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Abstract

With the emergence and development of 5G technology, Mobile Edge Computing
(MEC) has been closely integrated with Internet of Vehicles (IoV) technology, which can
effectively support and improve network performance in IoV. However, the high-speed
mobility of vehicles and diversity of communication quality make computing task
offloading strategies more complex. To solve the problem, this paper proposes a
computing resource allocation scheme based on deep reinforcement learning network
for mobile edge computing scenarios in IoV. Firstly, the task resource allocation model
for IoV in corresponding edge computing scenario is determined regarding the
computing capacity of service nodes and vehicle moving speed as constraints. Besides,
the mathematical model for task offloading and resource allocation is established with
the minimum total computing cost as objective function. Then, deep Q-learning
network based on deep reinforcement learning network is proposed to solve the
mathematical model of resource allocation. Moreover, experience replay method is
used to solve the instability of nonlinear approximate function neural network, which
can avoid falling into dimension disaster and ensure the low-overhead and low-latency
operation requirements of resource allocation. Finally, simulation results show that
proposed scheme can effectively allocate the computing resources of IoV in edge
computing environment. When the number of user uploaded data is 10K bits and the
number of terminals is 15, it still shows the excellent network performance of low-
overhead and low-latency.

Keywords: Internet of Vehicles, Mobile edge computing, Reinforcement learning,
Experience replay method, Resource allocation, Offloading strategy

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

EURASIP Journal on Advances
in Signal Processing

Zhang et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:33 
https://doi.org/10.1186/s13634-021-00750-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-021-00750-6&domain=pdf
mailto:fancaixia@henau.edu.cn
mailto:fancaixia@henau.edu.cn
http://creativecommons.org/licenses/by/4.0/


1 Introduction
In recent years, the automobile industry has brought tremendous changes to people's

lives under the impetus transformation of information and communication technology.

The applications equipped on vehicles can provide drivers and passengers with more

useful help information, such as safety information, surrounding environmental condi-

tions and traffic information [1–3].

The emergence of Internet of Vehicles (IoV) can integrate information provided by

multiple applications to solve many problems in transportation [4–6]. The IoV network

uses vehicles as basic information unit. Within a certain communication range, road

entities such as pedestrians, vehicles and roadside facilities are connected to traffic

management network by sensor technology, information acquisition technology, access

technology, transmission technology and networking technology. The mobile network

is connected to the backup network, which serves applications such as vehicle safety,

traffic control, information services and user network access. It aims to establish an

intelligent comprehensive network system that improves traffic conditions and travel

efficiency, and expands information interaction forms.

The traditional IoV network communication can only meet part of the network needs

of vehicle users, and is mainly suitable for some applications with small calculation

amount and low delay sensitivity [7]. The intelligent technology of automobiles is

gradually being widely used and promoted according to the popularization and

development of IoV technology at this stage. With the development and popularization

of fifth-generation communication technology, IoV market has also spawned a large

number of new service applications (such as unmanned intelligent driving), which have

more stringent requirements for network bandwidth, offloading delay, etc. [8, 9].

Therefore, the traditional IoV communication has been unable to meet the current

operating requirements, which brings huge challenges to IoV in terms of computing

and communication capabilities.

In recent years, Mobile Edge Computing (MEC), as a key 5G technology, is of great

significance to alleviating the congestion of cloud network or the core layer of data

center in IoV. MEC deploys computing and storage resources at the network edge to

provide IT services and cloud computing capabilities for mobile networks. It can greatly

accelerate the execution speed of computing tasks [10, 11], solve the problem of insuffi-

cient computing resources for vehicle itself, and provide users with ultra-low latency

and high bandwidth network service solutions.

