlapped.

Third, the performance of the adaptive solution was not always consistent with that

of the closed-form solution. Table 1 showed that the closed-form solution of GMCC3

was worse than MSE, but the adaptive solution of GMCC3 was better than MSE. It

may be hard for each algorithm to achieve a good tradeoff between the same initial

convergence speed and the desirable performance (steady-state error).

6.3 Adaptive solution for super-Gaussian noise

In the simulations, the input filter order was M = 5, the sample size had length L = 10,

000 and SNR was set to 6 dB. The step-sizes were chosen such that all the algorithms

had almost the same initial convergence speed.

For the super-Gaussian noise shown in Fig. 2a, d, we compared the performance of

the LMS, LMF, MCC, GMCC1-3, MKRSL1-2, MSCE, and GMSCE. The comparisons

were shown in Figs. 5 and 6. From the two figures we can observe:

First, the proposed MSCE and GMSCE performed much better than other algorithms

for the periodic super-Gaussian noise shown in Fig. 2a. The MSCE performed a litter

better than the LMS for impulsive noise shown in Fig. 2d.

Second, the MKRSL1 and MCC had almost the same performance, the two algo-

rithms performed a little better than the LMS.

Fig. 4 Comparisons of the algorithms under sub-Gaussian noise shown in Fig. 1d
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Fig. 5 Comparisons of the algorithms under super-Gaussian noise shown in Fig. 2a

Fig. 6 Comparisons of the algorithms under super-Gaussian noise shown in Fig. 2d
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Third, the LMF, GMCC1-3, and MKRSL2 performed worse than the LMS, though

the closed-form solutions of the GMCC2 and MKRSL2 performed better than the

LMS.

Combining the above simulations in this section, we can find that each algorithm

may have its good points, and no algorithms can perform best for all kinds of noise.

Dividing the additive noise into three types will be helpful to select the suitable algo-

rithm for real applications.

7 Conclusions
This paper proposes a new cost function called the MSCE for adaptive filters, and pro-

vided the mean value and mean square performance analysis in detail. We have also

presented a two-stage method to estimate the closed-form solutions for the MSCE

method, and generalize the two-stage method to estimate the closed-form solution of

the information theoretic learning methods, such as LMF, MCC, GMCC, and MKRSL.

The additive noise in adaptive filtering is divided into three types: Gaussian, sub-

Gaussian, and super-Gaussian. The existing algorithms do not perform better than the

mean square error method for sub and super-Gaussian noise simultaneously. The

MCC, GMCC1, MKRSL1 and MKRSL2 performs better (worse) than the MSE method

for super-Gaussian (sub-Gaussian) noise, whereas the LMF and GMCC2 perform better

(worse) than the MSE for sub-Gaussian (super-Gaussian) noise. Simulations demon-

strated that the proposed MSCE and GMSCE algorithm may perform better than the

MSE algorithm both for sub and super-Gaussian noise.

In the future work, the MSCE algorithm may be extended to Kalman filtering,

complex-valued filtering, distributed estimation, and non-linear filtering.
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