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Abstract

Linear canonical transform as a general integration transform has been considered into
Wigner-Ville distribution (WVD) to show more powerful ability for non-stationary signal
processing. In this paper, a new WVD associated with linear canonical transform
(WVDL) and integration form of WVDL (IWVDL) are presented. First, the definition of
WVDL is derived based on new autocorrelation function and some properties are
investigated in details. It removes the coupling between time and time delay and lays
the foundation for signal analysis and processing. Then, based on the characteristics of
WVDL over time-frequency plane, a new parameter estimation method, IWVDL, is
proposed for linear modulation frequency (LFM) signal. Two phase parameters of LFM
signal are estimated simultaneously and the cross term can be suppressed well by
integration operator. Finally, compared with classical WVD, the simulation experiments
are carried out to verify its better estimation and suppression of cross term ability. Error
analysis and computational cost are discussed to show superior performance
compared with other WVD in linear canonical transform domain. The further
application in radar imaging field will be studied in the future work.

Keywords: Linear canonical transform, Wigner-Ville distribution, Time-frequency
analysis, Parameter estimation

1 Introduction
The classical Wigner-Ville distribution (WVD), as an important and fundamental tool of
time-frequency analysis, has been developed over the years in many engineering systems
[1–6]. It can be also viewed as traditional Fourier transform (FT) kernel on autocorrela-
tion function. Linear canonical transform (LCT) is a generalized integral transform of FT
and fractional FT (FRFT) and defined as [7–9]

XA(u) = LA{x(t)}(u) =
∫ +∞

−∞
x(t)KA(u, t)dt (1)

where

KA(u, t) =
⎧⎨
⎩

1√
j2πb

· ej
(

a
2b t

2− 1
b ut+ d

2b u
2
)
, b �= 0

√
d · ej cd2 u2δ(t − du), b = 0

(2)
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and parameter matrix A =[ a b; c d], a, b, c, d ∈ R and |A| = 1. From (1) and (2),
LCT can be reduced to be FT, FRFT, or other affine transform when A is chosen spe-
cially. LCT plays a major role in non-stationary signal processing, especially for detection
and estimation of LFM signals, which has been developed into diverse application areas
[10–13]. However, although LCT andWVD are important and effective tools in LFM sig-
nal processing, LCT cannot gather signal energy strongly like WVD and only classical
WVD does not exploit phase feature of LFM signal fully. As a result, they display the poor
performance under low signal-to-noise ratio (SNR) for detection and estimation. In order
to improve the performance of LFM signal detection and estimation, therefore, a series of
WVD associated with LCT have been proposed by researchers, which are effective way
and validated by some works [14–22].
The WVD associated with the LCT (LCWD) was first investigated from generalized

transform domain perspective in [14] and the relations among some time-frequency dis-
tributions and linear canonical operators have been discussed. Along with this idea, the
WVD associated with LCT has been studied in depth and widely [15–20, 22]. The WVD
based on LCT (WDL) was first defined in time domain by replacing the kernel of classical
FTwith kernel of LCT [15]. Based on this notion, some basic properties were also derived.
This WDL raised more analysis views of LFM signal in time-linear canonical frequency
(LCF) plane and then was applied to estimating parameter of LFM signals. In [16], a new
version of LCWD and its moment were investigated, which was applied to first-order
optical system. In the same year, a cross-WVD for time-frequency analysis and general-
izedWVD for the estimation of quadratic frequency modulation signal were presented in
LCT domain [17]. Afterwards, unified WVD in the LCT domain (UWDL) was proposed
by substituting the classical autocorrelation function with a generalized autocorrelation
function in [18], which unifies LCWD andWDL by nine free parameters. In order reduce
parameter complexity of UWDL, two special cases of this UWDL were presented by less
parameters [19, 20]. These unifiedWDL havemore robust detection performance of LFM
signal in noise environment than those in [14, 15] as well as the classical WVD [1]. How-
ever, autocorrelation function of LFM signal contains coupling between time and time
delay, which is the essential phase characteristics and is not considered in above methods.
For this, the author proposed a novel WVD associated with LCT in [21] and some basic
properties were derived. This method can remove coupling and make energy distribution
a straight line parallel to time axis, which was used to detect LFM signal theoretically.
Nevertheless, there are other useful properties and better performance for parameter
estimation of LFM signal based on this method that have not been developed.
For this purpose, the definition of WVD associated with LCT (WVDL) is derived by

