
EURASIP Journal on Advances
in Signal Processing

Wang and Li EURASIP Journal on Advances in Signal
Processing         (2021) 2021:32 
https://doi.org/10.1186/s13634-021-00745-3

RESEARCH Open Access

An effective localization algorithm for
moving sources
Hao Wang and Liping Li*

*Correspondence:
liping_li@ahu.edu.cn
Key Lab. of Intelligent Computing
and Signal Processing of MOE of
China, Anhui University, Hefei, China

Abstract

By utilizing the time difference of arrival (TDOA), the frequency difference of arrival
(FDOA), and the differential Doppler rate (DDR) measurements from sensors, this paper
proposes an effective moving source localization algorithm with closed solutions.
Instead of employing the traditional two-step weighted least squares (WLS) process,
the Lagrange multiplier technique is employed in the first step to obtain the initial
solution. This initial solution yields a better solution than the existing solution because
the dependence among the variables are taken into account. The initial solution is
further refined in the second step. The simulation results verify the effectiveness of the
proposed algorithm when compared with the relevant existing algorithms.

Keywords: Source localization, Time difference of arrival (TDOA), Frequency difference
of arrival (FDOA), Differential doppler rate (DDR), Lagrange multiplier, Weighted least
squares (WLS)

1 Introduction
Passive location has been extensively employed in many fields in the past decades, such
as unmanned aerial vehicle, surveillance, navigation, and radar [1–5]. In practical, passive
location can be solved by taking into account of the time of arrival (TOA), TDOA, FDOA,
and the angle of arrival (AOA) [6–11].
For the stationary source, the TDOA between the source and a set of sensors can be

used to estimate its position [12]. Ho et al. employ both TDOA and FDOA to locate
stationary sources [13] to improve the location accuracy. Later, in order to extend to a
moving source, they proposed the classical two-step weighted least squares (WLS) algo-
rithm, which can estimate the velocity of the source while estimating its position [14].
Noroozi et al. [15] improves the second step of the algorithm of [14]. The process in
[16] utilizes Taylor series to solve the nonlinear relationship between TDOA, FDOA, and
source. But it requires an appropriate initial solution, and the converged result may not be
accurate. The Qusi-Newton algorithm [17] converts the location problem into the con-
strained total least squares (CTLS) problem and derives an iterative solution. The work
of [18–20] tries to employ the Lagrange multiplier method to solve the location prob-
lem. The bi-iteration algorithm [21, 22] iteratively calculates the velocity or position of
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the source by fixing position or velocity, and its location accuracy depends on the ini-
tial estimate. In [23, 24], an iterative algorithm is put forward by linearizing the quadratic
constraints on the basis of the constrained WLS (CWLS) problem. However, due to the
non-convex characteristic of CWLS, a global optimal solution is hard to reach. To this
regard, convex semidefinite programming (SDP) [25–30] can be employed to avoid the
local convergence problem of CWLS, but at the cost of a high computation complexity.
When FDOA measurements are employed in the estimation, the relative Doppler

compression occurs because of the observation time needed in obtaining the FDOAmea-
surements [31]. Since differential Doppler rate (DDR) acquisition needs no additional
data from the sensors, it can be used together with TDOA and FDOA to obtain a better
location accuracy. Hu’s work in [32] studies a gradient localization algorithm employing
the TDOA, FDOA, and DDR data. However, the iterative algorithm in [32] can lead to
a local convergence in the second step when the noise level is high. Liu et al. [33, 34]
proposed a closed-form algorithm based on the two-step WLS, also employing TDOA,
FDOA, and DDR. However, Hu’s [32] and Liu’s [33, 34] works assume independence of
the involved variables in the first step WLS, which in fact are dependent. This assump-
tion affects the accuracy of the initial solution. As a result, the overall solution’s accuracy
is greatly affected by the initial solution.
Taking advantage of TDOA, FDOA, and DDR, this paper presents a closed localiza-

