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Abstract

Kubernetes is an open-source container orchestration system for automating
container application operations and has been considered to deploy various kinds of
container workloads. Traditional geo-databases face frequent scalability issues while
dealing with dense and complex spatial data. Despite plenty of research work in the
comparison of relational and NoSQL databases in handling geospatial data, there is a
shortage of existing knowledge about the performance of geo-database in a
clustered environment like Kubernetes. This paper presents benchmarking of
PostgreSQL/PostGIS geospatial databases operating on a clustered environment
against non-clustered environments. The benchmarking process considers the
average execution times of geospatial structured query language (SQL) queries on
multiple hardware configurations to compare the environments based on handling
computationally expensive queries involving SQL operations and PostGIS functions.
The geospatial queries operate on data imported from OpenStreetMap into
PostgreSQL/PostGIS. The clustered environment powered by Kubernetes
demonstrated promising improvements in the average execution times of
computationally expensive geospatial SQL queries on all considered hardware
configurations compared to their average execution times in non-clustered
environments.

Keywords: Distributed data processing, Geospatial databases, Cluster computing,
Geospatial-data, Geospatial-databases, Benchmarking, Database-as-a-service (DBaaS)

1 Introduction
The use of geospatial data has been increased in many applications, including traffic

management, ride-hailing services, and food sector, etc. The volume of geospatial data

is predicted to increase by 20% every year. The increase of geospatial information re-

quires new architectures or systems to handle data thus creating new challenges. At

present, mainly two types of databases store geospatial information: relational data-

bases and NoSQL databases. Relational databases are the most universally used and

the most developed database information systems used in industries for decades. Due

to a lack of native support for geospatial data in relational databases, some modern da-

tabases have updated and changed their database design specifically for spatial data to
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extend support for various operations on geo-data [1]. Examples of relational databases

for geographic information include PostGIS, WebGIS, Oracle 19c, the Microsoft Azure

SQL Database, and a few more. The relational databases can define spatial entities, ex-

tend their support for the different spatial data entities (polygon relationships), and ac-

quire various optimizations for refining the query operations execution time. With the

arrival of new cloud technologies, spatial information application systems are also in-

curring updations and changes rapidly to handle different operations on complex and

colossal data efficiently [2]. Storing, managing, querying data, and managing geospatial

databases in the environment effectively are the problems that are being tried to be

solved for many years.

Running multiple machines as a cluster is a method of managing multiple con-

tainers. Docker is one of the technology solutions that are compatible with any

computer to run containerized applications. Containerization is a process of iso-

lating applications from the host machine. It creates an environment similar to

having a separate operating system, even though there might be other containers

running on the host machine. Containerization helps the host machine to run,

create, and manage multiple containers on a single host machine. Kubernetes is

an open-source technology that serves as a container orchestration tool that auto-

mates installing and managing a cluster of Docker containers. Docker images

contain the desired application and service elements, and Kubernetes can be used

to deploy and manage these components. Kubernetes allows us to automate the

provisioning of containers, networking, load-balancing, security, and scaling

across all its nodes [3].

Clustering and orchestration of containers automatically allocate the client to the ma-

chine with the least resource usage. Database clustering and containerization take a dif-

ferent approach in order to maintain atomicity, consistency, isolation, and durability

(ACID) properties. In the database cluster mode, every single node is fully isolated and

has its own methods of managing the data and ACID properties. Since there is more

than one server instance, consistency is difficult to operate, and the concept of eventual

consistency is used. But the result of this offers an alternative in the event of a crash or

a failure.

The traditional data management technologies face frequent read-write prob-

lems and scalability problems while dealing with such dense and complex spatial

data. Using Geographic Information System (GIS) in a cluster environment can

be an effective way to solve spatial data problems by having the benefits of hori-

zontal extension on low-cost computers, which can provide large and scalable

storage, computing power, load balancing, high availability, and monitoring and

automation. The structure and principle of containers in the cluster environment

make the technology very prominent and efficient for database workflows. One of

the reasons being that once a container has been built, it will run on any plat-

form. The cluster environment can ensure availability, management of resources

which simplifies reproducibility and deployment. Performing different kinds of

operations on geospatial data is compute intensive, i.e., it needs high computa-

tional resources to run. Therefore, there is a need for evaluating the performance

of compute intensive operations on geospatial data running in a cluster environ-

ment of Kubernetes.
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2 Related work
There have been many studies on spatial data storage due to the increasing spatial data

and processing scale. This prompts the development of spatial data technologies, in-

cluding aspects: the data model for storage, spatial indexes, and various types of query

operations processing. Management and processing of spatial vector data is complex

and needs unique storage models, mechanisms for processing, scanning, and specific

usage systems for its use in various applications. A geographic information system

(GIS) is used for geospatial vector data gathering, accumulation, and processing to as-

sist the general or specific types of applications [1]. The fast-paced development of data

systems, space technology, and sensor technology has led to an increase in the huge

volume of geospatial data in several subjects. Hence, spatial data services are often used

with cloud technologies to respond faster [2]. Geospatial data representing information

is confined to the location object, structure, and characteristics of entities and entity

dependency on each other [3]. New geospatial applications need versatile schematics,

reasonably faster execution of query operations, and more scalability than the existing

conventional geospatial relational databases [4]. In fact, the bottlenecks observed in the

management and processing of spatial vector data have been continuously the driving

force for the development of system designs due to the limitations which reside in the

current systems which are used for handling the specific type of huge information and

its manipulations and computations [5]. In spatial information systems, support for

various spatial data services as used in any information system is required. Several ex-

periments and studies have realized that conventional relational databases are not effi-

cient for big data storage and queries for industrial purposes operating at large-scale

accessing millions of data points at enormous speed in various geospatial applications

[6, 7]. NoSQL databases are widely considered for storing big data due to the capability

to accumulate, manage, and support the creation of various types of indexes on data

fields while horizontally scalable providing the ability to serve the huge number of re-

trieval operations [8].

Subjective comparison of experiments has also shown that no fixed schema-based da-

tabases have faster execution or query processing times than flexible schema databases

when operating on a huge volume of data [9, 10]. Creating spatial indexes is crucial to

validate spatial databases to access and view data efficiently; thus, affecting the overall

performance of the spatial databases compared to using non-indexed spatial databases

directly [10, 11]. All these operations are not only confined to huge storage space but

also need comparatively more computation power. In the subjective comparison of the

widely used query operations in various database systems, NoSQL databases have out-

performed relational databases. Current NoSQL database designs used for industrial

purposes cannot serve as a fully viable option for geospatial data. NoSQL databases

have some advantages than traditional relational databases that can be easily operated

as a distributed system and do not have fixed structured data, which eases its capability

to be scaled horizontally [12, 13].

Collecting open geospatial datasets in a traditional relational database management

system (RDBMS) requires a lot of work related to schema design and data import,

where both attributes and geometries have to be mapped, translated, and converted

[14, 15]. Relational databases have also some advantages compared to NoSQL databases

that provide standard ACID properties (atomicity, consistency, isolation, and durability)
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that maintain the integrity of the database system when performing concurrent opera-

tions on it [16, 17]. Conventional data exploration analysis and methods using a specific

software to find crucial information for use in various geospatial applications can be

computationally expensive [18–20]. They cannot be possible in every case without hav-

ing special methods to support the processing of big geospatial data [6, 21].

NoSQL or document databases provide much more flexibility in retrieving and

inserting geospatial data than key-value databases. Using the geoJSON format, many

document databases easily support geo-data management. Due to the flexible nature of

NoSQL databases, they can be more efficient in performing geospatial data queries.