new autocorrelation function in LCT domain. TheWVDL is able to represent and acquire
characteristics of LFM signal using affine transform advantage of LCT to time-frequency
plane. Then, other useful properties [23, 24] are investigated and proved in details
including nonlinearity, linear canonical time shift, linear canonical modulation, dilation,
reconstruction formula, and convolution. Based on above characteristics of energy dis-
tribution, a novel parameter estimation method, integration form of WVDL (IWVDL),
is proposed, which estimate two phase coefficients of LFM simultaneously and suppress
cross terms effectively for multi-component LFM signal. Finally, to demonstrate superior
estimation performance of LFM signal, the simulation experiments are carried out and
the estimation error, computation cost and application are discussed.
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The remainder of this paper is organized as follows: Preliminaries summarizes common
notations and basic operators and then reviews existingWVD definitions in the Section 2.
Section 3 presents a WVDL from a new point of view and derive some properties. Based
on this definition, a new parameter estimation method IWVDL is proposed. Section 4
is the results and discussion about estimation performance and application of proposed
method. Section 5 concludes this paper.

2 Preliminaries
2.1 Notations and operators

We will summarize some notations and review some basic operators in this subsection
(Table 1).
Time Shift: For a complex signal x(t) ∈ L2(R), a time shift operator Ts is given as

Tsx(t) = x(t − s) (3)

Modulation: For a complex signal x(t) ∈ L2(R), a modulation operatorMu0 is given as

Mu0x(t) = x(t) · eju0t (4)

Dilation: For a complex signal x(t) ∈ L2(R), a dilation operator Dt0 is given as

Dt0x(t) = 1
t0
x(t0t) (5)

Linear canonical time shift: For a complex signal x(t) ∈ L2(R), a linear canonical time
shift operator TA

s is given as

TA
s x(t) = x(t − s)e−j ab (t− s

2 )s (6)

Linear canonical modulation: For a complex signal x(t) ∈ L2(R), a linear canonical
modulation operatorMA

u0 is given as

MA
u0x(t) = x(t)e−j u0b t (7)

Convolution [25, 26]: For complex signals x1(t), x2(t) ∈ L2(R), a convolution operator �
is given as

x1(t) � x2(t) =
∫
R

x1(t′)x2(t − t′)dt′ (8)

2.2 Wigner-Ville distribution

The WVD plays a important role in time-frequency representation since it can provide
good energy distribution and high resolution for non-stationary signal processing.

Table 1 Some common notation

Notation Description

R The set of real number

∗ The complex conjugate operator

� The convolution operator of Fourier transform

|a| The modules of a

δ(t) The continuous-time Dirac function

x(t) The continuous-time signal with finite energy

L2(R) The set of square-integrable function on R

LA The LCT operator with parameter matrix A

〈f (t), g(t)〉 L2-inner product between function f (t) and g(t)
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Definition 1. [1, 3] For complex signal x(t) ∈ L2(R), the classicalWVDof x(t) is defined
as

WVD(t,ω) =
∫
R

x
(
t + τ

2

)
x∗ (

t − τ

2

)
· e−jτωdτ (9)

which is FT of instantaneous autocorrelation function

R(t, τ) = x
(
t + τ

2

)
x∗ (

t − τ

2

)
(10)

Motivated by classical WVD and requirement of non-stationary signal processing, a
series of novel WVD associated with LCT are proposed to process LFM signal and can be
summarized in Table 2. As a matter of fact, above WVDs in LCT are obtained by using
new transform kernel, new autocorrelation function, or other methods. As described in
the Section 3, they need to improve performance in robust to noise and computational
burden for signal processing. Besides, all of them do not fully utilize the characteristics of
autocorrelation function of LFM signal and not remove the coupling relationship between
time and time delay. Therefore, a newly defined WVD associated with LCT is first pro-
posed in [21], which can remove the coupling and accumulate energy of LFM signal well
in the time-LCF plane.

3 Method
This section will derive the WVDL from a new perspective and then study some useful
properties in details. Based on these, a integration form of WVDL will be proposed to
estimate parameters of LFM signal.