Task offloading is one of the key technologies of MEC. Scientifically and ration-

ally, part or all of the computing tasks of in-vehicle devices are handed over to

edge computing server for processing, which can effectively solve the problems of

in-vehicle devices in terms of resource storage, computing performance and energy

efficiency, which reduces communication and calculation delay. This in turn en-

ables real-time operation of IoV network and higher responsiveness [12, 13]. But at

the same time, it should be noted that the complex network scenarios of IoV also

bring many problems to MEC technology application. The high-speed mobility of

vehicles and the diversity of communication quality in IoV make computing task

offloading strategies more complicated. Thus, the research on offloading decision-

making and execution resource allocation has become a key issue that urgently

needs to be solved in vehicle edge computing.
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2 Methods
The deep integration of IoV and MEC technology, relying on a new generation of infor-

mation and communication technology to build a new format of intelligent vehicles, to

achieve friendly information interaction between vehicles and the outside world, can

support the development needs of next generation for "vehicle connected everything"

[14]. However, with the development of intelligent and informatization of IoV, the

application of in-vehicle terminals has gradually developed towards multimedia enter-

tainment, which has caused an explosive growth of task data. This has put a heavy pres-

sure on the scarce network resources [15]. Therefore, for the limited resources of IoV,

rational allocation of vehicle's own resources can be more effective in realizing that IoV

also meets the efficient network computing capabilities when vehicles are running fast,

providing the quality of user experience and improving traffic efficiency.

The in-depth integration of IoV and MEC technology relies on a new generation of

information and communication technology to build a new format of smart vehicles.

This can realize friendly information interaction between vehicles and the outside

world, and can support the development needs of next generation for "car-connected

everything" [14]. However, with the development of intelligent and informatization of

IoV, the application of in-vehicle terminals has gradually developed towards multimedia

entertainment, which has caused an explosive growth of task data. This has put a heavy

pressure on the scarce network resources [15]. Therefore, for the limited resources of

IoV, rational allocation of vehicle's own resources can be more effective in realizing that

IoV also meets the efficient network computing capabilities when vehicles are running

fast, providing the quality of user experience and improving traffic efficiency.

The joint management of wireless networks and computing resources is the key to

achieving high efficiency and low latency in IoV networks. The network architecture in

which MEC server and wireless access point coexist promotes the realization of related

technologies [16]. For the resource management and offloading decisions of MEC

system, scholars have launched corresponding researches. Literature [17] proposed a

convex optimization problem to minimize the total energy consumption of mobile

devices. The optimal strategy for controlling the size of offloaded data and time alloca-

tion had a simple threshold-based structure. The offloading priority function was

derived based on channel conditions and local calculation energy consumption, and the

full offloading and minimum offloading are performed respectively based on a given

threshold. Literature [18] used dynamic voltage and frequency scaling techniques to

minimize local execution energy consumption for tasks with strict execution deadlines,

and used data transmission scheduling to optimize the energy consumption of comput-

ing offload. Literature [19] proposed an end-to-end communication task offloading

framework based on network assistance, which can realize resource sharing among mo-

bile users. Literature [20] proposed a cooperative downloading scheme to offload traffic

from cellular networks by VANETs. Appropriate data was obtained from cellular net-

work, and the data is distributed to vehicles in an approximately optimal way, and a

storage time aggregation graph for planning data transmission was designed. Literature

[21] proposed a cloud-edge-based MEC vehicle network offloading framework, which

reduces the time consumption of computing tasks and the impact of vehicle mobility.

The existing traditional optimization algorithms are feasible to solve the problems of

MEC computing offloading and resource allocation. But it should be noted that the
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time slot interval divided by MEC system is very small. Traditional optimization algo-

rithms generally require complicated operations and iterations to obtain optimization

results. Thus, traditional optimization algorithms are not very suitable for high real-

time MEC systems.

Reinforcement Learning (RL) is very suitable for solving decision-making problems,

such as computational offloading decision [22]. The RL algorithm can create experience

to learn and complete the optimization goal by a trial-return feedback mechanism that

is different from traditional optimization algorithms. The deep learning algorithm can

learn the characteristics of historical data, and after the training is completed, it has a

great efficiency improvement compared with traditional optimization algorithms. If you

use traditional algorithm data for training, you can combine the advantages of two.

Literature [23] proposed a distributed wireless resource allocation based on multi-agent

theory and reinforcement learning algorithm. This allowed devices to independently

select resource blocks and power levels, ensuring that network system had low

complexity and signaling overhead. Literature [24] developed an optimal and adaptive

vehicle cloud resource allocation model for car networking systems based on Semi

Markov Decision Process (SMDP) and reinforcement learning algorithms. It considered

the balance between IoV network resource costs and system revenue, make

optimization decisions on IoV network service quality and vehicle user experience qual-

ity to optimize the total system overhead of IoV network. Literature [25] proposed a

new architecture that combined with reinforcement learning algorithms to dynamically

orchestrate edge computing and cache resources. It improved the practicability of sys-

tem and maximized its utility. Literature [26] proposed a task scheduling and resource

allocation model based on hybrid ant colony optimization and deep reinforcement

learning. This model took the shortest overall task completion time and highest

utilization rate of idle resources as goals. The space complexity is reduced and network

performance is improved by using weighted values to construct a binary ordered traver-

sal tree and deep reinforcement learning algorithm.