One of NoSQL databases’ shortcomings is that they do not provide any functions other

than the basic spatial functions, lesser than relational databases. However, this ap-

proach leads to the usage of benefits of RDBMS, such as strong relational mappings,

ACID properties, and strong foreign key constraints [22, 23]. Distinct characteristics of

spatial data such as high dimensionality, several complex dependencies between entities

on each other (e.g., distance entity, the dimension of direction, and geometrical rela-

tionships) leads to the requirement for time-consuming operations, and computation-

ally exhausting algorithms for performing operations. The geospatial data in the cloud

can provide a suitable efficient computation architecture that can support the process-

ing of such huge data [24, 25].

3 Methodology
This section defines the experimental setup and execution of the benchmarking process

for GeoDatabase deployed in a clustered and non-clustered environment. The steps are

shown in Fig. 1.

3.1 Subject to be benchmarked

PostgreSQL has been chosen as the subject for the benchmarking process. It is an

open-source software program that adds support for geographic objects to its object-

relational database using a PostGIS spatial database extender. This allows location

queries to be run in SQL. The easy installation process across platforms turns out to be

a good fit for a GeoDatabase that we can use as a subject in clustered and non-

clustered environments.

A spatial query is a special type of database query that is supported by spatial geo-

databases. These queries allow the use of geometry data types such as points, lines, and

Fig. 1 Benchmarking process flowchart
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polygons. They also consider the spatial relationship between these geometries. The

spatial queries’ execution time is used as a parameter for comparing performance in

our benchmarking process.

3.2 Execution environments

The execution environments chosen for the selected geo-database are powered by

Amazon Web Services (AWS) and are as follows:

1. PostgreSQL on Amazon Elastic Compute Cloud (AWS EC2)

2. PostgreSQL on Amazon Relational Database Service (AWS RDS)

3. PostgreSQL on Amazon Elastic Kubernetes Service (AWS EKS)

All the execution environments operate on two hardware configurations:

1. Hardware Configuration 1 (HC-1)

2. Hardware Configuration 2 (HC-2)

These hardware configurations differ in the allocated random-access memory (RAM),

virtual central processing units (vCPUs).

Uniform hardware configuration is the key ingredient to make a benchmarking

process fair for all the execution environments. PgAdmin is used as the monitoring tool

to get all the benchmarking results for the spatial queries.

The first execution environment (AWS EC2) depicts how a student or researcher

would set up a project database. Setting up a virtual machine on-premise or on-cloud

and running the database on it is the simplest of all the available options. However,

there is an overhead of manually scaling the database according to the incoming

requests.

The second execution environment (AWS RDS) depicts the scenario of how a startup

or any organization in the software industry would like to set up and manage their da-

tabases for all their projects. Relying on third-party services such as RDS or any other

database-service provider takes off the load of managing and maintaining the setup. As

these options provide less flexibility in scaling options and limited architectural control,

they do not prove to be cost-effective.

The third execution environment (AWS EKS) depicts the scenario of a database run-

ning in a clustered environment that provides flexible scaling options, full architectural

control, and good fail-over support.

3.2.1 PostgreSQL on Amazon Elastic Compute Cloud (AWS EC2)

The base of the environment is Amazon EC2 instance. This environment is used with

two hardware configurations:

1. HC-1

a. Instance type–t2.Medium

b. RAM–4 GB

c. vCPUs–2
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d. Storage–8 GB general-purpose solid-state drive (SSD)

2. HC-2

a. Instance type–t3.Large

b. RAM–8 GB

c. vCPUs–2

d. Storage–8 GB general-purpose SSD

On the EC2 instance, docker and docker-compose are installed. The docker images

of “mdillon/postgis:9.5-alpine” to setup PostgreSQL with PostGIS and “dpage/pgad-

min4:latest” to setup PgAdmin using docker-compose on the Amazon EC2 instance are

utilized.

3.2.2 PostgreSQL on Amazon Relational Database Service (AWS RDS)

The base of the environment is Amazon EC2 instance. This environment is used with

two hardware configurations:

3. HC-1

a. EC2 instance type–t2.Medium

b. EC2 vCPUs–2

c. EC2 storage–8 GB general-purpose SSD

d. Database instance type–db.m3.medium

e. Database RAM–4 GB

f. Database vCPUs–1

g. Database capacity–20 GB SSD

4. HC-2

a. EC2 instance type–t3.Large

b. EC2 vCPUs–2

c. EC2 storage–8 GB general-purpose SSD

d. Database instance type–db.m5.large

e. Database RAM–8 GB

f. Database vCPUs–2

g. Database capacity–20 GB SSD

Docker and docker-compose are installed on the instance the docker image “dpage/

pgadmin4:latest” is used to set up PgAdmin using docker-compose on the Amazon

EC2 instance. PgAdmin is connected with the Amazon RDS instance.

3.2.3 PostgreSQL on Amazon Elastic Kubernetes Service (AWS EKS)

The base of the environment is Amazon EKS cluster with a node group attached with

two hardware configurations:

5. HC-1

a. Node group instance type–t2.Medium

b. RAM–4 GB

c. vCPUs–2
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d. Storage–20 GB SSD

6. HC-2

a. Instance type–t3.Large

b. RAM–8 GB

c. vCPUs–2

d. Storage–20 GB SSD

On the EKS cluster, PostgreSQL and PGAdmin are deployed for benchmarking pur-

poses using docker images “mdillon/postgis:9.5-alpine” and “dpage/pgadmin4:latest”.

3.3 Custom Kubernetes setup

There are cases where spinning up an AWS EKS instance can be very costly and may

not be useful for research or for testing purposes. In that case, it is recommended

building your own Kubernetes cluster, which can be done either on the cloud, or on

the local machine(s). This kind of setup can greatly reduce the cost and enable re-

searchers and students to set up their own distributed environment quickly and easily.

The authors aim to build an easy to set up a heterogeneous clustered environment that

can connect to different types of machines in different environments. Providing a meth-

odology to set up a production-like environment quickly and easily can help greatly in

validating conceptual architectures. This architecture needs to be cost-effective, flexible,

and scalable at the same time. Kubernetes clusters can also provide certain benefits

such as the following:

(i) Load balancing—a methodical and efficient distribution of network or application

traffic across multiple servers in a server farm. Each load balancer handles between

client devices and backend servers, receiving and then distributing incoming

requests to any available server capable of fulfilling them.

(ii) Failover support—it ensures that a business intelligence system remains available

for use if an application or hardware failure occurs. Clustering provides failover

support in two ways: load redistribution and request recovery. The purpose of

developing high-performance database clusters is to produce high performing com-

puter systems. They operate co-extending programs that are needed for time-

exhaustive computations. The scientific industries commonly prefer such a variety

of clusters. The basic aim is intelligently sharing the workload.

(iii)Monitoring and automation—clustering allows automating a lot of the processes of

the database while it permits to set up rules to warn potential issues.

This installation process of the custom Kubernetes cluster has a lot of management

overhead from the user’s perspective but provides desirable performance especially on

lower configuration systems. This setup enables small-scale use cases to deploy and val-

idate conceptual architectures for much less costs as compared to AWS EKS with

slightly comparable performance. This setup can be created either by using KIND

(Kubernetes in a docker) for test use cases or using Kubeadm to setup a master-agent

configuration. One important point to note while setting up is that all the machines

Sharma et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:43 Page 7 of 29



should be on the same network or should be able to discover each other in order to

connect and operate as a cluster.

3.4 Data acquisition

Geospatial data is used for benchmarking, since retrieving and fetching data can

be a very resource intensive task and may provide us better and more accurate

results since such resource-intensive tasks portray a more accurate description of

deploying of databases in the real world. The choice of database for benchmark-

ing is PostgreSQL since one of the biggest benefits of running PostgreSQL is

running the cluster in primary-replica setup for the purposes of high-availability

or load balancing the read-only queries. It is not necessarily simple to deploy a

primary-replica setup out of the box, but the process can be simplified by using

modern containerization technology. PostgreSQL provides the flexibility and the

granular control to deploy the database in the desired and most effective config-

uration while having great tooling and support.