tion algorithm. This new algorithm is based on the WLS and the Lagrange multiplier.
The proposed algorithm forms a quadratic constrained WLS function by introducing
three additional variables like [33]. The quadratic constraint is imposed in the minimiza-
tion process through the use of the Lagrange multiplier to obtain the initial solution.
With this constraint, the dependence of the variables are taken into account, result-
ing in a better accuracy of the initial solution compared with [32] and [33]. This initial
solution is refined by another WLS to reach the final solution. Due to the extra com-
putations in solving the Lagrange multiplier, our algorithm is more complicated than
[33]. Numerical simulations show that the new algorithm can attain Cramer-Rao lower
bound (CRLB) and is more accurate than Hu [32] and Liu’s solutions [33, 34] at the low
SNR values.
The structure of this paper is introduced as follows: Section 2 introduces the corre-

lation measurement model. Section 3 gives the implementation details of the proposed
algorithm. Section 4 presents the analysis of CRLB with proposed algorithm. Section 5
provides the simulations results. Section 6 is the conclusion of the work.
By convention, matrices and vectors are represented in bold and italics. Table 1 explains

the meaning of the notations in this paper.

2 Systemmodel
Consider a scenario with a moving source to be estimated and several sensors to mea-
sure the source. Denote the position and velocity of the sensors as si =[ xi, yi, zi]T and
ṡi =[ ẋi, ẏi, żi]T . The task of the localization algorithm is to calculate the position u =
[ x, y, z]T and velocity u̇ =[ ẋ, ẏ, ż]T of source. The real distance between sensor i and the
source is

roi = ‖uo − si‖=
√

(uo − si)T (uo − si) (1)



Wang and Li EURASIP Journal on Advances in Signal Processing         (2021) 2021:32 Page 3 of 14

Table 1 The meaning of the notations

Symbol Meaning

[ ·]T Matrix transpose

[ ·]−1 Matrix inverse

E[ ·] The mathematical expectation

‖·‖ The Euclidean norm

diag(·) Diagonal matrix

(·)o True value

(·) Noisy value

θ(i : j) Sub-vector of vector θ

0i×j a i × j vector of zeros

Oi×j a i × j zeros matrix

I i×i an identity matrix of order i

Taking the derivative of (1) with respect to time, the real relative speed between sensor i
and the source is:

ṙoi = (u̇o − ṡi)T (uo − si)
roi

(2)

Taking the derivative of (2), the real acceleration between sensor i and the source is given
by

r̈oi = (u̇o − ṡi)T (u̇o − ṡi) + ṙo2i
roi

(3)

Practically, the sensors do not move or move slowly during the observation interval [31].
With this, the acceleration of the ith sensor can be considered as 0: s̈i = 03×1 for i =
1, 2, ...,M. In this paper, sensor 1 is considered as the reference without loss of generality.
As shown in Table 1, the superscript of a variable denotes the true value. The true

TDOA, FDOA, and DDR between sensor i and sensor 1 are therefore: τ oi1, f
o
i1, and ḟ oi1,

respectively. Then, the following equations hold:

roi1 = cτ oi1 = roi − ro1
ṙoi1 = λcf oi1 = ṙoi − ṙo1 (4)

r̈oi1 = λcḟ oi1 = r̈oi − r̈o1

where c and λc are the velocity and wavelength of the source signal, respectively. Since τ oi1,
f oi1 and ḟ oi1 have a linear relationship with roi1, ṙ

o
i1 and r̈oi1, the parameters roi1, ṙ

o
i1, and r̈oi1 are

used in the derivation of the following work.
With additive noise, the equations in (4) become the following:

ri1 = roi1 + �ri1 = c(τ oi1 + �τi1)

ṙi1 = ṙoi1 + �ṙi1 = λc(f oi1 + �fi1) (5)

r̈i1 = r̈oi1 + �r̈i1 = λc(ḟ oi1 + �ḟi1)

Substituting i = 2, 3, ...,M into (5) and organize it into the vector form of the localization
measurements as

r = ro + �r

ṙ = ṙo + �ṙ (6)

r̈ = r̈o + �r̈
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where �r =[�r21,�r31, ...,�rM1]T , �ṙ =[�ṙ21,�ṙ31, ...,�ṙM1]T and �r̈ =
[�r̈21,�r̈31, ...,�r̈M1]T .
Let �α =[�rT ,�ṙT ,�r̈T ]T and α =[ rT , ṙT , r̈T ]T as the error vector and the noisy

measurement vector, respectively. In this paper, we assume that the vector �α complies
with a Gaussian distribution with the mean value of 0 and covariance of E[�α�αT ]= Q,
which is also the distribution employed in [33]. The form of Q is provided in the work of
[35]. Note that Q is the information known in advance.