3.1 Definition of WVDL

It is well known that classicalWVD in (9) is Fourier transform of autocorrelation function
in (10). In order to obtain new WVDL, we define a new instantaneous autocorrelation
function in LCT domain

RA(t, τ) =
[
x
(
t + τ

2

)
ej

a
2b tτ

] [
x∗ (

t − τ

2

)
e−j a

2b tτ
]

= x
(
t + τ

2

)
x∗ (

t − τ

2

)
ej

a
b tτ

(11)

Table 2 Existing WVD associated with LCT

Formula Literature

WA(t, u) = ∫
R
XA

(
u + τ

2

)
X∗
A

(
u − τ

2

)
e−jvτ dτ [14]

Wx
A(t, u) = ∫

R
x
(
t + τ

2

)
x∗

(
t − τ

2

)
KA(u, τ)dτ [15]

WA(t, u) = ∫
R
XA

(
u+u′
2

)
X∗
A

(
u+u′
2

)
ej2πu

′tdu′ [16]

WA1,A2,A3
x (t, u) = 1√

j2πb3

∫
R
XA1

(
t + τ

2

)
X∗
A2

(
t − τ

2

)
KA3 (u, τ)dτ

where A1, A2, A3 are different parameter matrices of LCT. [18]

WA1,A0
x (t, u) = 1√

j2πb0

∫
R
XA

(
t + τ

2

)
x∗

(
t − τ

2

)
KA0 (u, τ)dτ

where A0 =[ a0 b0, c0, d0] is the parameter matrix of LCT. [19]

LWDx
A(t, u) = 2

∫
R
XA (ω + bu) X∗

A
(ω − bu) e−jbdu2K∗

A (ω, 2t)dω

where A =[ a − b; −c d]. [20]

WDOLx(t, u) = ∫
R
x
(
t + τ

2

)
x∗

(
t − τ

2

)
hA(u, t)dτ ,

where hA = KA(u, τ)e
j
2b [at

2+2t(u0−u)2u(du0−bw0)+du2]. [22]
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Applying scaling FT to (11) along with scale time delay τ
b , it can be obtained

1
2π |b|

∫
R

RA(t, τ) · e−j τb udτ

= 1
2π |b|

∫
R

x
(
t + τ

2

)
x∗ (

t − τ

2

)
ej

a
b tτ e−j τb udτ

(12)

According to (11) and (12), a newWVDL can be defined.
Definition 2. [21] For complex signal x(t) ∈ L2(R), the Wigner-Ville distribution

associated with LCT (WVDL) of x(t) is defined as

WVDLAx (t,u) = 1
2π |b|

∫
R

x
(
t + τ

2

)
x∗ (

t − τ

2

)
· e−jτ

( u
b− at

b
)
dτ (13)

TheWVDLAx (t,u) displays the distribution of signal energy and can be finite support obvi-
ously over time-LCF plane, which can provide theoretical foundation for signal detection
and estimation. Without loss of generality, assume that b > 0, so |b| = b and they are not
differentiated in the next sections. Particularly, when A =[ 0 1; −1 0], (13) will reduce to
be classical WVD in (9).
It is worth pointing out that the existing other results of WVD in LCT domain [14–16,

18–20] can be regarded as the rotation or affine transform of the classical time-frequency
plane. Similarly, there is a relationship between (13) and (9) [21]

WVDLAx (t,u) = 1
2π |b|WVD[ t, (u − at)/b] (14)

In the practical engineering, it is finite for observation time to observe and process a

system or a signal. Hence, for a LFM signal x(t) = ej
(
f0t+ k

2 t
2
)
with observation time Ta,

itsWVDLAx (t,u) can be expressed as

WVDLAx (t,u) = 1
2π |b|

∫
R

x
(
t + τ

2

)
x∗ (

t − τ

2

)
· e−jτ

( u
b− at

b
)
dτ

= 1
2π |b|

∫ Ta/2

−Ta/2
x
(
t + τ

2

)
x∗ (

t − τ

2

)
· e−jτ

( u
b− at

b
)
dτ

= 1
2π |b|

∫ Ta/2

−Ta/2
ej(f0+kt)τ e−jτ

( u
b− at

b
)
dτ

= Ta
2π |b| sinc

{
Ta
2

[(u
b

− f0
)

+
((a

b
+ k

)
t
)]}

(15)

where phase coefficients f0 and k are center frequency and modulation frequency rate
respectively. From (15), a oblique line is shown in time-LCF plane, which represents the
linear relationship between time and LCF. It is worth noting that a straight line paralleling
to the time axis is obtained by (15) when a

b = −k, which is optimal and pivotal to energy
gather and parameter estimation of LFM signal.