In this context, the geospatial data can be described by the atomic unit of a feature.

A feature is a geographic shape (e.g., point, line string, or polygon) as well as a list of

accompanying key-value attributes. An example of a feature is a building footprint rep-

resented by a vector geometry describing a polygon, accompanied by attributes such as

address, name of the owner, and the year it was built. Considering the map data of Col-

orado and Washington states of USA, provided by OpenStreetMap (OSM). The data

when downloaded initially is in the file format *.osm.pbf, which is a few hundred mega-

bytes. This file format cannot be directly imported in PostgreSQL and hence it needs

to be transformed first.

Osm2pgsql package available as a cli on ubuntu repository is an open-source

tool to import the *.osm.pbf file into the PostgreSQL database. Osm2pgsql is

software to import OpenStreetMap data into a PostgreSQL database that has

PostGIS extension installed already before import. It is an essential part of many

rendering tool chains. The following are the stages of the process of importing

OSM data into PostgreSQL:

1. Reading *.osm.pbf file using PBF parser

2. Sorting of data and creation of index

The time taken to import OSM data depends on the following:

1. Hardware specifications of the machine where Osm2pgsql is running

2. The network bandwidth—to be able to share transformed data with PostgreSQL

3. The target database specifications—to sort data and create indices

Thus, using a separate Amazon Elastic Compute Cloud (EC2) instance within

the same Virtual Private Cloud (VPC) as that of the desired execution environ-

ment was considered. The instance for a given hardware configuration has

Osm2pgsql installed for importing OSM data in PostgreSQL for the 3 execution
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environment. With this, the import time depends solely on the database running

in the desired execution environment.

Based upon the OSM data, 8 geospatial queries listed in Table 1 were used for

the benchmarking process. All spatial-queries are SELECT operations on the

geo-database, and every query represents a real-world use-case where clients

want to perform read queries from a geospatial web service. As updates to geo-

data are less frequent than read operations, so considering read-queries enables

benchmarking of the geo-database deployment performance in a real-world

scenario.

3.5 Iterative benchmarking

The prerequisite for beginning benchmarking for the desired state is to have the

infrastructure setup as described by the corresponding architecture diagrams (refer

to Figs. 2, 3, and 4).

After infrastructure is set up, there will be a PostgreSQL database with PostGIS ex-

tension installed. Then, OSM data is imported in PostgreSQL running in the desired

state. After the import is complete, Osm2pgsql gives the total time taken to import

OSM data in PostgreSQL.

When the import process is complete, the next step is to execute the bench-

marking queries. The benchmarking queries described in Table 1 are run using

PgAdmin Query Tool, a robust, feature-rich environment that allows the execu-

tion of arbitrary SQL commands and retrieves the result set along with the exe-

cution time for each SQL query. Every benchmarking query is run in 10

iterations and execution time for each iteration is tabulated. After all iterations

for all the benchmarking queries are done, the average execution time for every

benchmarking query is calculated using the execution time for 10 iterations ob-

tained. This average execution time obtained at the end of the process is consid-

ered the parameter of comparison of performance between the AWS EC2, AWS

RDS, and AWS EKS.

The average execution time (AET) for each benchmarking query is calculated

by taking the average of all its iterations in a particular execution environment.

This average execution time (AET) of all the benchmarking queries is then used

to compare the execution environments’ performance under consideration. In the

experiment, the AET in one environment is considered to be comparable with

Table 1 Benchmarking queries

Query ID Description

Q1 Get count of nodes, ways, roads

Q2 Get count of points, lines, polygons

Q3 Top amenities

Q4 Get names of all restaurants and number of branches

Q5 Get all info about all the restaurants

Q6 Restaurants with 2 or more branches

Q7 Length of all roads (in km)

Q8 Generated objects and cardinalities
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the AET in other environment only if the percentage difference in AET (positive

or negative) between the two is significant, i.e., greater than 10%, because of mul-

tiple reasons which are not directly linked with the database like network latency,

bandwidth available to transfer data which can affect the statistics. If the percent-

age improvement in AET is less than 10% then the AET of both the environ-

ments are considered to be similar.

We have represented the percentage improvement in AET in environment A with re-

spect to AET in environment B as PIAB which is calculated using Eqs. 1, 2, and 3:

AETA = Average Execution Time in environment A (1)

AETB = Average Execution Time in environment B (2)

Percentage improvement in AET ¼ PIAB ¼ AETB−AETA
AETB

� 100 (3)

If PIAB is positive, then the AET in environment A has improved by PIAB percent

compared with AET in environment B for a given benchmarking query. If PIAB is

negative, then the AET in environment A has degraded by PIAB percent compared with

AET in environment B for a given benchmarking query.

4 Experiments and results analysis
Following the methodology, we will compare our considered execution environments

based on total time taken to import the data into PostgreSQL/PostGIS and the average

execution times of benchmarking queries in the given environment. While several

Fig. 2 Cloud infrastructure setup for deploying PostgreSQL/PostGIS on AWS EC2
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Fig. 3 Cloud infrastructure setup for deploying PostgreSQL/PostGIS on AWS RDS

Fig. 4 Cloud infrastructure setup for deploying PostgreSQL/PostGIS on AWS EKS
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factors might lead to these results, we chose to focus on the hardware configuration,

resource usage, and the deployment architecture as the root cause of the results.

4.1 Benchmarking on import time

When downloaded in the file format *.osm.pbf, the OpenStreetMap data of the

Colorado and Washington states cannot be directly imported in PostgreSQL and

hence is transformed using Osm2pgsql CLI. Osm2pgsql also logs the timestamp

corresponding to each stage of the import process described in Section 3.4.

Import time is the summation of the time taken by each step in the import

process.

The hardware specifications for the virtual machine where Osm2pgsql operates are

the same for all the execution environments. The import time depends solely on the

database’s ability to run in the desired execution environment to create relations,

insert, and index data.

Creation of tables, sorting, and indexing of geospatial data are computationally

expensive operations. Table 2 shows the tabulated import times for the OSM

data corresponding to Colorado and Washington states in all execution

environments for both the considered hardware configurations. We observed that

the import was quickest for databases operating in AWS EKS, because of its

ability to scale up or down based on resource usage while the database operating

in AWS EC2 took longer time to complete the import process as there was no

scaling ability. Import time for AWS RDS varied greatly compared with the other

two execution environments, because AWS RDS is not optimized to work with

geospatial data. Certain extensions for PostGIS support are not compatible with

it. The custom Kubernetes setup took similar time for the import process as

AWS EKS, as it is also a clustered environment with an ability to scale on

demand.

Table 2 Import time for considered execution environments

Execution environment Architecture type OSM data Hardware configuration Import time (s)

Amazon EC2 Non-clustered Colorado HC-1 796

HC-2 651

Washington HC-1 765

HC-2 707

Amazon RDS Non-clustered Colorado HC-1 4956

HC-2 1295

Washington HC-1 4914

HC-2 1248

Amazon EKS Clustered Colorado HC-1 720

HC-2 570

Washington HC-1 698

HC-2 608

Custom Kubernetes Clustered Colorado HC-2 595

Washington HC-2 655

Sharma et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:43 Page 12 of 29



4.2 Benchmarking on queries

Table 3 describes the geospatial queries that we have considered for benchmarking.

These queries are executed on the imported OpenStreetMap data in each

execution environment running on both the considered hardware configurations

using PgAdmin.

In above-mentioned queries, the attributes on which the geo-data is indexed in Post-

greSQL are nodes, roads, ways, rels, point, line, and polygon.

Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 describe the execution time (in

seconds) for 10 iterations (ET-1 to ET-10) of each query (Q1–Q8) in each of our

Table 3 Benchmarking queries

Query
identity

Description Number of
rows
fetched for
Colorado

Number of
rows
fetched for
Washington

SQL syntax

Q1 Get count of nodes,
ways, roads, and rels.