3 The proposed estimation process
3.1 The first step calculation

Define the auxiliary vector θo1 =
[
voT , ro1, v̇

oT , ṙo1, r̈
o
1

]T
, where vo = uo − s1, v̇o = u̇o − ṡ1.

This auxiliary vector θo1 bears information about uo and u̇o of the unknown source, as well
as the additional three nuisance variables ro1, ṙ

o
1 and r̈o1. Rewrite the first equation in (4) as

roi1 + ro1 = roi , square the two sides of the equation, and expand it to get the following (7):

2(si − s1)T (uo − s1) + 2roi1r
o
1

= (si − s1)T (si − s1) − ro2i1
(7)

Taking the derivative of (7) with respect to time, the following (8) is obtained which
contains TDOA and FDOA:

(ṡi − ṡ1)T (uo − s1) + ṙoi1r
o
1 + (si − s1)T (u̇o − ṡ1)

+ roi1ṙ
o
1 = (ṡi − ṡ1)T (si − s1) − roi1ṙ

o
i1

(8)

Then, taking the derivative of (8) results in (9) that contains TDOA, FDOA, and DDR:

r̈oi1r
o
1 + 2(ṡi − ṡ1)T (u̇o − ṡ1) + 2ṙoi1ṙ

o
1 + roi1r̈

o
1

= (ṡi − ṡ1)T (ṡi − ṡ1) − r̈oi1r
o
i1 − ṙo2i1

(9)

When TDOA, FDOA, and DDR are noisy, the true variables roi1, ṙ
o
i1 and r̈oi1 are ri1, ṙi1

and r̈i1, respectively. Replacing roi1, ṙ
o
i1 and r̈oi1 by ri1 − �ri1, ṙi1 − �ṙi1 and r̈i1 − �r̈i1, (7),

(8), and (9) can be rewritten as

− 2roi �ri1 = (si − s1)T (si − s1) − r2i1
− 2(si − s1)T (uo − s1) − 2ri1ro1

(10)

− ṙoi �ri1 − roi �ṙi1 = (ṡi − ṡ1)T (si − s1)

− ri1ṙi1 − (ṡi − ṡ1)T (uo − s1) − ṙi1ro1
− (si − s1)T (u̇o − ṡ1) − ri1ṙo1

(11)

− r̈oi �ri1 − 2ṙoi �ṙi1 − roi �r̈i1 =
(ṡi − ṡ1)T (ṡi − ṡ1) − r̈i1ri1 − ṙ2i1 − r̈i1ro1
− 2(ṡi − ṡ1)T (u̇o − ṡ1) − 2ṙi1ṙo1 − ri1r̈o1

(12)

In the previous derivation, the intermediate second-order error terms in the equations
are neglected. Bring i = 2, 3, ...,M into (10), (11), and (12) and rearrange them into the
linear system of equations of the following:

ε1 = G1θ
o
1 − h1 (13)

where ε1 is:

ε1 = B1
[
�rT ,�ṙT ,�r̈T

]T = B1�α (14)
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B1 =
⎡

⎢
⎣
2B
Ḃ B
B̈ 2Ḃ B

⎤

⎥
⎦ (15)

B = diag
{
ro2, r

o
3, ..., r

o
M

}

Ḃ = diag
{
ṙo2, ṙ

o
3, ..., ṙ

o
M

}
(16)

B̈ = diag
{
r̈o2, r̈

o
3, ..., r̈

o
M

}

The other two variables in (13) are expressed as the following:

h1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(s2 − s1)T (s2 − s1) − r221
...

(sM − s1)T (sM − s1) − r2M1
(ṡ2 − ṡ1)T (s2 − s1) − r21ṙ21

...
(ṡM − ṡ1)T (sM − s1) − rM1ṙM1

(ṡ2 − ṡ1)T (ṡ2 − ṡ1) − r̈21r21 − ṙ221
...

(ṡM − ṡ1)T (ṡM − ṡ1) − r̈M1rM1 − ṙ2M1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(17)

and

G1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2(s2 − s1)T 2r21 01×3 0 0
...

...
...

...
...

2(sM − s1)T 2rM1 01×3 0 0
(ṡ2 − ṡ1)T ṙ21 (s2 − s1)T r21 0

...
...