3.2 Properties of WVDL

Some interesting and basic properties of WVDL have been studied shown in Table 3
[21]. For the sake of completeness of the study on WVDL, there are other useful prop-
erties to be derived, which are helpful for analysis of cross term, the relationship of time
width and bandwidth, filter design, and other feature analysis of signal. The properties
and corresponding formulas are also summarized in Table 4.
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Table 3 Basic properties of new WVDL

Property Formula

Conjugation symmetry WVDLAx1 (t, u) =
[
WVDLAx1 (t, u)

]∗
,

WVDLAx1,x2 (t, u) =[WVDLAx1,x2 (t, u)]
∗

Time shift WVDLATsx(t, u) = WVDLAx (t − s, u − as)

Modulation WVDLAMu0 x
(t, u) = 1

2π WVDLAx (t, u − bu0)

Marginal
∫
R
WVDLAx (t, u)du = |x(t)|2

Power
∫
R

∫
R
WVDLAx (t, u)dudt = ∫

R
|x(t)|2dt

Moyal’s formula

∫
R

∫
R
WVDLAx1 (t, u)[WVDLAx2 (t, u)]

∗ dudt
= 1

2π |b| |〈x1(t), x2(t)〉|2

(1) Nonlinearity: Let WVDLAx1(t,u), WVDLAx2(t,u) be WVDLs of complex signal
x1(t), x2(t) ∈ L2(R) and x1(t), x2(t) �= 0 respectively. If x(t) = x1(t)+x2(t), thenWVDLAx
of x(t) is

WVDLAx (t,u) �= WVDLAx1(t,u) + WVDLAx2(t,u) (16)

Proof According to the proposed definition of WVDL in (13), we have

WVDLAx (t,u)

= 1
2π |b|

∫
R

[
x1

(
t + τ

2

)
+ x2

(
t + τ

2

)] [
x1

(
t − τ

2

)
+ x2

(
t − τ

2

)]∗

· e−jτ
( u
b− at

b
)
dτ

= 1
2π |b|

∫
R

[
x1

(
t + τ

2

)
x∗
1

(
t − τ

2

)
+ x2

(
t + τ

2

)
x∗
2

(
t − τ

2

)

+x1
(
t + τ

2

)
x∗
2

(
t − τ

2

)
+ x2

(
t + τ

2

)
x∗
1

(
t − τ

2

)]
· e−jτ

( u
b− at

b
)
dτ

= WVDLAx1(t,u) + WVDLAx2(t,u) + WVDLAx1x2(t,u) + WVDLAx2x1(t,u)

(17)

From (17), the output includes two WVDLs of cross terms, which implies nonlinearity in
(16) holds.

(2) Linear canonical time shift: Let WVDLAx (t,u) be WVDL of complex signal x(t) ∈
L2(R), if TA

s [ x(t)]= x(t − s) · e−j ab s(t− s
2 ), then

WVDLATA
s x

(t,u) = WVDLAx (t − s,u) (18)

Table 4 Other useful properties of new WVDL

Property Formula

Nonlinearity WVDLAx (t, u) �= WVDLAx1 (t, u) + WVDLAx2 (t, u)

Linear canonical time shift WVDLA
TAs x

(t, u) = WVDLAx (t − s, u)

Linear canonical modulation WVDLA
MA

u0
x
(t, u) = WVDLAx (t, u − u0)

Dilation
WVDLADt0 x

(t, u) = 1
t0
WVDLA1x

(
t
t0
, t0u

)

where A1 =
[
t20a b; c

t20
d
]

Reconstruction formula x(t) = 1
x∗(0) e

−j a2b t
2 ∫

R
WVDLAx

( t
2 , u

)
ej

t
b udu

Convolution WVDLAx1�x2 (t, u) = 2π |b| ∫
R
WVDLAx1x2 (w, u)