In this paper, oriented to the precise needs of mobility characteristics and task alloca-

tion for IoV users, drawing on the existing task management research of MEC, this paper

proposes a computing resource allocation scheme using deep reinforcement learning in

edge computing environment. The main contributions of this paper are as follows:

1) In order to clarify the mathematical model of MEC task distribution algorithm

proposed in this paper, this paper considers the computing power of service nodes

and vehicle speed on the basis of determining system network model, computing

model and communication model of task offloading and resource allocation. The

cache capacity of service nodes is a constraint. Moreover, a mathematical model of

task offloading and resource allocation is established with the minimum total

computing cost of system as objective function.

2) In order to achieve fast and efficient vehicle network computing resource

allocation and avoid the limited dimensions of traditional Q-learning network

solving task resource allocation algorithm, this paper proposes a task computing

resource allocation scheme based on deep Q network. This scheme uses experience

replay method as the training method to solve the instability of Q-learning network

due to nonlinear approximation function. It realizes the optimal allocation of task
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resources, so that resource allocation can improve the corresponding operating

speed while ensuring low overhead.

The rest of this paper is organized as follows. Section 3 introduces the vehicle net-

work resource allocation system model and the corresponding mathematical calculation

problem description. Section 4 introduces the task distribution and offloading based on

DQN algorithm. Section 5 builds simulation scenarios based on related protocols to

verify the performance of proposed method. Section 6 concludes the paper.

3 System model and problem description
3.1 System model

This paper analyzes the corresponding resource allocation scheme based on a vehicle

cloud collaborative edge cache model as the network model. The specific vehicle net-

work model is shown in Fig. 1. In this model, there are L RSUs deployed around the

road, denoted as ℒ = = {ℳ1,ℳ2,ℳ3,⋯,ℳL}, and each RSU is equipped with an MEC

server. The Poisson distribution is suitable for describing the number of random events

in unit time (or space). Therefore, it is assumed that N vehicles on the road have a

Poisson distribution [27], which is expressed as V ¼ fv1; v2; v3;⋯; vNg . Since both

MEC server and neighboring vehicles have computing and caching capabilities, they are

collectively referred to as service nodes W ¼ fw1;w2;w3;⋯;wMg . n vehicles are ran-

domly distributed within the coverage area of each RSU, that is, the set of vehicles

within the coverage area of RSU or the service area of ℳj is V j ¼ fv1; v2;⋯; vng. The
vehicle 802.11p OBU has an 802.11p network interface and a cellular network interface.

Vehicles can offload tasks to MEC servers for calculation by RSU, or offload to

Fig. 1 System model structure diagram
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neighboring vehicles for V2V communication. In order to effectively reuse spectrum,

V2I mode and V2V mode work in the same frequency band. The spectrum is evenly di-

vided into K sub-channels, denoted as K¼ ¼ f1; 2; 3;⋯;Kg , and the bandwidth of

each sub-channel is B Hz. The vehicle offloading strategy set is expressed as A¼ ¼ fa1
; a2; a3;⋯; aNg, if ai = 1, it means vi, and the task is offloaded to service nodes for cal-

culation. If ai = 0, it means that vi will perform computing tasks locally. Assume that at

t, there are some tasks in buffer pool. When vehicles have a task request, if the task is

cached on service nodes, service nodes inform vehicles that the task exists on service

nodes. When the calculation of service nodes is completed, it is directly sent back to

vehicles. In this way, the vehicle does not need to perform task offloading operations,

which can effectively reduce the energy consumption of mobile devices and the delay

of task offloading. If there is no cache for requested tasks on service nodes, the vehicle

needs to make an offloading decision and further resource allocation. When the service

node completes requested tasks for the first calculation, it considers the cache decision.