...
...

...
(ṡM − ṡ1)T ṙM1 (sM − s1)T rM1 0

01×3 r̈21 2(ṡ2 − ṡ1)T 2ṙ21 r21
...

...
...

...
...

01×3 r̈M1 2(ṡM − ṡ1)T 2ṙM1 rM1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (18)

In the mean time, the calculation of r1 = ‖u − s1‖, ṙ1, and r̈1 follows the same way as ro1,

ṙo1, and r̈o1 in (1), (2), and (3) (replacing uo by u). By introducing θ1 =
[
vT , r1, v̇T , ṙ1, r̈1

]T

(v = u − s1, v̇ = u̇ − ṡ1), r1, ṙ1, and r̈1 are arranged in the matrix form as:

θT1 M1θ1 = 0 (19)

θT1 M2θ1 = 0 (20)

θT1 M3θ1 = 0 (21)

whereM1,M2,M3 are shown in Appendix A.
Combine (19), (20), and (21) into (22) as

θT1 Mθ1 = 0 (22)

whereM = M1 + M2 + M3.
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The localization problem is now to solve the linear system of equations in (13) with the
constraint of (22). In Hu [32] and Liu [33] works, in employing theWLS algorithm to solve
(13), the elements in the constraint are assumed to be independent (while in fact they are
correlated). This leads to the possible inaccuracy of the initial solution, thus affecting the
refinement in the second step.
In this paper, the correlation of elements in θ1 is imposed from the constraint of (22).

The localization problem in this first step is to solve equations of (13) with the constraint
in (22). Through the use of the Lagrange multiplier λ, this constrained equations above
can be solved by minimizing the following function:

J(θ1, λ) = (G1θ1 − h1)TW−1
1 (G1θ1 − h1) + λθT1 Mθ1 (23)

whereW 1 is the weight matrix in WLS:

W 1 = E
[
ε1ε

T
1

]
= B1QBT

1 (24)

Note that in obtainingW 1, the covariance matrix Q of �α is used.
To minimize (23), the differentiation of J(θ1, λ) with respect to θ1 should be zero:

∂J(θ1, λ)

∂θ1
= 2(GT

1 W
−1
1 G1 + λM)θ1 − 2GT

1 W
−1h1 = 0 (25)

The solution of (25) is

θ̂1 = (GT
1 W

−1
1 G1 + λM)−1GT

1 W
−1h1 (26)

As W 1 and M are symmetric, GT
1 W

−1
1 G1 + λM is also symmetric. Substituting the esti-

mate of θ1 in (26) into the constraint θT1 Mθ1 = 0, the following equations are obtained:

(GT
1 W

−1
1 h1)T (GT

1 W
−1
1 G1 + λM)−TM·

(GT
1 W

−1
1 G1 + λM)−1GT

1 W
−1
1 h1 =

(GT
1 W

−1
1 h1)TM−1(GT

1 W
−1
1 G1M−1 + λI)−1·

(GT
1 W

−1
1 G1M−1 + λI)−1GT

1 W
−1
1 h1 = 0

(27)

Employing the eigenvalue factorization, GT
1 W

−1
1 G1M−1 can be diagonalized as

GT
1 W

−1
1 G1M−1 = UΛU−1 (28)

where Λ = diag {η1, η2, . . . , η9}. Substitute (28) into (27):

f (λ) = pT (Λ + λI)−2q =
9∑

i=1

piqi
(λ + ηi)2

= 0 (29)

where p = [
p1, p2, . . . , p9

] = UTM−TGT
1 W

−1
1 h1 and q = [

q1, q2, . . . , q9
] =

U−1GT
1 W

−1
1 h1. Multiplying both sides by

∏9
j=1 (λ + ηj)2, a 16-root equation is reached:

9∑

i=1

piqi
(λ + ηi)2

9∏

j=1
(λ + ηj)

2 = 0 (30)

This equation of (30) can be solved efficiently as shown in [20].