·WVDLAx2x1 (t − w, u − aw)dw
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Proof Based on time shift operator in (6) and definition of WVDL in (13), we have

WVDLATA
s x

(t,u)

= 1
2π |b|

∫
R

[
x
(
t − s + τ

2

)
e−j ab s(t− s

2+ τ
2 )

] [
x
(
t − s − τ

2

)
e−j ab s(t− s

2− τ
2 )

]∗

· e−jτ( ub− at
b )dτ

= 1
2π |b|

∫
R

x
(
t − s + τ

2

)
x∗ (

t − s − τ

2

)
· e−jτ

( u−as
b − a

b (t−s)
)
dτ

= WVDLAx (t − s,u)

(19)

This completes the proof.

(3) Linear canonical modulation: Let WVDLAx (t,u) be WVDL of complex signal x(t) ∈
L2(R), ifMA

u0 [ x(t)]= x(t) · ej u0b t , then

WVDLAMA
u0x

(t,u) = WVDLAx (t,u − u0) (20)

Proof Based on modulation operator in (7) and definition of WVDL in (13), we have

WVDLAMA
u0x

(t,u)

= 1
2π |b|

∫
R

[
x
(
t + τ

2

)
ej

u0
b (t+ τ

2 )
] [

x
(
t − τ

2

)
ej

u0
b (t− τ

2 )
]∗ · e−jτ

( u
b− at

b
)
dτ

= 1
2π |b|

∫
R

x
(
t + τ

2

)
x∗ (

t − τ

2

)
· e−jτ

(
u−bu0

b − a
b t

)
dτ

= WVDLAx (t,u − bu0)

(21)

Thus, linear canonical modulation property is proved.

(4)Dilation: Let WVDLAx (t,u) be WVDL of complex signal x(t) ∈ L2(R), if Dt0 [ x(t)]=
1
t0 x(t0t), then

WVDLADt0x
(t,u) = 1

t0
WVDLA1

x

(
t
t0
, t0u

)
(22)

where A1 =
[
t20a b; c

t20
d
]
.

Proof From dilation operator and definition of WVDL in (13), we obtain that

WVDLADt0x
(t,u) = 1

2π |b|
1
t20

∫
R

x
(
t
t0

+ τ

2t0

)
x∗

(
t
t0

− τ

2t0

)
· e−jτ

( u
b− at

b
)
dτ (23)

Let τ
t0 = τ ′, (23) can be written as

WVDLADt0x
(t,u)

= 1
2π |b|

1
t20

∫
R

x
(
t
t0

+ τ ′

2

)
x∗

(
t
t0

− τ ′

2

)
· e−jτ ′

(
t0u
b − t20a

b
t
t0

)
d(t0τ ′)

= 1
2π |b|

1
t0

∫
R

x
(
t
t0

+ τ ′

2

)
x∗

(
t
t0

− τ ′

2

)
· e−jτ ′

(
t0u
b − t20a

b
t
t0

)
dτ ′

= 1
t0
WVDLA1

x

(
t
t0
, t0u

)

(24)

where A1 =
[
t20a b; c

t20
d
]
. This finishes the proof.
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(5) Reconstruction formula: LetWVDLAx (t,u) beWVDL of complex signal x(t) ∈ L2(R).
If initial value x(0) of signal is known and x(0) �= 0, b > 0 then

x(t) = 1
x∗(0)

e−j a
2b t

2
∫
R

WVDLAx
(
t
2
,u

)
ej

t
b udu (25)

Proof The newly defined WVDL in (13) can be rewritten as

WVDLAx (t,u) = 1
2π |b|

∫
R

x
(
t + τ

2

)
x∗ (

t − τ

2

)
· ej ab τ te−j τb udτ

= 1
2π |b|F{h}

(u
b

) (26)

where F is classical Fourier transform operator, and

h = x
(
t + τ

2

)
x∗ (

t − τ

2

)
· ej ab τ t =

∫
R

WVDLAx (t,u)ej
τ
b udu (27)

Let t = τ
2 , then τ = 2t. (27) can be reduced

x(2t)x∗(0)ej
2a
b t2 =

∫
R

WVDLAx (t,u)ej
2t
b udu (28)

Further, let v = 2t, then

x(v) = 1
x∗(0)

e−j a
2b v

2
∫
R

WVDLAx
( v
2
,u

)
ej

v
b udu (29)

Let t = v, we have

x(t) = 1
x∗(0)

e−j a
2b t

2
∫
R

WVDLAx
(
t
2
,u

)
ej

t
b udu (30)

Thus, it completes the signal reconstruction.