The cache strategy set of service nodes wm is denoted as Gm¼ ¼ fgm;1; gm;2; gm;3;⋯;

gm;n1g . If gm, n1 = 1, it means that service node wm will cache computing task n1. This

allows the next request to reduce network transmission and reduce calculation delay.

The cache collection of all service nodes is denoted as AG¼ ¼ fG1;G2;G3;⋯;GMg.

3.2 Computing model

Based on the system model built above, it is assumed that each task requesting vehicle

has a computing task Z ¼ fdi; si; tmax
i g, i ∈N to be processed. Where di represents the

input size of task Zi . si represents the number of CPU cycles required to complete

computing task Zi . tmax
i is the maximum delay that computing task Zi can tolerate.

The vehicle can offload tasks to MEC servers for calculation by RSU, or offload to

neighboring vehicles for processing, or execute on local vehicles.

For offloading computing, when the limited computing power of vehicle itself is not

enough to support the time delay requirement of tasks, the task needs to be offloaded

to service nodes for calculation. The task processing process will inevitably bring time

delay and energy consumption. Since the data volume of processing results

returned is small, the delay and energy consumption of return process are ignored,

and only the upload delay, calculation delay and transmission energy consumption

are considered [28, 29].

In this paper, the task request vehicle to offload tasks to service node wj calculation

process is defined as the weighted combination of delay and energy consumption,

expressed as:

uoffi ¼ αtoffi þ βeoffi ð1Þ

where α and β respectively represent the weighting factors of non-negative delay and

energy consumption, and satisfy α + β ≤ 1. toffi ¼ di
ri; j

þ si
f ij

represents the sum of offload-

ing delay and calculation delay. f ij represents the computing resources allocated by

service node wj to vehicle vi. eoffi ¼ pi
di
ri; j

represents the energy consumption of

transmission process.
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For local calculations, suppose that the computing power of vehicle vi is Fl
i , and the

computing power of different vehicles is different. When vehicle task Zi is calculated

locally, the cost that vehicle vi needs to bear is:

uli ¼ αtli þ βeli ð2Þ

where tli ¼ si
Fl
i
is the time delay required for calculation. eli ¼ φsiðFl

iÞ
2
represents the

energy consumption to perform tasks. φ is the power coefficient of energy consumed

per CPU cycle [30].

3.3 Communication model

When the traditional orthogonal multiple access technology is applied in MEC system,

each terminal user has a one-to-one corresponding transmission channel to ensure

stable signal transmission. The delay TOMA
v in completing task offloading in this sce-

nario is expressed as follows:

TOMA ¼ Sv

B log 1þ pOMA
v hvj j2

pv

 ! ð3Þ

where pOMA
v represents the transmission power of user v. hv represents the channel

gain between users and edge servers. pv represents the noise interference power of

users. B represents the channel transmission bandwidth of users. Thus, the total time

delay TOMA to complete the offloading of all vehicle users is expressed as:

TOMA ¼
XV
v¼1

TOMA
v ð4Þ

In a communication network based on hybrid NOMA-MEC, this system can allow

multiple vehicle users to complete task transmission and offloading in the same time

slot or frequency band. Suppose there are two car network users m and n requesting

task offloading at the same time, Dn ≥Dm, m, n ∈ {1, 2,…, v}. Thus, in this mode, users

m and n can simultaneously offload tasks to MEC servers in time slot Dm. The trans-

mission power of vehicle users m and n are pOMA
m and pOMA

n respectively. It should be

pointed out here that if the information of user m is decoded in the second stage of

serial interference cancellation, the performance of user m is same as OMA. Therefore,

the transmission delay of user m will not be affected [31]. The expression of user n

transmission rate Rn in time slot Dm is:

Rn≤B log 1þ pNOMA
nm hnj j2

pOMA
m hmj j2 þ pv

 !
ð5Þ

where pNOMA
nm represents the transmission power of vehicle user n in time slot Dm. hm

and hn represent the channel gains of vehicle users m and n respectively.

