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Abstract

Wireless cellular traffic prediction is a critical issue for researchers and practitioners in
the 5G/B5G field. However, it is very challenging since the wireless cellular traffic
usually shows high nonlinearities and complex patterns. Most existing wireless
cellular traffic prediction methods lack the abilities of modeling the dynamic spatial–
temporal correlations of wireless cellular traffic data, thus cannot yield satisfactory
prediction results. In order to improve the accuracy of 5G/B5G cellular network traffic
prediction, an attention-based multi-component spatiotemporal cross-domain neural
network model (att-MCSTCNet) is proposed, which uses Conv-LSTM or Conv-GRU for
neighbor data, daily cycle data, and weekly cycle data modeling, and then assigns
different weights to the three kinds of feature data through the attention layer,
improves their feature extraction ability, and suppresses the feature information that
interferes with the prediction time. Finally, the model is combined with timestamp
feature embedding, multiple cross-domain data fusion, and jointly with other models
to assist the model in traffic prediction. Experimental results show that compared
with the existing models, the prediction performance of the proposed model is
better. Among them, the RMSE performance of the att-MCSTCNet (Conv-LSTM)
model on Sms, Call, and Internet datasets is improved by 13.70 ~ 54.96%, 10.50 ~
28.15%, and 35.85 ~ 100.23%, respectively, compared with other existing models. The
RMSE performance of the att-MCSTCNet (Conv-GRU) model on Sms, Call, and
Internet datasets is about 14.56 ~ 55.82%, 12.24 ~ 29.89%, and 38.79 ~ 103.17%
higher than other existing models, respectively.
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1 Methods/experimental
In this paper, in order to improve the accuracy of 5G/B5G cellular network traffic pre-

diction, a multi-component spatiotemporal cross-domain neural network model based

on attention mechanism was proposed. The wireless cellular traffic data were divided

into neighborhood data, daily data, and weekly data according to its periodic character-

istics. The six-part structure of the model was introduced and explained in detail.
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Secondly, the algorithm of the model training process was given. Finally, under differ-

ent datasets, different models with different structures were used for experiments. The

comparative experiment of att-MCSTCNET model using Conv-GRU structure and

Conv-LSTM structure, and the parameter optimization experiment of att-MCSTCNET

model were carried out. The results of Experiment 5.2 show that the model can effect-

ively utilize the periodic characteristics of wireless cellular traffic data, save training

time and greatly reduce the workload of the model, and further improve the prediction

performance of the model. In addition, Experiment 5.3 proves that the iteration time of

Conv-GRU is shorter than that of Conv-LSTM, and the convergence speed of Conv-

GRU is faster. Finally, Experiment 5.4 gives the specific hyperparameters which are

most suitable for att-MCSTCNET model.

2 Introduction
With the rapid development of mobile internet and internet of things services, the de-

mands and challenges brought about by the fifth-generation (5G) and beyond fifth-

generation (B5G), the development of wireless communication technology has entered

a new stage. Supported by new theoretical technologies such as big data [1, 2] and arti-

ficial intelligence [3, 4], wireless communication is characterized by flexible diversifica-

tion and cross-domain fusion [5]. In this context, wireless service traffic prediction [6]

has become a hot issue in 5G wireless communication networks. Accurate prediction

of wireless cell traffic is helpful for base station site selection, urban area planning, and

regional traffic prediction. However, accurate prediction of wireless service traffic is a

very challenging problem, which is mainly due to the following three reasons. First, the

source of wireless communication network traffic is mobile users, and the mobility of

wireless users makes the traffic between multiple areas spatially dependent. In particu-

lar, the emergence of new types of transportation makes it possible for people to get

from one end of the city to the other in a short time. This makes the spatial depend-

ency of wireless service traffic not only local, but also a large-scale global dependency.

On the other hand, the wireless traffic is also dependent on the time dimension. The

traffic value at a certain moment is highly correlated with the traffic value at a similar

moment (short-term dependence) and a relative moment of a certain day (periodicity).

Second, the spatial constraint of wireless service traffic is caused by multi-source cross-

domain data. The causes that affect wireless business traffic in a certain area are di-

verse. When making wireless cellular traffic prediction, not only should the hidden

regular patterns of wireless business traffic be mined from the perspective of historical

data, but also the spatial constraints of other cross-domain and cross-source data on

traffic should be considered. For example, factors such as base station data in a certain

area, point of interest information, and the level of social activities in the area will all

have an impact on changes in traffic. Therefore, how to efficiently integrate these

multi-source and cross-domain data that do not seem to be directly related to wireless

service traffic is a difficult problem to be solved. Third, it is also a difficult problem

how to achieve higher prediction accuracy of wireless cellular traffic in the case of con-

sidering time and space factors and combining cross-domain data.