(6) Convolution: For complex signal x1, x2 ∈ L2(R), then WVDL of x1 � x2 is

WVDLAx1�x2(t,u) = 2π |b|
∫
R

WVDLAx1x2(w,u)WVDLAx2x1(t − w,u − aw)dw (31)

Proof First, we know

[ x1 � x2] (t) =
∫
R

x1(t′)x2(t − t′)dt′ (32)

According to definition of WVDL, then

WVDLAx1�x2(t,u)

= 1
2π |b|

∫
R

[ x1 � x2]
(
t + τ

2

)
[ x1 � x2]∗

(
t − τ

2

)
· e−jτ

( u
b− at

b
)
dτ

= 1
2π |b|

∫
R

∫
R

x1(r)x2
(
t + τ

2
− r

)
dr

∫
R

x∗
2(z)x

∗
1

(
t − τ

2
− z

)
dz · e−jτ

( u
b− at

b
)
dτ

(33)
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Let r = w + p
2 , z = w − p

2 and τ = p + q, then (33) can be reduced as

WVDLAx1�x2(t,u)

= 1
2π |b|

∫
R

∫
R

∫
R

x1
(
w + p

2

)
x2

(
t − w + q

2

)
x∗
2

(
w − p

2

)
x∗
1

(
t − w − q

2

)

· e−j(p+q)
( u
b− at

b
)
dpdqdw

= 1
2π |b|

∫
R

∫
R

x1
(
w + p

2

)
x∗
2

(
w − q

2

)
· e−jp

( u
b− at

b
)
dp

·
∫
R

x2
(
t − w + q

2

)
x∗
1

(
t − w − q

2

)
· e−jq

( u−aw
b − a

b (t−w)
)
dqdw

= 2π |b|
∫
R

WVDLAx1x2(w,u)WVDLAx2x1(t − w,u − aw)dw

(34)

which completes the proof.

3.3 IWVDLmethod for LFM signal

LFM signal plays vital part inmany signal processing scenarios like radar, communication,
optical, and other fields. In this subsection, a integration form of WVDL (IWVDL) will
be proposed for parameter estimation of LFM signal.
For mono-component LFM signal,

x(t) = Cej
(
ft+ k

2 t
2
)
, t ∈

[
−Ta

2
,
Ta
2

]
(35)

its representation result can be obtained from (15)

WVDLAx (t,u) = TaC
2π |b| sinc

{
Ta
2

[(u
b

− f
)

+
((

k + a
b

)
t
)]}

(36)

The WVDL can gather energy of signal in the time-LCF plane, the maximum value of
energy distribution is determined by k = − a

b . In order to enhance peak, we propose a
integral way to WVDL along with time axis

IWVDLAx (u) =
∫
Ta

WVDLAx (t,u)dt (37)

Two phase parameters of LFM signal can be acquired simultaneously by the position of
energy peak⎧⎪⎪⎨

⎪⎪⎩

{ a
b ,u0

} = argmax
a
b ,u

{
IWVDLAx (u)

}

k̂ = − a
b

f̂ = u0
b

(38)

In the observation time Ta, the multi-component LFM signal is

x(t) =
L∑

i=1
Cie

j
(
fit+ ki

2

)
t2 t ∈

[
−Ta

2
,
Ta
2

]
(39)

where L is the number of component, Ci, fi, ki are the amplitude, center frequency and
modulation frequency rate of the i-th component, respectively. Applying WVDL to (39)

WVDLAx (t,u) = 1
2π |b|

∫
R

x
(
t + τ

2

)
x∗ (

t − τ

2

)
· e−jτ

( u
b− at

b
)
dτ

= 1
2π |b|

∫
Ta

x
(
t + τ

2

)
x∗ (

t − τ

2

)
· e−jτ

( u
b− at

b
)
dτ

= WVDLAauto(t,u) + WVDLAcross(t,u)