3.2 The second step calculation

In the first step, a system of linear equations is constructed by introducing the auxiliary
vector θo1, and the initial estimation θ̂1 is obtained employing the Lagrange multiplier. In
this second step, the correlation between redundant variables ro1, ṙ

o
1, r̈

o
1 and uo, u̇o in (1),
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(2) and (3) is used again to further optimize the initial solution. The relationship between
redundant variables and sources is as follows:

ro21 = (uo − s1)T (uo − s1)

ṙo1r
o
1 = (u̇o − ṡ1)T (uo − s1) (31)

r̈o1r
o
1 + ṙo21 = (u̇o − ṡ1)T (u̇o − ṡ1)

Define ̂θ
′
1 containing the estimation values as: ̂θ

′
1 =

[
ûT , r̂1,̂u̇

T
,̂̇r1,̂̈r1

]T
. Substitute uo =

û − �u, u̇o = ̂u̇ − �u̇, r01 = r̂1 − �r1, ṙo = ̂̇r1 − �ṙ1 and r̈1 = ̂̈r1 − �r̈1 into (31) (also
ignoring second order errors), equations are obtained as:

2ûT�u − 2̂r1�r1 = (̂uT û + sT1 s1 − r̂21) − 2sT1 u
o (32)

̂u̇
T
�u −̂̇r1�r1 + ûT�u̇ − r̂1�ṙ1 =

(̂u̇
T
û +̂ṡ

T
1 ŝ1 −̂̇r1̂r1) − ṡT1 u

o − sT1 u̇
o

(33)

−̂̈r1�r1 + 2̂u̇
T
�u̇ − 2̂ṙ1�ṙ1 − r̂1�r̈1

= (ṡT1 ṡ1 +̂u̇
T
̂u̇ −̂̈r1̂r1 −̂̇r21) − 2ṡT1 u̇

o
(34)

Similar to the process in obtaining (13), the following linear system of equations can be
obtained:

ε2 = B2
[
�uT ,�r1,�u̇T ,�ṙ1,�r̈1

]T

= B2�̂θ
′
1

= h2 − G2θ
o
2

(35)

where θo2 =
[
uoT , u̇oT

]T
and

h2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

û
ûT û + sT1 s1 − r̂21

̂̇u
̂̇uT û + ṡT s1 −̂̇r1̂r1

ṡT1 ṡ1 +̂u̇
T
1
̂u̇ −̂̈r1̂r1 −̂̇r21

⎤

⎥⎥⎥⎥⎥⎥
⎦

,G2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

I3×3 O3×3
2sT1 01×3
O3×3 I3×3
ṡT1 sT1
01×3 2ṡT1

⎤

⎥⎥⎥⎥⎥⎥
⎦

B2 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

I3×3 03×1 O3×3 03×1 03×1
2ûT −2̂r1 01×3 0 0
O3×3 03×1 I3×3 03×1 03×1
̂u̇
T −̂ṙ1 ûT −̂r1 0

01×3 −̂r̈1 2̂u̇
T −2̂ṙ1 −̂r1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(36)

Based on WLS, the solution of ̂θ2 is directly obtained as

̂θ2 = (GT
2 W

−1
2 G2)

−1GT
2 W

−1
2 h2 (37)

where the weighting matrixW 2 is

W 2 = E
[
ε2ε

T
2

]
= B2E

[
�θ ′

1�θ ′T
1

]
BT
2 (38)

According to [33], the covariance matrix of ̂θ
′
1 is

cov(̂θ
′
1) = E

[
�θ ′

1�θ ′T
1

]
= (GT

1 W 1G1)
−1 (39)
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Then (38) can be rewritten as:

W 2 = B2cov(̂θ
′
1)B

T
2 (40)

3.3 The working procedure

The procedure for the proposed algorithm is as follows:

1 SetW 1 = Q.
2 Transform (29) to a standard polynomial. Find the roots of this polynomial. The

Lagrange multiplier λ is the real roots.
3 Substitute λ into (26) to obtain θ̂1, which is fed to (23). The θ̂1 that minimizes

J(θ1, λ) is selected for the next step.
4 UpdateW−1

1 in (24) using θ̂1 from the previous step.
5 Repeat Step 2, Step 3, and Step 4 to refine θ̂1.
6 Find cov(̂θ

′
1) in (39).