The prediction of wireless cellular networks can actually be regarded as the analysis

of time series. Cellular traffic is not only related to historical traffic data in the area, but

also affected by many external factors. The deep learning technology can accurately
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grasp the spatial and temporal correlation of cellular traffic data and accurately

predict wireless cellular traffic with neural networks. Therefore, deep learning for

the wireless cellular network traffic prediction model is widely studied. Early

wireless cellular traffic prediction models used some simple shallow learning algo-

rithms, such as the linear regression (LR) model [7] and support vector regres-

sion (SVR) model [8]. In recent years, due to the maturity of deep learning

technology, wireless cellular network models based on deep learning are increas-

ing. Wang et al. [9] proposed a new autoencoder-based spatial model for spatial

modeling and long short-term memory unit (LSTM) for temporal modeling. Its

prediction accuracy is better than traditional models such as the support vector

regression (SVR). To further realize the modeling of the space, the neural net-

work based on graph convolution [10] predicts the cellular flow of any shape and

size in the city. Qiu et al. [11] also use LSTM for time-dependent capture, but

compared with Jing et al. [10] in spatial feature learning, the multi-task learning

idea is used to fully integrate business traffic in different regions, and the impact

of other cross-domain data is not taken into account. On this basis, Hu et al.

[12] used LSTM to model the spatial and temporal dependencies of different

scales in the crowd flow problem, and merged a variety of cross-domain data

(weather, air quality, holiday information, etc.), which further improved the model

prediction accuracy. Zhang et al. [13] and Hu et al. [12] have similar ideas. In

wireless cellular network traffic prediction, multiple cross-domain data are added

to the prediction model as auxiliary traffic prediction, and the space and time

factors of wireless cellular traffic are captured by Conv-LSTM and CNN modules.

The results show that the performance of wireless cellular network traffic predic-

tion is better when all factors are combined. However, Qu et al. [14] further

proves the importance of cross-domain data to the prediction model in the air-

port delay prediction model, and the results show that the prediction accuracy of

the airport delay model is higher than that of adding only one cross-domain

dataset when integrating multiple cross-domain datasets.

In recent years, attention mechanisms have been widely used in various tasks

such as natural language processing, image caption, and speech recognition [15,

16]. The goal of the attention mechanism is to select information that is relatively

critical to the current task from all input. The neural network is constructed

through the attention mechanism to receive attention-related input and pay adap-

tive attention to the input data features so as to extract features more effectively.

In the field of short-term traffic flow prediction, Feng et al. [17] proposed an atten-

tion-based space time graph convolutional network (ASTGCN) model, effectively captur-

ing the daily periodicity, weekly periodicity, and nearest neighbors in traffic data.

Convolution is used to capture the spatial pattern, and the output of these three compo-

nents is weighted and fused by the attention mechanism module. The final prediction re-

sult shows that the prediction performance is better than other models. In conclusion, the

challenges and problems of wireless cellular network traffic prediction mainly include the

following three points: firstly, how to make full use of the time and space characteristics

of wireless cellular traffic data itself, secondly, how to integrate multiple cross-domain

data for prediction, and lastly, which network structure should be adopted to fulfill the

above two requirements.
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3 Related work
Motivated by the studies mentioned above, considering the temporal and spatial char-

acteristics of wireless cellular traffic and combining with cross-domain data, we simul-

taneously adopt Conv-LSTM or Conv-GRU and attention mechanism to model the

traffic data of network structure. Specifically, the main contributions of our work can

be summarized into two folds:

In this paper, we propose an attention-based multi-component spatiotemporal cross-

domain neural network model (att-MCSTCNet). The model finely divides historical

data and uses the Conv-LSTM or Conv-GRU structure to model the three time charac-

teristics of wireless cellular network traffic, such as proximity, daily periodicity, and

weekly periodicity, combined with timestamp feature embedding, multiple cross-

domain data fusion, and other modules jointly assist the model to predict traffic. De-

pending on the internal network structure used, the model can be further divided into

att-MCSTCNet (Conv-LSTM) and att-MCSTCNet (Conv-GRU).