The task offloading of end users by NOMA will generate more energy consump-

tion than OMA mode [32]. Therefore, this paper uses a hybrid NOMA-MEC

method to offload the tasks requested by mobile terminal users. The specific steps

are: firstly, user m and user n perform task offloading at the same time within time
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Dm. Secondly, after user m completes task offloading, user n needs to continue the

task offloading in OMA manner. It takes Tre
n to complete the offloading of this

part of tasks, so total time delay Tn of vehicle user n is:

Tn ¼ Dm þ Sn−RnDm

B log 1þ pNOMA
nn

pv
hnj j2

� � ð6Þ

where pNOMA
nn represents the transmission power offloaded by vehicle user n in

the second part. The time delay Tm of actual offloading for vehicle user m is

expressed as:

Tm ¼ Sm

B log 1þ pOMA
m hmj j2

pv

 !
s:t:Tm≤Dm

ð7Þ

3.4 Problem description

When a smart vehicle requests a task calculation, it first checks whether there is a

content cache in its own buffer pool. If the content is available locally, there is no

need to post a task request. Otherwise, scan the surrounding service node to see if

there is a content cache, and if it exists, it will be returned after the service node

calculation is completed. If it does not exist, you need to consider whether to

offload.

After the task is offloaded to service nodes and the calculation is completed, service

nodes consider the update of cache. After the content is returned, the service ends.

This paper aims to minimize system overhead through proper offloading and caching

decisions, as well as the allocation of communication and computing resources. Thus,

the optimization goal is expressed as:

min
A;C;P;ℱ ;AG

U A;C;P;ℱ ;AGð Þ

¼
XN
i¼1

hit j;iu
cache
i þ 1−hiti; j

� �
g j;i 1−aið Þuli þ aiu

off
i

h i

¼
XN
i¼1

hit j;iα
si
f ij

þ 1−hiti; j
� �

g j;i 1−aið Þ α
si
Fi

j

þ βKsi f li
� �2" #(

þai α
di

rij
þ si

f ij

 !
þ βpi

di

rij

" #)
ð8Þ

s:t: C1 : ai∈ 0; 1f g;∀i∈N ð9Þ

C2 : ci;k∈ 0; 1f g; ∀i∈N ; k∈K ð10Þ

C3 : g j;i∈ 0; 1f g; ∀i∈N ð11Þ

C4 : 0 < pi < pmax;∀i∈N ð12Þ

C5 : f ij > 0;∀i∈N ð13Þ
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C6 :
X
i∈N

ai f
i
j≤ Fmax

j ; ∀i∈N ; j∈ℳ ð14Þ

C7 : 1−aið Þtlocali þ ait
off
i ≤ min tmax

i ;
Lj

Vu
;
dinterrupt

V u−Vvj j
� �

; ∀i∈N ð15Þ

C8 :
XN
i¼1

g j;idi≤H j ð16Þ

where A represents the offloading decision set of all task request vehicles. C repre-

sents the channel allocation status; P is the task transmission power set of offloaded

vehicles. ℱ is the computing resource allocation strategy, and AG represents the cache

decision of service nodes.

In equations (9) to (16), constraints C1 and C3 indicate that the offloading

decision is a 0-1 decision. C2 indicates that the channel allocation matrix is a

binary variable. C4 ensures that the power distribution is non-negative and does

not exceed the range of uplink transmission power. C5 and C6 indicate that the

computing resource allocation does not exceed the maximum computing capacity

of service nodes. C7 represents the delay constraint, where Lj is the coverage of

RSUj and Vu is the moving speed of vehicle requested by tasks. Vv is the moving

speed of service vehicles, and dinterrupt is the maximum interruption distance. C8

indicates that the cache content of service nodes cannot exceed its maximum

cache capacity.

4 Offloading decision based on deep reinforcement learning
As an optimization problem, IoV network resource allocation problem is essentially a

mixed integer nonlinear programming model. Traditional optimization algorithms are

used to solve the model has the problem of obtaining sub-optimal solutions [33, 34]. In

order to achieve fast and efficient mathematical model solving, this paper uses deep Q

network to calculate nonlinear mathematical problems. This can avoid the danger of

traditional Q-learning network easily falling into a dimensional disaster, so that the ve-

hicle network resource allocation can improve the corresponding operating speed while

ensuring low overhead.

4.1 Q-learning Network

Q-learning is a classic reinforcement learning algorithm, that is a method of recording

Q-value. Each state and action group has a value Q(s, a). For each step, the agent calcu-

lates and stores Q(s, a) in Q table. This value can be regarded as the expectation of

long-term return, Q(s, a) update formula can be expressed as:

Q s; að Þ ¼ r s; að Þ þ γ� maxQ s
0
; a

0
� 	

ð17Þ

where (s, a) is the current state and action; (s′, a′) is the state and action of next

time slot. This paper defines γ as the learning rate, and γ is a constant that satis-

fies 0 ≤ γ ≤ 1. It is worth noting that if γ tends to 0, it means that the agent mainly

considers current instantaneous return. If γ tends to 1, it means that the agent is

also very concerned about future returns. For each step, iterate the value of Q(s, a).