4 4 SELECT ‘nodes’ AS tbl, COUNT(*) AS cnt FROM
public.planet_osm_point UNION SELECT
‘roads’, COUNT(*) FROM public.planet_osm_line
UNION SELECT ‘ways’, COUNT(*) FROM
public.planet_osm_polygon UNION SELECT
‘rels’, COUNT(*) FROM public.planet_osm_
polygon;

Q2 Get count of points,
lines, and polygons

3 3 SELECT ‘point’ AS tbl, COUNT(*) AS cnt FROM
public.planet_osm_point UNION SELECT ‘line’,
COUNT(*) FROM public.planet_osm_line UNION
SELECT ‘polygon’, COUNT(*) FROM
public.planet_osm_polygon ;

Q3 Top amenities 168 210 SELECT amenity, COUNT(amenity) as num
FROM planet_osm_point GROUP BY amenity
ORDER by num DESC;

Q4 Get names of all
restaurants and
number of branches

2501 3794 SELECT name, count(name) FROM planet_
osm_point WHERE amenity = ‘restaurant’
GROUP BY name ORDER BY count DESC;

Q5 Get all info about all
the restaurants

3005 4321 SELECT * FROM planet_osm_point WHERE
amenity = ‘restaurant’;

Q6 Get restaurants with 2
or more branches

178 84 SELECT name, count(name) as number FROM
planet_osm_point WHERE amenity =
‘restaurant’ GROUP BY name HAVING
count(name) >= 3 ORDER BY name ASC;

Q7 Get length of all roads
(in km)

386224 494877 SELECT highway, name, way, st_length(way)/
1000 AS length FROM planet_osm_line WHERE
highway NOT IN (‘construction’, ‘footway’,
‘path’, ‘steps’, ‘track’, ‘cycleway’, ‘pedestrian’,
‘abandoned’, ‘disused’) AND (service NOT IN
(‘parking_aisle’, ‘driveway’) OR service is null)
AND (access NOT IN (‘no’, ‘private’) or access is
null) ORDER BY name;

Q8 Get generated objects
and cardinalities

8 8 SELECT *, pg_size_pretty(total_bytes) AS total ,
pg_size_pretty(index_bytes) AS INDEX , pg_
size_pretty(table_bytes) AS TABLE FROM ( SELE
CT *, total_bytes-index_bytes-COALESCE(toast_
bytes,0) AS table_bytes FROM ( SELECT c.oid,
nspname AS table_schema, relname AS
TABLE_NAME , c.reltuples AS row_estimate ,
pg_total_relation_size(c.oid) AS total_bytes ,
pg_indexes_size(c.oid) AS index_bytes , pg_
total_relation_size(reltoastrelid) AS toast_bytes
FROM pg_class c LEFT JOIN pg_namespace n
ON n.oid = c.relnamespace WHERE relkind = ‘r’
) a ) a where a.table_schema = ‘public’;
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execution environments. Here, “ET” refers to “execution time,” “AET” refers to “aver-

age execution time” which is the average of ET-1 to ET-10 and “ET-i” refers to the

“execution time for the i-th iteration for a given query.”

4.2.1 Queries operating on indexed attributes

Q1 and Q2 are geospatial queries which operate on indexed attributes and retrieve less

than 5 rows. From Tables 4, 5, 6, 7, 8, 9, 10, and 11, we observe that AWS EC2 and

AWS EKS gave similar AET for them as these attributes were indexed during the

import process so there is less processing overhead because of efficient retrieval of data

from the geo-database based on these attributes. But AWS RDS proved to be slower in

operating on indices because it is not fully compatible to operate with PostGIS. AWS

RDS gave slower AET for HC-1 for both Colorado and Washington states, but when

compute resources were upgraded to HC-2, AWS RDS gave comparable AET to AWS

EKS for Q1 and Q2.

4.2.2 Queries operating on non-indexed attributes

Tables 4 and 5 describe the AETs that are observed by running the queries on in AWS

EC2 for HC-1 as shown in Fig. 2, for Colorado State OSM data and Washington State

OSM data respectively.

Computation overhead involved in Q4 is less as compared to Q3 where aggregate

functions are being used. Moderate computational overhead is introduced in Q6 using

Table 4 Query execution time for Amazon EC2 with Colorado state data in HC-1

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 1.542 1.744 1.505 1.365 1.423 1.51 1.485 1.819 1.395 1.428 1.5216

Q2 1.698 1.81 1.184 0.995 1.06 1.17 1.63 0.852 1.718 0.949 1.3066

Q3 1.225 1.25 1.552 0.945 0.886 0.84 1.45 1.39 0.979 1.455 1.1972

Q4 0.89 0.852 0.709 0.777 0.799 0.813 0.76 0.86 0.745 0.95 0.8148

Q5 2.354 2.8 2.89 2.43 2.612 2.543 2.44 3.12 2.6 2.74 2.6529

Q6 1.11 1.52 0.984 1.16 1.2 1.41 1.12 0.789 1.26 1.372 1.1925

Q7 6.61 6.725 7.62 6.74 7.66 6.11 5.724 6.9 5.98 7.98 6.8049

Q8 0.929 1.23 1.122 0.929 0.883 1.128 0.998 0.985 1.124 0.976 1.0304

Table 5 Query execution time for Amazon EC2 with Washington State data in HC-1

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 1.173 1.205 1.169 1.288 1.175 1.162 1.181 1.2 1.186 1.183 1.1922

Q2 0.821 0.814 0.817 0.825 0.82 0.81 0.829 0.818 0.822 0.815 0.8191

Q3 0.652 0.68 0.665 0.654 0.658 0.648 0.662 0.661 0.658 0.649 0.6587

Q4 0.599 0.621 0.607 0.613 0.6 0.618 0.617 0.627 0.623 0.618 0.6143

Q5 1.559 1.532 1.562 1.574 1.601 1.499 1.498 1.522 1.702 1.561 1.561

Q6 0.582 0.569 0.521 0.511 0.519 0.544 0.531 0.501 0.517 0.574 0.5369

Q7 7.821 8.236 7.012 7.899 7.211 7.134 8.798 8.125 7.184 7.234 7.6654

Q8 1.014 1.122 0.899 0.971 0.952 1.101 1.007 1.231 0.856 1.12 1.0273
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HAVING clause along with count and grouping operation on an indexed attribute. Q4

and Q6 look similar but in Tables 4 and 5, their average execution times differ by a

significant margin of 377.7 ms and Q4 being the quickest to execute, this is because in

Q6 additional computations are being performed to get result corresponding to the

HAVING clause which requires an additional traversal of the resultant rows after

grouping operation. Q7 is a computationally expensive query calculating the length of

all roads in the city using ST_LENGTH PostGIS function and retrieves 386224 rows

and we see that it took maximum time to execute.

From Table 5, similar observations can be seen for Washington State OSM data.

Q7 being the slowest query to execute and even slower than Q7 for Colorado

State OSM data from Table 4, this is because Washington State has more roads

compared to Colorado State, and this can also be seen from Table 3, where Q7

fetch 494k rows for Washington while 386k rows for Colorado. Queries with low

computational overhead like Q1, Q2, Q3, and Q4 gave less AET for Washington

compared to Colorado from Tables 4 and 5, because Washington State OSM data

is smaller in size compared to Colorado State OSM data making it easier to

operate on.

Tables 6 and 7 describe the AET’s that are observed by running the queries on in

AWS EC2 for HC-2 as shown in Fig. 2, for Colorado State OSM data and Washington

State OSM data respectively.

In Table 6, on upgrading the hardware configuration of AWS EC2 from HC-1 to

HC-2, all the benchmarking queries saw improvement in AET compared to Table 4.