We introduce an attention mechanism in the MCSTCNet model. According to the

relationship between the three kinds of time feature data (nearest neighbor data, daily

cycle data, and weekly cycle data) and the predicted time, the attention mechanism

layer will assign different weights to these three types of data, improve their feature ex-

traction ability, suppress interference information, and achieve the effective use of his-

torical wireless cellular traffic data further improving the prediction accuracy of the

model. The experiment proves that taking the RMSE as an example, on the Sms data-

set, the RMSE of the att-MCSTCNet (Conv-LSTM) model increases by about 13.70 ~

54.96%, and the RMSE of the att-MCSTCNet (Conv-GRU) model increases by about

14.56 ~ 55.82%. On the Call dataset, the RMSE of the att-MCSTCNet (Conv-LSTM)

model is improved by about 10.50 ~ 28.15%, and the RMSE of the att-MCSTCNet

(Conv-GRU) model is improved by about 12.24 ~ 29.89%. On the Internet dataset, the

RMSE of the att-MCSTCNet (Conv-LSTM) model has increased by approximately

35.85 to 100.23%, and the RMSE of the att-MCSTCNet (Conv-GRU) model has in-

creased by approximately 38.79 to 103.17%.

The rest of this article is structured as follows. The fourth part introduces the dataset

adopted in this paper. The fifth part introduces three network structures used in the

att-MCSTCNet model. The sixth part constructs the att-MCSTCNet model based on

attention mechanism and introduces the training process of the model. In the seventh

part, the model is verified and analyzed in three datasets, and the parameters of the

model are tested. The last part is the summary of this paper.

4 Dataset
4.1 Introduction of dataset

The dataset used in this paper comes from detailed wireless cellular traffic data in Milan

[18], and the cross-domain dataset is base station information (BS), point of interest distri-

bution (POI), and social activities (hereinafter called Social) in the area around Milan. The

dataset is divided into 100 × 100 grid areas covering an area of approximately 552 km2 in

Milan. The wireless cellular traffic data collected by the dataset is from November 1, 2013

solstice to January 1, 2014, and the unit of data statistics is in the hour. Section 4.4 de-

scribes timestamps. Table 1 details the Telecom Italia dataset.
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4.2 Preprocessing of dataset

As shown in Fig. 1, the data preprocessing in this paper goes through the following

three steps:

Step 1: Data cleaning. The dataset used in this article is derived from the detailed

wireless cellular traffic data of Milan area [19]. The time span is from 0:00 on Novem-

ber 1, 2013 to 23:00 on January 1, 2014. The experiments in this paper extract Sms,

Call, and Internet wireless cellular traffic data of three different services. For the miss-

ing traffic data of a certain area in a certain period, the average traffic value of the sur-

rounding area or period will be used to fill in.

Step 2: Data screening. Since the recording interval of the original data is 10 min,

and most of the recorded data values are 0, this results in sparse data values. The data

were divided by hours and min–max normalization was used to process the data to

speed up the training process.

Step 3: Data alignment. This article divides the cleaned wireless cellular traffic data,

cross-domain data and the city of Milan into a 100 × 100 grid area one-to-one corres-

pondence. It is convenient to formulate the data below.

4.3 Wireless cellular traffic datasets

The type of wireless traffic data in Milan is represented as k, where k∈{Sms, Call, Inter-

net}. Taking the Internet as example, according to the timestamp of the wireless traffic

data, the wireless business traffic in Milan can be expressed as a t-dimensional tensor,

where T is the total number of time intervals, t∈{ 1, 2,…, T}, X and Y represent the co-

ordinate points of the city. The urban traffic matrix of the t-th time slot can be

expressed as

Table 1 Telecom Italia dataset

Dataset Telecom Italia

City Milan, Italy

Type of datasets {Sms, Call, Internet}

Span of time 2013/11/01 ~ 2014/01/01

Timestamp [week, hour, workday, weekend]

Time interval 1 h

Grid size (100, 100)

Cross-domain data {BS, POI, Social}

Fig. 1 Preprocessing of data
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Dt ¼
d 1;1ð Þ
t d 1;2ð Þ

t ⋯ d 1;Yð Þ
t

d 2;1ð Þ
t d 2;2ð Þ

t ⋯ d 2;Yð Þ
t

⋮ ⋮ ⋱ ⋮
d X;1ð Þ
t d X;2ð Þ

t ⋯ d X;Yð Þ
t

2
664

3
775 ð1Þ

where, t is time point of every data, (X,Y) represents the horizontal and vertical coordi-

nates of each data.

Similarly, formula (1) applies to Sms business and Call business.