In this way, we can get the optimal A .
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Algorithm 1 shows the corresponding operation process of Q-learning algorithm.

4.2 Offloading decision algorithm based on DQN

In order to further reduce the amount of calculation of IoV network computing

resource allocation and improve the real-time performance of algorithm, Deep Q-

learning Network (DQN) approximate estimation Q(s, a) is used. It realizes the traversal

of enough sample states to make the algorithm meet the needs of actual engineering

environment.

DQN algorithm enables V-UEs to dynamically make the best offloading decision

based on their behavior and the behavior of edge cloud. This process is formulated as a

limited Markov Decision Process (MDP). It is defined as a tuple M= (S,A, R), where S

and A represent state and behavior spaces. R(s, a) represents the timely reward for per-

forming action a in state s. π is a strategy that matches a behavior a from a state s, such

as π(s) = a. The main goal of V-UEs is to find the optimal strategy π∗ to minimize the

utility obtained by users, thereby minimizing energy consumption and delay.

State space S is the number of task offloading requests Qu of V-UEs and the size of

remaining tasks in edge cloud Qc. The distance D between V-UEs and the edge cloud

consists of three parts, which are defined as follows:

S ¼ s ¼ Qu;Qc;Dð Þf g ð18Þ

Behavior space A is expressed as:
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A ¼ a ¼ a0;…; ax;…; aXð Þ ax∈ 0; 1;…; amaxð Þjf g ð19Þ

where a0 represents the task sequence processed locally; ax represents the sequence off-

loaded to edge cloud. amax is the maximum number of tasks that are processed locally or

offloaded to the cloud in each decision cycle. The total number of tasks for each behavior

is less than or equal to the number of tasks currently staying in user queue.

The instant return is the cost of V-UEs making the optimal offloading decision in each

system state. Thus, the instant reward matrix R(s, a) for a given behavior a in state s is:

R s; að Þ ¼ U s; að Þ−C s; að Þ ð20Þ

where U(s, a) and C(s, a) are instant utility matrix and cost matrix respectively. For

immediate utility, it can be expressed as:

U s; að Þ ¼ ρ OL
i; j þ OC

i; j

� 	
ð21Þ

where ρ is the utility constant. Correspondingly, C(s, a) cost matrix can be expressed

as:

C s; að Þ ¼ η1E s; að Þ þ η2T s; að Þ ð22Þ

where η1 and η2 are constants. E(s, a) and T(s, a) are energy consumption and delay

matrices respectively, expressed as follows:

E s; að Þ ¼ a0e
L
i; j s; að Þ þ

XX
x¼1

ade
C
i; j s; að Þ ð23Þ

T s; að Þ ¼ a0t
L
i; j s; að Þ þ

XX
x¼1

adt
C
i; j s; að Þ ð24Þ

Q matrix is an online learning scheme of model-free deep learning algorithm In this

scheme, V-UEs select behavior at for potassium planting in state st at time step t to

minimize the immediate future return [35]. Q matrix can be expressed as:

Q� s; að Þ ¼ ‐ maxE rt þ
X∞
k¼1

γkrtþk st ¼ s; at ¼ a;πj
" #

ð25Þ

where rt is the minimum reward for adopting an offloading strategy π after perform-

ing behavior a in state s at time step t. E[⋅] represents the expectation function; γ is the

attenuation coefficient. Q matrix is a neural network approximator Q(s, a; θ), θ is a

weighting factor. In each decision cycle, state vector S = (Qu,Qc,D) taken by V-UEs for

the first time is used as the input of Q matrix, and all possible behaviors A are used as

the output of Q matrix. Then V-UEs select the behavior according to ε − greedy

method. In addition, Q matrix is iteratively adjusted θ to minimize the loss function.