7 ComputeW 2 from (40).
8 Calculate ̂θ2 in (37) as the final estimate.

4 CRLB analysis
In this section, the CRLB of θ2 is determined. According to the noise vector �α provided
in Section 2, the CRLB of the source vector θ2 is calculated as [33]:

CRLB(θ2) =
[

(
∂α

∂θT2
)TQ−1(

∂α

∂θT2
)

]−1

(41)

where

∂α

∂θT2
=

⎡

⎢
⎣

∂r
∂uT O(M−1)×3
∂ ṙ

∂uT
∂r

∂uT
∂ r̈

∂uT
∂ ṙ

∂uT

⎤

⎥
⎦ (42)

The partial derivatives ∂r
∂uT ,

∂ ṙ
∂uT and ∂ r̈

∂uT are shown in Appendix B.
With the definition of θ̂2, the covariance of the proposed solution is the covariance of

θ̂2. Therefore, (35) is brought into (37), yielding:

�θ2 = θ̂2 − θo2 = (GT
2 W

−1
2 G2)

−1GT
2 W

−1
2 ε2 (43)

Using (38), the covariance of θ̂2 can be expressed as:

cov(̂θ2) = E
[
�θ2�θ2

T
]

= (G2W−1
2 G2)

−1 (44)

When the measurement noise is small, �ri1
roi1

� 0, �ṙi1
ṙoi1

� 0 and �r̈i1
r̈oi1

� 0 for i = 2, 3, ...,M.
Substituting (39) and (40) into (44), we get

cov(̂θ2) = (GT
3 Q

−1G3)
−1 (45)

where G3 = B−1
1 G1B−1

2 G2. According to [33], G3 can be expressed as:

G3 = ∂α

∂θT2
(46)

Observe that the covariance of θ̂2 in the proposed algorithm has the same form as CRLB,
resulting in cov(̂θ2) � CRLB(θ2). This shows the proposed algorithm achieves CRLB
when SNR is large.
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5 Results and discussion
In this section, the root mean square error (RMSE) and bias performance of the new
algorithm are provided, together with the performance of Hu’s algorithm [32] and Liu’s
[33] algorithm. The geometry variables of the sensors are illustrated in Table 2.
For the measured TDOA, FDOA, and DDR, the noise is summarized in the following

[33]:

στ = 1
Bs

1√
BnT

1√
SNR

σf =
√
3

πT
1√
BnT

1√
SNR

(47)

σd = 2
√
45

πT2
1√
BnT

1√
SNR

where στ , σf , and σd represent the standard deviation of the noise of TDOA, FDOA, and
DDR, respectively. Variables Bs, Bn, andT represent the signal bandwidth, the noise band-
width, and the measurement duration, respectively. As usual, the signal-to-noise ratio is
SNR. Define R as a square matrix of order (M − 1), its diagonal elements are 1, and the
rest are 0.5 [14]. The covariance matrix of the noise is:

Q =
⎡

⎢
⎣
Qr

Qf
Qd

⎤

⎥
⎦

3(M−1)×3(M−1)

(48)

where Qr = (cστ )
2R, Qf = (λcσf )

2R, and Qd = (λcσd)
2R.

Binary phase shift keying (BPSK) modulated signal is employed in the simulations. The
carrier frequency is fc = 1 GHz, Bs = 100 kHz, T = 0.3 s, and Bn = 3Bs. The bias is:

bias(uo) =
∥∥∥

∑L
l=1 (uo − ui)/L

∥∥∥

bias(u̇o) =
∥∥∥

∑L
l=1 (u̇o − u̇i)/L

∥∥∥ (49)

where L is the number of times the estimation is performed. The RMSE is:

RMSE(uo) =
√ ∑L

l=1 ‖uo − ui‖2/L
RMSE(u̇o) =

√ ∑L
l=1

∥∥u̇o − u̇i
∥∥2/L (50)

In the simulations, L = 5000, and the far field source has real position of uo =
[2000, 2500, 3000]T and real velocity of u̇o = [−20, 15, 40]T . The near field source is posi-
tioned at uo = [600, 650, 550]T with velocity u̇o = [−20, 15, 40]T . Similar to [14], this
paper sets Q as the initial value ofW 1 in the first step calculation.
Figures 1 and 2 show the comparison of the RMSE and the bias of Hu’s and Liu’s algo-

rithms with the proposed algorithm in the near field scenario. Figure 1 shows that the
RMSE of both the proposed and Liu’s algorithm can reach CRLB when SNR is greater

Table 2 Configuration of sensors

Sensor no.i xi(m) yi(m) zi(m) ẋi(m/s) ẏi(m/s) żi(m/s)