Figure 2 shows the temporal dynamics of different kinds of cellular traffic in

different areas. The x-axis denotes the time interval index (in hour scale) and y-

axis, the number of events of a specific cellular traffic. The black line denotes the

most famous university in Milan, Bocconi University, which is the southern sub-

urb of Milan; the red line denotes Navigli, which is the nightlife area of Milan;

the blue line denotes the Duomo of Milan, located in the center of Milan. The

following can be clearly seen from Fig. 2:

1) Data’s periodicity. The wireless cellular traffic of different services shows the

same periodicity. For instance, in Fig. 2a, b, and c, the traffic of three different

business has the same trend in the Bocconi University area. In addition,

wireless cellular traffic in different regions also has a similar periodicity. For

example, in Fig. 2a, the Sms traffic change tendency of three different areas

are similar.

2) Differences in regional data. The data volume of wireless cellular traffic in

different areas is quite different. Taking the cell Navigli as an example, there is

little difference in the data volume of wireless cellular traffic in the region of

Navelli, which is the nightlife area of Milan. However, the Bocconi University

area is on the outskirts of Milan, so there is relatively little wireless cellular

data.

3) Differences in business data. The data volume of wireless cellular traffic between

different services is also different. For instance, the duration of Internet traffic

peaks is shorter than the other two services.

4.4 Timestamp

To make full use of the features of the timestamp (Dmeta) for auxiliary prediction,

four features are extracted from the timestamp. For example, the four character-

istic values extracted from 15:00 on December 14, 2013 are as follows: the value

of week is 5, the value of hour is 14, the value of working day is 0, and the value

of weekend is 1. The four features are processed into a vector m, which is

reshaped into a tensor Ts with the same size as the wireless cellular traffic data-

set and cross-domain dataset through the fully connected layer. So the vector m

goes from dimension 4 to T × X × Y. The four extracted features are shown in

Table 2.

4.5 Cross-domain datasets

The cross-domain (Dcross) dataset mainly contains three types of social information (So-

cial), base stations (BS), and points of interest (POI) (cross∈{BS, POI, Social}) because it
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Fig. 2 Dynamic characteristics of different services in different regions
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can be seen that they are more relevant to wireless service traffic from Fig. 3. Since

these three data types have small changes on the time axis, we treat them as static data-

sets, and then map the data to specific areas based on coordinate information. Referring

to Eq. 1, Eq. 2 can be obtained as follows:

Dcross ¼
d 1;1ð Þ
c d 1;2ð Þ

c ⋯ d 1;Yð Þ
c

d 2;1ð Þ
c d 2;2ð Þ

c ⋯ d 2;Yð Þ
t

⋮ ⋮ ⋱ ⋮
d X;1ð Þ
c d X;2ð Þ

c ⋯ d X;Yð Þ
c

2
664

3
775 ð2Þ

where dc
(X,Y) denotes cross-domain data under the x- and y-axes.

In order to analyze the correlation between different business traffic and cross-

domain datasets, the Pearson correlation coefficients are calculated as follows:

ρ ¼
conv d x;yð Þ; d x

0
;y
0ð Þ� �

σd x;yð Þσ
d

x
0
;y
0ð Þ

ð3Þ

where conv(·) denotes the covariance operator, and σ is the standard deviation.

Table 2 Four characteristics of Dmeta

Feature Name Value

1 Week 0, 1, 2, …, 6

2 Hour 0, 1,…, 23

3 Weekday 0, 1

4 Weekend 0, 1

Fig. 3 Correlation analysis of wireless service traffic and cross-domain datasets
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To further quantify the spatial correlations between cross-domain datasets and cellu-

lar traffic, the Pearson correlation coefficients are calculated and shown in Fig. 3. From

this Fig. 3, we conclude the following:

(1) Relevance of data. The correlation between Sms, Call, and Internet is high. If the

source domain and target domain data have the same spatial distribution and high

similarity, then the transfer learning strategy can be used to transfer the knowledge

learned on a certain dataset to the learning of other datasets and tasks, so that the

learning of new datasets and tasks does not start from zero, but has a certain a

priori basis. Therefore, we can also use the transfer learning strategy across

different businesses.

(2) Similarity of data. The similarity between cross-domain data and wireless business

traffic is also relatively high. Therefore, it can be regarded as a constraint on the

spatial characteristics of wireless business traffic to make a more accurate predic-

tion of business traffic.

(3) Relevance of the data. The correlation between POI, BS, and wireless

cellular traffic is greater than Social, which shows that the impact of POI

and BS on the accurate prediction of business traffic is relatively larger than

Social.