(40)
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where

WVDLAauto(t,u) = Ta
2π |b|

L∑
i=1

C2
i sinc

{
Ta
2

[(u
b

− fi
)

+
((

ki + a
b

)
t
)]}

(41)

and as for the expression of cross terms, please see [21].
To enhance peak and suppress cross term, the integration along time axis is considered

into WVDL

IWVDLAx (u) = IWVDLAauto(u) + IWVDLAcross(u) (42)

In the parameter search, cross term cannot be integrated actually since they contain t2-
term in the exponential term and proposed method cannot match them.

4 Results and discussion
This section will dedicate to demonstrate the estimation performance of proposed
method. The experiments for mono-component andmulti-component LFM signal will be
first performed. Then, error analysis, computation cost, and application in radar imaging
field will be discussed.

4.1 Results

4.1.1 Experiment 1: Mono-component LFM signal

In the observation time Ta = 16s, mono-component LFM signal in (35) with C = 1,
f = 1, and k = −1 is shown in Fig. 1a, in which real part and imaginary part are blue
solid line and red dotted line respectively. To indicate the characteristics of instantaneous
frequency of signal in (35), an oblique line is reproduced by means of phase derivation in
the time-frequency plane.
In order to display the feature of matched WVDL for LFM signal, Fig. 2 gives four

WVDL results under four parameter matrices. Figure 2a can be viewed as classical WVD
since A1 =[ 0 − 1; 1 0] is chosen, which gives the energy distribution in the clas-
sical time-frequency domain. Figure 2b–d are obtained respectively by WVDLs with
A2 =[ 0.5 − 1; 1 0] ,A1 =[ 1 − 1; 1 0] ,A1 =[ 1.5 − 1; 1 0]. From Fig. 2c, proposedWVDL
can obtain a straight line paralleling to the time axis, which is the optimal matched LCT
domain. Figure 3 is the results by proposed IWVDLmethod, in which only Fig. 3c obtains

Fig. 1 Mono-component LFM signal
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Fig. 2 WVDL of LFM signal with different parameter matrices

a peak of LFM signal. Similar to other WVD in LCT domain [14–16, 18, 19], the results
in the Fig. 2a, b, and d cannot acquire parameters of LFM signal directly in time-LCF
plane since they still depend on time axis. Thus, Fig. 3a, b, and d after the integration
cannot obtain energy peak of LFM signal. Figures 2c and 3c are able to obtain two phase
coefficients of LFM signal simultaneously by proposed method.

4.1.2 Experiment 2: Multi-component LFM signal

Without loss of generality, two-component LFM signal in (39) when L = 2 is employed
to validate proposed method. In the observation time Ta = 16, the parameters of two-
component LFM signal are amplitude C1 = C2 = 1, phase coefficients f1 = 1, f2 = −1,
and k1 = −1, k2 = 0.4. Figure 4a shows signal x(t) in time domain by real part and
imaginary part.
Figure 5 is classical WVD over time-frequency plane, in which two intersecting lines

only imply time-frequency distribution of two components and hardly obtain more spe-
cial parametric information of signal. Figure 6 are the results by WVDL, in which the
matched WVDL of x1 is shown and cross term can also not be ignored. Using charac-
teristics of WVDL of LFM signal in time-LCF plane, IWVDL in Fig. 7 works well for
suppressing cross term compared with Fig. 7. The parameters of two-component LFM
signal can be estimated by peak search in the optimal and matched domain.
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Fig. 3 IWVDL of LFM signal with different parameter matrices

4.2 Discussion

4.2.1 Error analysis

In order to validate estimation performance of proposedmethod, we employmean square
error (MSE) to measured estimation error in different noise environment. The MSE of
phase coefficients f and k can be given here [27]