Table 6 Query execution time for Amazon EC2 with Colorado State data in HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 1.176 1.173 1.182 1.161 1.153 1.176 1.185 1.186 1.181 1.203 1.1776

Q2 0.808 0.801 0.811 0.81 0.831 0.809 0.813 0.814 0.803 0.805 0.8105

Q3 0.772 0.696 0.685 0.684 0.694 0.685 0.719 0.703 0.695 0.699 0.7032

Q4 0.625 0.62 0.617 0.609 0.61 0.67 0.614 0.605 0.609 0.606 0.6185

Q5 1.738 1.75 1.552 1.754 1.546 1.553 1.31 1.359 1.342 1.392 1.5296

Q6 0.607 0.662 0.594 0.599 0.598 0.609 0.606 0.597 0.655 0.596 0.6123

Q7 4.365 5.07 4.826 4.279 4.334 4.579 4.75 4.186 4.721 4.303 4.5413

Q8 0.56 0.522 0.523 0.527 0.533 0.538 0.531 0.503 0.527 0.505 0.5269

Table 7 Query execution time for Amazon EC2 with Washington State data in HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 1.191 1.217 1.172 1.17 1.166 1.167 1.17 1.163 1.117 1.154 1.1687

Q2 0.791 0.787 0.794 0.789 0.806 0.788 0.793 0.787 0.802 0.798 0.7935

Q3 0.657 0.648 0.645 0.647 0.652 0.655 0.653 0.692 0.649 0.65 0.6548

Q4 0.596 0.598 0.601 0.602 0.596 0.669 0.594 0.602 0.596 0.597 0.6051

Q5 1.534 1.505 1.497 1.582 1.545 1.527 1.511 1.538 1.507 1.518 1.5264

Q6 0.581 0.574 0.586 0.585 0.584 0.587 0.58 0.585 0.572 0.582 0.5816

Q7 5.486 5.459 5.401 5.342 5.023 5.301 5.003 5.388 5.083 5.187 5.2673

Q8 0.517 0.52 0.522 0.523 0.511 0.532 0.512 0.545 0.514 0.526 0.5222
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The query with highest computational overhead Q7 saw an improvement of 2.2636 s in

AET. While the queries involving moderate computation overhead like Q5, Q6 saw an

improvement of 1.1233 s and 580 ms in AET respectively. Queries with low computa-

tional overhead like Q3, Q4, and Q8 saw an improvement of 200 ms, 494 ms, and 500

ms in AET respectively.

Table 7 shows that we recorded similar observations for Washington State OSM

data. Q7 saw an improvement of 3.1241 s in AET, while queries with low

computational overhead like Q3 and Q4 saw marginal improvements less than 10 ms

in AET.

Tables 8 and 9 describe the AET’s that are observed by running the queries on in

AWS RDS for HC-1 as shown in Fig. 3, for Colorado State OSM data and Washington

State OSM data respectively.

Q7 again was observed as the query requiring the maximum execution time. But in

this case, we observe that the AET for all queries increased when compared with

corresponding AET in AWS EC2 and AWS EKS from Tables 4 and 12. There can be

multiple reasons for this behavior; certain PostGIS extensions required for installation

and operation in PostgreSQL are not compatible with AWS RDS and are not

optimized to deal with geospatial data.

From Table 9, it can be seen that similar observations were made for Washington

State OSM data. Q7 being the slowest to execute again. All other queries involving

moderate and low computational overhead gave better AET than Colorado OSM data

from Table 8 because Washington State OSM data is smaller in size compared to

Colorado State OSM data.

Table 8 Query execution time for Amazon RDS with Colorado State data for HC-1

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 2.162 2.163 2.142 2.1 2.185 2.113 2.11 2.472 2.404 2.266 2.2117

Q2 1.731 1.723 1.6 1.879 1.697 1.865 1.629 1.795 1.66 1.894 1.7473

Q3 1.135 0.875 1.21 1.215 0.994 0.993 1.1 0.879 0.953 0.87 1.0224

Q4 0.956 0.85 0.868 0.832 0.981 0.829 0.908 0.95 0.891 0.865 0.893

Q5 1.754 1.836 1.675 1.78 1.654 1.913 1.83 1.546 1.824 1.52 1.7332

Q6 0.881 1.203 1.11 1.103 0.904 0.929 0.804 1.02 0.862 1.136 0.9952

Q7 11.1 13.085 13.603 13.458 11.377 13.264 13.574 12.587 11.98 13.413 12.7441

Q8 0.865 0.919 0.982 0.973 0.896 0.844 0.851 0.891 0.904 0.886 0.9011

Table 9 Query execution time for Amazon RDS with Washington State data for HC-1

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 2.144 2.207 2.597 2.51 2.197 2.6 2.402 2.176 2.204 2.182 2.3219

Q2 1.667 1.642 1.646 1.694 1.654 1.609 1.641 1.78 1.643 1.645 1.6621

Q3 0.751 0.723 0.731 0.723 0.729 0.738 0.735 0.727 0.737 0.734 0.7328

Q4 0.728 0.663 0.671 0.687 0.665 0.684 0.672 0.675 0.661 0.673 0.6779

Q5 1.394 1.371 1.603 1.611 1.368 1.375 1.493 1.39 1.401 1.487 1.4493

Q6 0.764 0.651 0.672 0.665 0.663 0.643 0.709 0.646 0.655 0.65 0.6718

Q7 15.565 15.983 14.819 15.973 15.095 15.152 15.79 16.07 15.583 15.186 15.5216

Q8 0.535 0.521 0.519 0.529 0.53 0.54 0.526 0.531 0.523 0.537 0.5291
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Tables 10 and 11 describe the AET’s that are observed by running the queries on in

AWS RDS for HC-2 as shown in Fig. 3, for Colorado State OSM data and Washington

State OSM data respectively.

In Table 10, on upgrading the hardware configuration of AWS RDS from HC-1 to

HC-2, all the benchmarking queries saw improvement in AET compared to Table 8

similar to what we saw in case of AWS EC2 from Tables 4 and 6. The query with high-

est computational overhead Q7 saw an improvement of 57.64%, i.e., 7.3464 s in AET.

While the queries involving moderate computation overhead like Q5, Q6 saw an im-

provement of 220 ms and 403.9 ms in AET respectively. Queries with low computa-

tional overhead like Q3, Q4, and Q8 saw an improvement of 343.9 ms, 296.6 ms, and

359.2 ms in AET. Significant improvements were observed for RDS on upgrading the

hardware configuration.

AETs for queries operating on Washington State OSM data shown in Table 11, we

recorded similar observations. Q7 saw an improvement of 57.18%, i.e., 8.88 s in AET,

queries with moderate and low computational overhead like Q3, Q4, Q5, Q6, and Q8

saw marginal improvements, i.e., less than 10%.

Tables 12 and 13 describe the AETs that are observed by running the queries on in

AWS EKS for HC-1 as shown in Fig. 4, for Colorado State OSM data and Washington

State OSM data respectively.