Fig. 4 N-order tensor Ts
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Finally, we will get a N-order tensor Ts, it has a dimension of N × X × Y, which is

composed of matrices Dt, Dmeta, and Dcross. The data form is shown in Fig. 4. As shown

in the black square in Fig. 4, each element in the tensor measures the cellular traffic

volume with coordinates (X, Y), timestamp information, and the number of cross-

domain data of (X, Y).

5 Model and network architecture
5.1 Model

Assuming that the predicted cellular traffic time is at 4 pm on Monday, we want

to capture the features of the weekly cycle (4 pm Monday) and the nearest neigh-

bor (1 pm Monday to 3 pm Monday) cellular traffic data associated with the tar-

get moment, rather than extract the features of the daily cycle (4 pm Sunday)

cellular traffic data, because the gap between wireless data traffic on weekdays

and weekends is very large, the cellular traffic of daily cycle (4 pm last Sunday)

will interfere with the data at the predicted target time. To solve this problem,

we introduce the attention mechanism layer and propose an attention-based

multi-component spatiotemporal cross-domain neural network model (att-MCST

CNet). The model focuses on historical cellular traffic information, which is more

critical to the target time, among many input information, reduces the attention

to other information, and even filters out irrelevant information. Therefore, the

efficiency and accuracy of wireless cellular traffic prediction are improved. The

specific structure of the model is shown in Fig. 6. It contains the following 5

parts:

The first part is the modeling of the recent data Dt
h: Dh

t ¼ ½Dt−ℓc ;Dt−ðℓc−1Þ;⋯;Dt−1� ,
ℓcis the time interval in hours. It represents a piece of cellular traffic data sequence seg-

ment of a historical time directly adjacent to Dt, as shown in part Dt
h of Fig. 5. Obvi-

ously, this type of data will inevitably have a great impact on the current cellular traffic

prediction.

The second part is the modeling of the daily periodic data Dt
d: Dd

t ¼ ½Dt−ℓm�m;

Dt−ðℓm−1Þ�m;⋯;Dt−m�, m = 24. It consists of the same cellular traffic data sequence

segment in the previous n days as the predicted target time, as shown in the Dt
d

part in Fig. 5. Due to factors such as morning and evening peak cycles, people's

Fig. 5 Schematic diagram of the input time series of wireless cellular traffic
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daily work and sleep patterns, cellular traffic data often have a strong similarity at

the same time every day. The purpose of the daily cycle module is to model the

cycle characteristics of cellular traffic in units of days in wireless cellular data.

The third part is the modeling of the weekly periodic data Dt
w: . It consists of

segments of the cellular traffic data sequence with the same properties and the

same time in the previous n weeks of the predicted moment and the predicted

target week, as shown in the Dt
w part of Fig. 5. Similar to the daily periodicity,

wireless cellular traffic data also has obvious weekly cycle characteristics. For ex-

ample, the wireless cellular traffic pattern at 4 pm on Thursday has similarities to

the wireless cellular traffic pattern at 4 pm on Thursday in previous weeks. The

weekly periodic module mainly captures the changing rules of wireless cellular traf-

fic with a weekly cycle.

The three parts of the feature input are imported into two layers of the Conv-

LSTM or Conv-GRU structure, after passing through an attention layer. Then, in-

crease the weight of historical cellular traffic information that is more critical to

the target moment, reduce the weight of other information, achieve the purpose

of filtering irrelevant information, and further improve the efficiency and accur-

acy of wireless cellular traffic prediction. In this way, the weight of historical cel-

lular traffic information that is more critical to the target moment can be

increased, while the weight of other interference information can be reduced. The

irrelevant information is filtered, so the efficiency and accuracy of wireless cell

traffic prediction are further improved.

The fourth part is the modeling of display time features. The input is a matrix with

timestamps as features. The feature matrix Dmeta is put into two layers of fully con-

nected neural network for training.

The fifth part is cross-domain data modeling. The input is the cross-domain dataset

Dcross. The cross-domain dataset we used mainly includes BS, Social, and POI in this re-

gion, where Dcross is a collection of three cross-domain data. The fused cross-domain

dataset Dcross is imported into two layers of convolutional neural network to process

such data and assist the prediction of wireless cellular traffic.

The sixth part is the feature fusion layer. The above six preliminary feature

outputs are spliced into a new tensor according to the specified dimensions, and

the tensor is input to a densely connected convolutional network (DenseNet).