MSEf = 10log10
1

Ntrail

Ntrail∑
n=1

[
f̂n − f

]2
(43)

and

MSEk = 10log10
1

Ntrail

Ntrail∑
n=1

[
k̂n − k

]2
(44)

where Ntrail is the number of simulation, f̂n and k̂n are the estimation values of phase
coefficients f and k at the nth trail.
For existing WVDs in LCT domain [14–16, 18–20], there are some common problems

for parameter estimation: (1) do not utilize the phase characteristics of autocorrelation
function of LFM signal, (2) do not suppress cross term for multi-component signal, and
(3) need othermethod to further estimate parameters like least squaremethod. Therefore,
let us choose a common kind of WVD in LCT domain, the WDL in [15], to be compared
to verify the better estimation performance of proposed method.
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Fig. 4 Two-component LFM signal

For LFM signal with additive white Gaussian noise, 100 Monte Carlo trails will be car-
ried out under low signal-to-noise rate (SNR) [−15, −5] dB. The MSE of different LFM
signals are shown in Fig. 8. Figure 8a is the result for mono-component LFM signal,
from which the method based onWDL displays larger error and our method will present
higher accuracy for phase coefficients f and k in the [−15,−5] dB. Besides, the estimation
errors of multi-component LFM signal are also measured and shown in Fig. 8b. In Fig. 8b,
the estimation results based on WDL represent better accuracy in the lower SNR envi-
ronment but the accuracy does not be improve when SNR increase. Proposed IWVDL
method can obtain more accurate parameters when SNR≥ −12 dB and trend to be stable
when SNR ≥ −9 dB. Therefore, our proposed method is more robust against noise and
has better estimation performance.

4.2.2 Computational cost

For a LFM signal with digital length N, the computation cost of classical WVD is
O(N2log2N) based on fast FT. The computation cost ofWDL isO(N3) introduced by LCT
kernel. The proposed IWVDL method contains free parameters of LCT, its computation
includes autocorrelation function N, WVDL on autocorrelation function N2. Assuming

Fig. 5 Classical WVD of two-component LFM signal
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Fig. 6 WVDL of two-component LFM signal

search times areM; therefore, the computational cost isO(MN3). There are search proce-
dures for other WVD in LCT domain; their computation become also more complex. For
example, unified WVDs associated with LFM have nine or six free parameters, in which
burden computation cost have to be faced.

4.2.3 Application

The inverse synthetic aperture radar (ISAR) imaging plays an important role for target
recognition and classical in the military and civilian areas. The motion of observation
target becomes more complex due to complex practical environment, especially the ship
target over the sea. Its Doppler is no longer constant and shows time-varying by com-
plex motion [28], which make range-Doppler imaging algorithm based on FT difficult to
obtain well-focus ISAR image.
After range compression and motion compensation, the Doppler is generally modeled

as LFM signal like (15) according to complex motion of rolling, roll, and yaw over the sea.
Therefore, the azimuth echo in a range bin can be modeled as multi-component LFM
signal [29, 30]

x(t) =
L∑

i=1
Ciej

(
ai1t+ ai2

2
)
t2 t ∈

[
−Ta

2
,
Ta
2

]
(45)

Fig. 7 IWVDL of two-component LFM signal
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Fig. 8 MSE of phase coefficient

where L is the number of scatterer in a range bin, and Ta is observation time. Ci is
backward reflection coefficient, and ai1 and ai2 denote effective rotation velocity and
accelerated velocity of scatterer i respectively.
Based on proposed IWVDL method, the parameters of each LFM signal in (45) can

be estimated and cross term can be suppressed effectively. Figure 9 gives the ISAR
imaging procedure based on proposed method. Associated with range-instantaneous-
Doppler imaging technique, the new ISAR imaging algorithm will be studied to obtain
the high-resolution ISAR image in our future work.

5 Conclusion
Jointing advantage ofWVD and LCT in time-frequency plane, this paper derives aWVDL
from a new autocorrelation function in LCT domain and investigate other useful proper-
ties. For LFM signal, thisWVDL can remove coupling between time and time delay, which
helps estimate parameter of LFM signal. Based on decoupling characteristics, an integra-
tion form of WVDL is proposed to enhance energy and suppress cross term. Then, two
phase parameters can be estimated simultaneously to avoid error propagation. Moreover,
the simulations are carried out by mono-component and multi-component LFM signal,
which shows good ability on parameter estimation and suppression of cross term. Finally,
the superior performance is verified by comparison and discussion of the estimation error
and computational cost. The application on ISAR imaging field will be are studied in the
future work.

Fig. 9 Application to ISAR imaging
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