Therefore, the loss function at time step t can be defined as:

Lt θtð Þ ¼ −E rt þ γ max
a0

Q stþ1; a
0
; θt−1

� 	
−Q st ; at ; θtð Þ

� �2
" #

ð26Þ

In other words, given a converted 〈st, at, rt, st + 1〉 weight factor θ, Q matrix is updated

by minimizing the square error between the current predicted Q value Q(st, at) and the

target Q value rt þ γ max
a0

Qðstþ1; a
0 Þ.
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In addition, the empirical replay method is used as a training method to solve the

instability of Q network due to the nonlinear approximation function in DQN. More

specifically, user experience et = 〈st, at, rt, st + 1〉 is stored in the memory Ω = {et − ψ,…, et}.

At each time step t, a random mini-batch conversion is selected from memory to train

Q network instead of the most recent conversion et.

Figure 2 shows the corresponding DQN-based offloading decision algorithm flow

chart. From Fig. 2, we can see that the algorithm steps 2-4 are recursion. Q value is

Fig. 2 Offloading decision algorithm based on DQN
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estimated according to Q network, and the offloading decision action made by users at

the beginning of each decision period is presented. Steps 5-7 use the experience replay

method to train Q network.

5 Experimental
5.1 Simulation setting

In this section, MATLAB simulation platform is used to verify the efficient perform-

ance of proposed resource allocation mechanism in DQN algorithm-based vehicle net-

work under edge computing environment. This experiment is carried out in the

context of IEEE 802.11p vehicle network scene standard and MEC white paper, using

the channel gain model proposed in 3GPP standardization.

The simulation scenario is set to a one-way straight road, and vehicles running

on the road can communicate with roadside base stations as well as vehicle-to-

vehicle communication. The purpose is to simulate proposed MEC task

distribution algorithm based on deep reinforcement learning and evaluate the

performance in different situations. This paper mainly considers 3 communities

along the roadside. Each cell is equipped with RSU and MEC server, and the

coverage radius of RSU is 500 meters. The specific simulation parameters are

shown in Table 1.

5.2 Algorithm sensitivity analysis

In order to verify the superiority of proposed method for the allocation of comput-

ing resources in IoV tasks, a discussion and analysis are carried out from two

aspects: the total system computing overhead and time delay. Then it achieves the

superior performance of proposed method in this paper with low overhead and

high real-time in task allocation.

Table 1 Experimental simulation parameter setting

Parameter Numerical Value

Maximum transmitting power of vehicle 25 dbm

Task calculation size 22.5 MHz

CPU weeks required for computing tasks 15-25 MB

Gaussian white noise power 1500~3000 Megacycles

Weight factor setting -106 dbm

Coverage radius of RSU 0.75

Vehicle computing power 1-2GHz

Computing power of MEC server 11.2GHz

Number of uplink transmission channels 10

The number of days of vehicles in a single community 15

Distributed parameter 0.59

Vehicle cache capability 115 MB

Cache capability of MEC server 512 MB

Vehicle moving speed 40 Km/h, 60Km/h

Maximum interruption distance 345 m
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5.2.1 Sensitivity analysis of total system overhead

In this paper, two basic methods, "full local calculation" and "full offload calculation",

are compared and verified with proposed method. Discuss and analyze the relationship

between number of users, the computing capacity of servers, and the volume of

uploaded data and the total computing overhead of system. "Full local calculation"

means that all users choose local calculation. "Full offload calculation" means that all

users choose to offload calculation. At this time, the computing resources of MEC

servers are equally distributed to each user.

Figure 3 is a graph showing the relationship between total expenditure and the num-

ber of users. On the whole, when the number of users continues to increase, the total

cost of the three methods is on the rise.

In Fig. 3, the performance of proposed DQN method is relatively stable and can

achieve the best results. When the number of users reaches 15 cars, the total system

overhead can still be kept at a low level compared with the comparison method.

Among them, there is almost no difference between the curve of full offloading method

and DQN when the number of users is 4. But when the number of vehicles increases,

the total cost increases rapidly. The analysis believes that when the number of users

increases and all of them choose to offload computing, MEC servers with limited

computing resources cannot provide sufficient computing resources for each user,

which reduces the overall performance.

Figure 4 is an analysis diagram of the influence of computing capacity for MEC

servers on weighted total overhead. It can be seen from the figure that as the comput-

ing capacity of servers increases, for the total system overhead, the method proposed in

this paper can always maintain a lower level than the comparison method, and has

obvious advantages in computing performance.