1 300 100 150 30 -20 20

2 400 150 100 -30 10 20

3 300 500 200 10 -20 10

4 350 200 100 10 20 30

5 − 100 − 100 − 100 − 20 10 10
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Fig. 1 RMSE comparison of three algorithms for the near field source

than 10 dB, but Hu’s algorithm is slightly worse. When SNR < 10 dB, RMSE of the
three algorithms all deviate from CRLB. However, the RMSE of the proposed algorithm
is the smallest of all. From the bias comparison of Fig. 2, the position bias of the pro-
posed algorithm is smaller than that of Hu’s algorithm and is similar to that of Liu’s
algorithm. The velocity bias of the proposed algorithm is lowest seen from Fig. 2. There-
fore, the performance of the estimation accuracy (determined by the RMSE) and the bias
of the proposed algorithm is better than existing algorithms when applied in the near field
source estimation.
Figures 3 and 4 illustrate the RMSE and the bias comparison in the far field. When

SNR ≥ 10 dB, the RMSE of the proposed algorithm can reach CRLB, while both Hu’s
and Liu’s algorithms deviate from CRLB to different degrees. When SNR < 10 dB, all
three algorithms deviate from CRLB. Figure 4 shows that the bias of proposed algorithm
is significantly superior to the other two algorithms.
Although the proposed algorithm can achieve a better accuracy (up to several kilome-

ters) as shown previously, in the very far field up to several hundred kilometers, the study
shows that the proposed algorithm has a similar performance as the existing algorithms.
With the added complexity to calculate the Lagrange multiplier, the proposed algorithm
is not necessary in the very far field. However, it is still of importance to note that the
Lagrange multiplier can be efficiently solved as shown in [18–20]. The complexity of the
rest of the calculations of the proposed algorithm is similar to that of Liu’s two-step WLS
algorithm.
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Fig. 2 Bias comparison of three algorithms for the near field source

Fig. 3 RMSE comparison of three algorithms for the far field source
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Fig. 4 Bias comparison of three algorithms for the far field source

6 Conclusion
This paper proposes a closed solution to locate moving sources by employing the
Lagrange multiplier in the first step WLS. Compared with the existing algorithms based
on iterative calculations, the proposed algorithm provides a closed-form solution without
the need for iterative calculations, thus avoiding the initial value problem and guaran-
teeing a global solution. Compared to the existing closed-form two-step WLS algorithm,
the proposed algorithm can further improve the estimation accuracy by employing the
Lagrange multiplier. Simulation studies confirm that the proposed estimation process
achieves a better accuracy and bias compared with relevant algorithms in the near and far
field (up to several kilometers).

Appendix
Appendix-A

M1 =
⎡

⎢
⎣

I3×3 O3×6
01×3 −1 01×5
O5×9

⎤

⎥
⎦ ,M2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

O3×4 I3×3 O3×2
01×7 −1 0
I3×3 O3×6
01×3 −1 01×5
01×9

⎤

⎥⎥⎥⎥⎥⎥
⎦

,M3 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

O3×9
01×8 −1
O3×4 2I3×3 O3×2
01×7 −2 0
01×3 −1 01×5

⎤

⎥⎥⎥⎥⎥⎥
⎦

(51)

Appendix-B
The derivation of ∂α/∂θT2
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Let

ai = (uo − si)T

ri
, bi = (u̇o − ṡi)T

ri
− ṙi(uo − si)T

r2i

ci = 2ṙ2i (uo − si)T

r3i
− 2ṙi(u̇o − ṡi)T

r2i
− r̈i(uo − si)T

r2i
(52)

where i = 1, 2, ...,M, Therefore, ∂r
∂uT ,

∂ ṙ
∂uT and ∂ r̈

∂uT can be written as

∂r
∂uT

=

⎡

⎢⎢
⎣

a2 − a1
...

aM − a1

⎤

⎥⎥
⎦

(M−1)×3

,
∂ ṙ

∂uT
=

⎡

⎢⎢
⎣

b2 − b1
...

bM − b1

⎤

⎥⎥
⎦

(M−1)×3

,
∂ r̈

∂uT
=

⎡

⎢⎢
⎣

c2 − c1
...

cM − c1

⎤

⎥⎥
⎦

(M−1)×3
(53)
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