Here also Q7 took maximum time to execute, but this time it was quicker to execute

when compared with corresponding AET for AWS EC2 and AWS RDS in Tables 4

and 8. We also observed that the absolute difference between average execution time of

Table 10 Query execution time for RDS with Colorado State data for HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 0.85 0.787 0.796 0.798 0.797 0.795 0.799 0.801 0.806 0.796 0.8025

Q2 0.72 0.718 0.716 0.717 0.724 0.755 0.729 0.719 0.721 0.725 0.7244

Q3 0.739 0.653 0.656 0.659 0.702 0.66 0.662 0.712 0.658 0.684 0.6785

Q4 0.599 0.593 0.602 0.594 0.59 0.608 0.595 0.594 0.592 0.597 0.5964

Q5 1.524 1.496 1.512 1.527 1.535 1.53 1.488 1.522 1.496 1.497 1.5127

Q6 0.594 0.593 0.588 0.579 0.578 0.604 0.591 0.587 0.589 0.61 0.5913

Q7 5.437 5.196 5.18 5.281 5.438 5.692 5.191 5.842 5.236 5.484 5.3977

Q8 0.578 0.534 0.515 0.519 0.513 0.579 0.527 0.539 0.535 0.58 0.5419

Table 11 Query execution time for RDS with Washington State data for HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 0.773 0.902 0.7 0.717 0.803 0.716 0.791 0.718 0.927 0.723 0.777

Q2 0.733 0.705 0.719 0.715 0.705 0.702 0.708 0.716 0.702 0.708 0.7113

Q3 0.747 0.643 0.626 0.644 0.618 0.621 0.672 0.623 0.64 0.63 0.6464

Q4 0.808 0.58 0.625 0.59 0.585 0.574 0.576 0.602 0.578 0.745 0.6263

Q5 1.468 1.697 1.477 1.479 1.493 1.48 1.63 1.684 1.678 1.486 1.5572

Q6 0.558 0.556 0.561 0.555 0.59 0.563 0.574 0.565 0.568 0.564 0.5654

Q7 7.161 6.548 6.342 6.508 6.805 6.787 6.198 6.449 6.86 6.801 6.6459

Q8 0.521 0.509 0.511 0.495 0.501 0.553 0.497 0.51 0.509 0.52 0.5126
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Q4 and Q6 reduced to 11.1 ms when compared with 377.7 ms in Table 4 and 102.2 ms

in Table 8, also their AET was comparable keeping the margin of error in mind. This

improvement in performance results from AWS EKS to scale up and down on-demand

based on resource usage.

For Washington State, OSM data similar records were observed as shown in

Table 13. AET for all benchmarking queries were observed to have improved when

compared to other execution environments like AWS EC2 from Table 5 and AWS

RDS from Table 7.

In Table 14, on upgrading the hardware configuration of AWS EKS from HC-1 to

HC-2, all the benchmarking queries saw improvement in AET compared to Table 12.

The query with highest computational overhead Q7 saw an improvement of 18.87%,

i.e., 1.0037 s in AET. Queries with low computational overhead like Q3, Q4, and Q8

saw an improvement of 411.1 ms, 327.2 ms, and 427.1 ms in AET. Significant improve-

ments in AET for query involving high computational overhead were observed for EKS

on upgrading the hardware configuration.

For Washington State OSM data from Table 15, we recorded similar observations.

Q7 saw an improvement of 15.39%, i.e., 8.88 s in AET, queries with moderate

computational overhead like Q5 and Q6 saw an improvement of 189.7 ms and 136.8

ms respectively.

Q3 operates on non-indexed attributes and uses aggregate functions on them to re-

trieve 168 rows, and it can also be considered to be a standard SQL text query; the re-

trieval has moderate computational overhead. From Tables 4, 5, 6, 7, 8, and 9, it can be

Table 12 Query execution time for Amazon EKS with Colorado State data for HC-1

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 1.511 1.55 1.17 1.548 1.251 1.23 1.165 1.79 1.72 1.5 1.4435

Q2 0.983 1.135 0.923 1.133 1.422 1.61 0.908 1.76 1.157 1.215 1.2246

Q3 1.229 1.35 1.208 0.965 1.117 0.867 0.806 0.905 0.898 0.995 1.034

Q4 0.809 0.874 0.817 0.954 0.916 0.844 0.988 0.848 0.986 0.85 0.8886

Q5 2.22 1.987 1.669 1.55 1.174 1.826 1.951 1.272 1.282 2.183 1.7114

Q6 0.736 0.937 1.145 0.931 0.976 0.841 0.789 0.841 0.773 0.806 0.8775

Q7 5.481 5.987 4.935 4.915 5.235 5.8 5.71 5.56 4.413 5.13 5.3166

Q8 0.626 0.731 0.992 0.72 0.917 0.911 0.787 0.884 0.928 0.88 0.8376

Table 13 Query execution time for Amazon EKS with Washington State data for HC-1

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 0.911 0.935 1.01 1.021 1.202 1.029 1.157 1.89 1.249 1.21 1.1614

Q2 0.767 0.809 0.731 0.727 0.798 0.748 0.807 0.768 0.813 0.815 0.7783

Q3 0.623 0.523 0.623 0.535 0.621 0.653 0.528 0.598 0.592 0.582 0.5878

Q4 0.809 0.524 0.871 0.609 0.621 0.814 0.621 0.521 0.536 0.801 0.6727

Q5 1.28 1.01 0.966 1.05 1.1 0.976 0.991 0.995 1.08 0.987 1.0435

Q6 0.463 0.473 0.415 0.413 0.467 0.414 0.456 0.481 0.472 0.468 0.4522

Q7 6.374 6.106 6.281 6.138 6.348 6.296 6.194 6.248 6.326 5.484 6.1795

Q8 0.621 0.701 0.921 0.718 0.92 0.909 0.698 0.852 0.919 0.821 0.808
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observed that AWS EKS because of its scaling ability and AWS RDS which is designed

to work with text queries gave better AET than standard PostgreSQL on AWS EC2.

For queries with high computational overhead like Q5 which traverses all the data in

the planet_osm_point table based on non-indexed attribute and Q8 which traverses

complete dataset to retrieve the information about the generated objects and cardinal-

ities after the import process is completed, AWS EKS gave the best AET because of its

ability to scale based on resource usage.

4.3 Benchmarking on AET

Figure 5 is a line plot showing the AET (y-axis) in seconds for all benchmarking

queries Q1–Q8 (x-axis) operated for Colorado OSM data in AWS EC2 for HC-1.

The plot is made using the AET values from Tables 4, 5, 6, 7, 8, and 9 to

visualize the variation of AET for benchmarking queries in all execution

environments.

The plot shows that for queries on indexed attributes Q1 and Q2, AWS EKS and

AWS EC2 gave similar AET but AWS RDS deviated and gave slower AET. For a

standard SQL text query Q3, AWS RDS performed similarly to AWS EKS and both

outperformed standard PostgreSQL in AWS EC2. The absolute difference between the

AET of query with lowest computational overhead Q4 and the query involving

moderate overhead Q6 was observed to be minimum in case of AWS EKS, thus where

AWS EC2 and AWS RDS deviated for moderate load, AWS EKS performed similarly

Table 14 Query execution time for Amazon EKS with Colorado State data for HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 0.887 0.851 0.721 0.813 0.802 0.909 0.801 0.819 0.749 0.721 0.8073

Q2 0.669 0.612 0.603 0.727 0.739 0.642 0.601 0.768 0.603 0.81 0.6774

Q3 0.613 0.623 0.708 0.735 0.621 0.553 0.581 0.521 0.692 0.582 0.6229

Q4 0.509 0.574 0.619 0.512 0.607 0.611 0.618 0.509 0.506 0.549 0.5614

Q5 0.428 0.401 0.466 0.405 0.41 0.406 0.414 0.418 0.408 0.411 0.4167

Q6 0.346 0.347 0.316 0.314 0.346 0.314 0.346 0.318 0.318 0.312 0.3277

Q7 4.473 4.61 4.261 4.135 4.408 4.226 4.191 4.148 4.263 4.414 4.3129

Q8 0.412 0.41 0.415 0.418 0.42 0.409 0.406 0.414 0.401 0.4 0.4105

Table 15 Query execution time for Amazon EKS with Washington State data for HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 0.901 0.802 0.821 0.821 0.891 0.929 0.851 0.821 0.831 0.819 0.8487