It can be seen from Fig. 4 that the more special one is the all local calculation curve,

and the weighted total overhead does not change with the calculation capacity of MEC

Fig. 3 Relationship between total cost and number of users
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servers. Obviously, this is because the number of computing resources of MEC servers

has no effect on the local computing process. The other two curves show a downward

trend as F increases. This is because the larger F is, the server can allocate more com-

puting resources to users, thereby reducing processing time and energy consumption.

The curve of DQN method proposed in this paper is always at the bottom and

performs best.

Figure 5 shows the performance of various algorithms under different upload data

volume conditions. It can be seen from Fig. 5 that as the size of uploaded data in-

creases, the curves of all algorithms show an upward trend. Because a larger amount of

data means more time to upload and process data, this process also increases energy

consumption correspondingly, leading to an increase in the total system overhead.

According to Fig. 5, DQN method we proposed has the best effect because it rises the

slowest among these three lines. The upward trend of all locally calculated curve is

much higher than other two curves, and the performance gap with other two algo-

rithms is getting bigger and bigger.

5.2.2 Sensitivity analysis of system time delay

For the distribution of computing tasks in IoV, the delay is also an important indicator

to measure the quality of resource allocation. In order to prove that proposed algorithm

can further meet the needs of practical engineering applications, the algorithm of litera-

ture [25] and the algorithm of literature [26] are selected here as a comparison method

and the method proposed in this paper is compared and verified.

Figure 6 is a simulation result of the number of users requesting task offloading and

the total time delay of task offloading. Compared with literature [25] and literature

[26], DQN algorithm proposed in this paper has a slower increase in time delay.

Fig. 4 Relationship between total cost and server computing capacity
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Besides, when the number of users reaches 15 and the offloading delay reaches the

upper limit of 235ms, it has obvious advantages in fast calculation.

It can be seen from Fig. 6 that as the number of users increases, the total delay of

task offloading also gradually increases. At the same time, the total delay gap of task

offloading under different modes has gradually increased. The reason for the above

phenomenon is that when the number of users requesting task offloading is small, the

channel resources in the three modes are relatively sufficient, which can satisfy users to

perform offloading at the same time. However, with the further increase in number of

users, the problem of insufficient channel resources has gradually emerged. The users

Fig. 5 Relationship between total cost and the size of uploaded data

Fig. 6 Relationship between total delay and number of users
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in literature [25] and literature [26] need to perform task offload sequence, and wait for

other users to complete tasks before offloading. The offloading strategy method

proposed in this paper can satisfy more users to offload tasks at the same time under

limited channel resources.

Figure 7 is a simulation diagram of task offloading delay and data size for a single

user in different modes. According to the simulation results, it can be found that the

data size of user task offloading is linearly positively correlated with the offloading

delay. In the three offloading modes, when the size of offloading tasks is the same, there

is no big difference in offloading delay. The reason for the above simulation results is

that when a single user requests task offloading, the channel resources of communica-

tion network model are abundant, which can ensure that offloading requests are trans-

mitted with the optimal channel bandwidth.

In summary, compared with other current task resource allocation methods, DQN

algorithm-based task resource allocation method for IoV proposed in this paper has a

good performance in edge computing environment. The algorithm not only guarantees

the low-overhead computing performance of system, but also realizes lower-latency

communication, which provides a better service experience for users in IoV.

6 Conclusion
The high-speed mobility of vehicles and diversity of communication quality in

current IoV make offloading strategies for computing tasks more complicated. To

solve the problem, this paper proposes a computing resource allocation scheme

based on deep reinforcement learning network in MEC scenarios. Considering the

computing power of service nodes and vehicle moving speed as constraints, the

scheme builds a task resource allocation model in edge computing scenario with

the minimum total system computing cost as objective function. In addition, deep

Q learning network is used to solve the mathematical model of resource allocation,

experience replay method is used to avoid dimension disaster and ensure the low-

Fig. 7 Relationship between time delay and the size of uploaded data
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overhead and low-latency operation requirements of resource allocation. Simulation

results prove that the proposed scheme still shows excellent network performance

with low overhead and low latency when the amount of user upload data is 10K

bits and the number of terminals is 15.

The future research will be to explore the platformization of our proposed method

and strive to realize its commercialization.
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