Q2 0.727 0.729 0.781 0.721 0.728 0.781 0.606 0.781 0.713 0.715 0.7282

Q3 0.621 0.723 0.723 0.635 0.621 0.753 0.821 0.698 0.692 0.601 0.6888

Q4 0.721 0.724 0.628 0.609 0.621 0.714 0.621 0.723 0.676 0.621 0.6658

Q5 0.86 0.864 0.805 0.81 0.87 0.876 0.881 0.885 0.8 0.887 0.8538

Q6 0.325 0.317 0.315 0.317 0.314 0.316 0.312 0.319 0.311 0.308 0.3154

Q7 5.184 5.187 5.29 5.214 5.235 5.3 5.25 5.2 5.213 5.21 5.2283

Q8 0.412 0.41 0.42 0.418 0.419 0.415 0.412 0.408 0.414 0.417 0.4145
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for low to moderate load. For Q7, which is using PostGIS function AWS RDS and

AWS EC2 deviated by a significant margin from AWS EKS. For queries involving

traversal of complete dataset like Q5 and Q8, AWS EKS and AWS RDS gave better

AET when compared to AWS EC2. These observations are further explored in Section

4.4 using PIAB.
Figure 6 is a line plot showing the AET (y-axis) in seconds for all benchmarking

queries Q1–Q8 (x-axis) operated for Washington OSM data in all execution

environments for HC-1. The plot is made using the AET values from Tables 5, 9,

and 13. It can be observed from the plot that similar to the case of Colorado State,

AWS EKS and AWS EC2 gave similar AET for Q1 and Q2 while AWS RDS deviated

to give a slower AET. Here also AWS EKS gave similar AET for low to moderate load

in Q4 and Q6. AWS EKS again gave the best AET for Q7, which was the slowest query

to execute because of the highest computational overhead.

Figure 7 is a line plot showing the AET (y-axis) in seconds for all benchmarking

queries Q1–Q8 (x-axis) operated for Colorado OSM data in all execution

environments for HC-2. The plot is made using the AET values from Tables 6, 10,

and 14. On upgrading the hardware configuration, we observed that the difference in

AETs was within the margin of error when compared with AETs for Colorado State in

HC-1 as depicted in Fig. 6, for queries involving low computational overhead. For such

queries, AWS EKS outperformed AWS EC2 and AWS RDS but now by significant

Fig. 5 Line plot for AET for all benchmarking queries in HC-1 for Colorado State

Fig. 6 Line plot for AET for all benchmarking queries in HC-1 for Washington State
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margin. Greater improvement in AET can be observed for queries involving moderate

and high computational overhead, for which AWS EKS outperformed AWS EC2 and

AWS RDS by significant margin, which points us to the fact that on increasing the

compute resources, the performance or AET will improve for the queries which actu-

ally need that much resources.

Figure 8 is a line plot showing the AET (y-axis) in seconds for all benchmarking

queries Q1–Q8 (x-axis) operated for Washington OSM data in all execution

environments for HC-2. The plot is made using the AET values from Tables 7, 11,

and 15. Similar to our observation from Fig. 7, the difference in AET between all execu-

tion environments became marginal for queries involving low computational overhead,

but AWS EKS continued to yield better AET for queries involving moderate to high

computational overhead.

Figs. 9, 10, 11, 12, 13, and 14 depict the improvements in AET for all benchmarking

queries operating for both hardware configuration for a given execution environment.

These plots can enable us to understand the effect of hardware configurations on AET

for benchmarking queries in a given environment. Line plot for percentage

improvement (PIAB) in AET, is shown in Fig. 15.

Figure 9 is a double-bar plot showing the AET (x-axis) in seconds for all benchmark-

ing queries Q1–Q8 (y-axis) operated for Colorado State OSM data in AWS EC2 for

both HC-1 and HC-2. The plot is made using the AET values from Tables 4 and 6. It

can be observed that on increasing the resources the AET of the benchmarking queries

Fig. 7 Line plot for AET for all benchmarking queries in HC-2 for Colorado State

Fig. 8 Line plot for AET for all benchmarking queries in HC-2 for Washington State
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decreased. Queries such as Q5 and Q7 showed more improvement since they are mod-

erate and high computationally intensive as compared to other queries and benefited

from upgrading the compute resources.

Figure 10 is a double-bar plot showing the AET (x-axis) in seconds for all bench-

marking queries Q1–Q8 (y-axis) operated for Washington OSM data in AWS EC2

for both HC-1 and HC-2. The plot is made using the AET values from Tables 5

and 7. The improvement in AETs for Q1, Q2, Q3, and Q4 is marginal because

these queries are less resource intensive for Washington State. This trend is due to

the fact that Washington State OSM data is smaller than Colorado State OSM

data. Because of which the improvements were better in Colorado State than in

Washington State.

Figure 11 is a double-bar plot showing the AET (x-axis) in seconds for all bench-

marking queries Q1–Q8 (y-axis) operated for Colorado OSM data in AWS RDS for

both HC-1 and HC-2. The plot is made using the AET values from Tables 8 and 10.

We observed great improvements in AET for the benchmarking queries on upgrading

the hardware configuration for AWS RDS. Hence, it can be said that AWS RDS re-

quires more compute resources than other execution environments to deliver compar-

able results.

Figure 12 is a double-bar plot showing the AET (x-axis) in seconds for all bench-

marking queries Q1–Q8 (y-axis) operated for Washington OSM data in AWS RDS for

both HC-1 and HC-2. The plot is made using the AET values from Tables 9 and 11.

Fig. 9 AET for all benchmarking queries in AWS EC2 for Colorado State

Fig. 10 AET for all benchmarking queries in AWS EC2 for Washington State
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Similar to the observations from Fig. 11, the AET for benchmarking queries is im-

proved significantly for Q7, but for queries involving low to moderate computational

overhead the improvement was marginal.

Figure 13 is a double-bar plot showing the AET (x-axis) in seconds for all

benchmarking queries Q1–Q8 (y-axis) operated for Colorado OSM data in AWS

EKS for both HC-1 and HC-2. The plot is made using the AET values from Ta-

bles 12 and 14. AWS EKS when upgraded to HC-2 shows good improvement as

compared to AWS EKS in HC-1. The AET improved for all the benchmarking

queries.

Figure 14 is a double-bar plot showing the AET (x-axis) in seconds for all bench-

marking queries Q1–Q8 (y-axis) operated for Washington OSM data in AWS EKS for

both HC-1 and HC-2. The plot is made using the AET values from Tables 13 and 15.

The exact same observation can be seen in Fig. 13, but Q1, Q2, Q3, and Q4 are queries

involving low computational overhead for Washington State; hence, the improvement

was not significant.

4.4 Comparison of execution environments based on PIAB
We know that the Colorado State OSM data is larger in size than the Washington

State OSM data; therefore, we considered comparing the performance of the

benchmarking queries for Colorado State OSM data in all execution environments to

Fig. 11 AET for all benchmarking queries in AWS RDS for Colorado State

Fig. 12 AET for all benchmarking queries in AWS RDS for Washington State
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find out which one of them yields the best AETs for a lower hardware configuration

(HC-1).

Table 16 represents percentage improvement in AET (PIAB) among all the execution

environments which is calculated using Eq. 3. AET of a benchmarking query in

environment A is said to have improved relative to its AET in environment B if AETA

is less than AETB or PIAB is positive.

From Tables 10 and 11, we observed that AWS EKS when compared to AWS EC2

gave similar average execution times for Q1 and Q2 which operated on indexed

attributes. Figure 6 shows the line plot for percentage improvement (PIAB) in AET.

They again were not very dissimilar for Q4, because of less computational overhead

involved. But AWS EKS outperformed AWS EC2 when moderate computational

overhead was introduced in Q6 and Q3, because of its ability to scale up and down

based upon resource usage. Q5, Q7, and Q8 involved high computational overhead and

AWS EKS continued to outperform AWS EC2 because of its ability to scale on

demand flexibly. Certain PostgreSQL/PostGIS extensions are not compatible with

AWS RDS, as a result of which AWS EKS outperformed it for Q1 and Q2 which

operate on indexed attributes and Q7 which makes use of PostGIS function. They both

yielded similar AET for Q3 and Q4, Q3 is similar to a standard SQL query and AWS

RDS is designed to handle such text queries and Q4 involved low computational

overhead. In the case of Q6, the scaling ability of AWS EKS made it outperform AWS

Fig. 13 AET for all benchmarking queries in AWS EKS for Colorado State

Fig. 14 AET for all benchmarking queries in AWS EKS for Washington State
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RDS for moderate load. The deployment of AWS RDS shown in Fig. 3 does not

support scaling as a result of which for queries Q5 and Q8 which involve high

computational overhead because of complete traversal of tables and dataset, AWS EKS

outperformed AWS RDS by fine margins. If AWS RDS would have been allotted a

similar amount of RAM allocated to standard PostgreSQL in AWS EKS, these margins

would increase.

AWS EC2 outperformed AWS RDS for Q1, Q2, and Q7, because of AWS RDS’s

non-compatibility for certain PostGIS extensions. AWS RDS is optimized to work with

standard text queries like Q3 and thus it outperformed AWS EC2 running standard

PostgreSQL. They both gave similar AET for Q4 because of low computational over-

head involved. From Figs 2 and 3, we can see that AWS RDS has more available RAM

to operate when compared to standard PostgreSQL on AWS EC2, because of which it

outperformed AWS EC2 for Q5, Q6, and Q8 which involved moderate to high compu-

tational overhead.

4.5 Comparing AWS EKS with custom Kubernetes cluster

From Table 17, it can be seen that the custom Kubernetes cluster performed similar to

AWS EKS from Table 15, since it is a similar clustered environment. AET for all the

benchmarking queries are not significantly different to AWS EKS (slightly higher than

EKS). This slightly increased time can arise due to the network latencies in load

balancers created in the custom Kubernetes cluster.

Fig. 15 Line plot for percentage improvement (PIAB) in AET

Table 16 Comparing percentage improvement (PIAB) in AET

Query identity PIEKS-EC2 PIEKS-RDS PIEC2-RDS

Q1 5.132754995 34.733462947 31.202242618

Q2 6.275830395 29.914725576 25.221770731

Q3 13.63180755 − 1.134585289 − 17.097026604

Q4 − 9.057437407 0.492721164 8.7569988801

Q5 35.489464359 1.2577890606 − 53.063697207

Q6 26.415094339 11.826768488 − 19.82516077

Q7 21.871004717 58.281871611 46.603526337

Q8 18.71118012 7.046942625 − 14.349128842
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For Table 18 similar to Table 17, we observed that the AETs for the custom

Kubernetes cluster is comparable to AWS EKS from Table 14, but slightly higher

due to the network latencies in the setup. Since the data of Washington is smaller

than Colorado, the AET for Washington State data is less than Colorado State

data.

From Fig. 16, it can be observed that the AETs of custom Kubernetes cluster are

comparable to EKS, but take slightly more time; this can be due to the hidden latencies

in the local load balancer.

From Fig. 17, it can be seen that for the Washington State as well the AETs for

custom Kubernetes cluster is slightly higher than AWS EKS, because of the similar

reason as seen in the Colorado dataset from Fig. 16.

5 Discussion
Deploying and managing software applications and databases in a clustered

environment is not an easy task, although the containerized applications can meet the

requirements of ease of migration, portability, scalability, and flexibility when operating

in a clustered environment.

Plenty of studies have been carried out comparing relational (SQL) and NoSQL

databases in handling geospatial data. But these traditional database management

technologies face frequent scalability problems when dealing with geospatial data. This

paper demonstrates benchmarking the performance of operations on geospatial

database by comparing the execution times of geospatial queries in clustered

Table 17 Query execution time for custom Kubernetes cluster on Washington State for HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 1.021 1.224 1.287 1.221 1.291 1.029 1.351 1.921 1.831 1.819 1.3995

Q2 1.2927 0.929 1.081 1.021 1.328 1.381 0.902 1.881 1.013 1.15 1.19787

Q3 1.421 1.223 1.223 0.935 1.121 0.823 0.921 0.898 1.092 0.991 1.0648

Q4 0.921 0.924 0.728 0.929 0.821 0.924 0.924 0.923 0.876 0.921 0.8891

Q5 0.986 0.924 0.905 0.921 0.987 0.926 0.984 0.985 0.832 0.887 0.9337

Q6 0.625 0.417 0.515 0.417 0.414 0.426 0.452 0.519 0.511 0.408 0.4704

Q7 5.984 5.187 5.929 5.314 5.235 5.531 5.259 5.234 5.813 5.516 5.5002

Q8 0.512 0.51 0.542 0.518 0.619 0.615 0.512 0.508 0.514 0.517 0.5367

Table 18 Query execution time for local Kubernetes cluster with Colorado State for HC-2

ET-1 ET-2 ET-3 ET-4 ET-5 ET-6 ET-7 ET-8 ET-9 ET-10 AET

Q1 0.987 0.951 0.921 0.813 0.902 1.009 0.981 0.929 0.849 0.921 0.9263

Q2 0.869 0.712 0.703 0.827 0.859 0.842 0.781 0.838 0.753 0.831 0.8015

Q3 0.813 0.723 0.908 0.865 0.763 0.653 0.651 0.621 0.732 0.682 0.7411

Q4 0.709 0.774 0.719 0.762 0.763 0.611 0.768 0.609 0.656 0.599 0.697

Q5 0.528 0.501 0.566 0.535 0.457 0.536 0.524 0.518 0.538 0.491 0.5194

Q6 0.446 0.447 0.416 0.414 0.456 0.424 0.456 0.418 0.418 0.392 0.4287

Q7 4.673 4.861 4.361 4.335 4.608 4.526 4.491 4.248 4.563 4.494 4.516

Q8 0.712 0.513 0.515 0.518 0.542 0.499 0.496 0.514 0.531 0.499 0.5339
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environment like Kubernetes and non-clustered environments. Kubernetes demon-

strated its advantages by scaling on demand based on resource usage and performing

better when compared to non-clustered environments for computationally expensive

operations; this ability is particularly important for mission-critical applications and

geospatial databases as they tend to be compute intensive thereby can be benefited im-

mensely from operating in clustered environment. Setting up a custom local Kuber-

netes cluster proved to be a viable option for testing and validating conceptual

architectures if we want the benefits of a clustered environment without incurring high

costs.

A disadvantage of using a clustered environment with PostgreSQL compared to a

managed non-clustered environment like AWS RDS is that we lose the ability to use a

fully managed database. We have to set up, operate, manage, and maintain the database

ourselves, which might not be very cost-efficient. We have to manage our own backups,

survive downtime in the case of a crash, and increase our deployment cost, and in case

of local Kubernetes clusters, we have to manage availability of clusters on top of all

this.

6 Conclusions
The work aimed to benchmark geospatial databases in clustered and non-clustered en-

vironments. It was found that on processing geospatial queries operating upon indexed

attributes and involving low computational overhead, both clustered and non-clustered

environments offered similar performance, keeping the margin of error in mind. The

Fig. 16 Query execution time for AWS EKS vs local Kubernetes cluster for Colorado HC-2

Fig. 17 Query execution time for AWS EKS vs local Kubernetes cluster for Washington HC-2
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clustered environments performed better than non-clustered environments in scenarios

where a computationally expensive geospatial query is involved or the query operated

on non-indexed attributes and large data was retrieved from the geo-database. A clus-

tered environment like AWS EKS could do this because of its ability to scale flexibly.

Also, operating geo-databases in a clustered environment like AWS EKS (Kubernetes)

can drastically improve its performance and scale on demand and automate administra-

tion or routine tasks, a good improvement, especially when computationally expensive

operations are to be performed efficiently.
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