The network contains a total of L layers, and each layer implements a composite

function transformation. The operations in the feature learning of cross-domain

data are the same, including batch regularization (BN), activation function (Relu),

and convolution operation (Conv).

The Frobenius norm is calculated for the final output:

ℓ θð Þ ¼ arg min
θ

D̂t−Dt

�� ��
F ð3Þ

where θ is the set of all parameters of STC-N, D̂t represents the predicted value of traf-

fic data, Dt represents the true value of traffic data.

The following is the algorithm of the att-MCSTCNet model (Fig. 6) training

process. First, build a training example from the original sequence (lines 1–5),

and then train with Adam through backward propagation (lines 6–11).
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5.2 Conv-LSTM structure

The Conv-LSTM structure is shown in Fig. 7. Each cell of the Conv-LSTM network layer

has a storage unit C for storing state information. Cell C deletes and adds data informa-

tion through three gates, which are input gates ig and fg and output gate og, respectively.

Among them, the input gate ig selectively stores the required data information, and the

forget gate fg also selectively “forgets” the redundant information. The final hidden state is

controlled by the output gate og and determines the importance of the output data infor-

mation. The key operation of Conv-LSTM is as formula (4):
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iτg ¼ σ Wdi�Dτ þWhi�Hτ−1 þWci⊙Cτ−1 þ bið Þ
f τg ¼ σ Wdf �Dτ þWhf �Hτ−1 þWcf⊙Cτ−1 þ bf

� �
cτ ¼ f τg⊙Cτ−1 þ iτg⊙ tanh Wdc�Dτ þWhc�Hτ−1 þ bcð Þ

oτg ¼ σ Wdo�Dτ þWho�Hτ−1 þWco⊙Cτ þ boð Þ
Hτ ¼ oτg⊙ tanh cτð Þ

ð4Þ

where σ(·) is the activation function; * is the convolution operation; is the Hadamard

product operation; W(·) is the training weight; b(·) is the training bias; tanh(·) is the

hyperbolic tangent function; and ig
τ, fg

τ, cτ, o, and Hτ are all a three-dimensional tensor.

The output is ot, ot∈ℝ
H×X×Y. H is the number of feature maps.

5.3 Conv-GRU structure

The Gate Recurrent Unit (GRU) is a type of recurrent neural network [20] and is also a

variant of LSTM. Compared with LSTM, GRU can achieve the same effect, and is eas-

ier to train, which can greatly improve training efficiency, so we use the Conv-GRU in

Fig. 7 The structure of LSTM

Fig. 6 att-MCSTCNet model
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the model. As shown in Fig. 8, rt controls a reset gate. The reset gate is used to control

the degree of ignoring the state information at the previous moment. zt is the update

gate, and it is used to control the degree to which the state information of the previous

moment is brought into the current state. Compared with the three gates of LSTM, the

parameters are reduced, and few parameters save resources and converge faster.

Formula (5) includes the calculation process of resetting gate rt and updating gate zt.

Among them, ~ht mainly contains the currently input xt data, and the is added to

the current hidden state in a targeted manner, which is equivalent to memorizing the

state at the current time. (1-zt) ht-1 indicates selective “forgetting” of the originally

hidden state, and 1-zt can be regarded as a forgetting gate which can forget unimport-

ant information in ht-1 dimensions. zt ~ht means to selectively memorize

containing the current node information, which can be regarded as selecting some in-

formation in the ~ht dimension. Therefore, a gated zt can perform both forgetting

and selective memory, which is also the advantage of the GRU structure.

zt ¼ σ Wz� ht−1; xt½ �ð Þ
rt ¼ σ Wr� ht−1; xt½ �ð Þ

~ht ¼ tanh W� rt⊙ht−1; xt½ �ð Þ
ht ¼ tanh 1−ztð Þ⊙ht−1 þ zt⊙~ht

ð5Þ

where ht-1 is the hidden state of the previous node, which contains information about

the previous node. xt is the current input.

5.4 Structure of attention mechanism

Attention mechanism is a solution proposed by imitating human attention, that is, a

mechanism that aligns internal experience with external sensations to increase the fine-

ness of observation in some areas. For example, when looking at a picture, the human

eye will quickly scan the global image to obtain the target area that needs to be focused.

This is the focus of attention. By devoting more attention to this area, we can obtain

more detailed information about the targets we need to pay attention to and suppress

other useless information. For the wireless cellular traffic time series in this paper, for

the output y at a certain time, the attention layer assigns different attention to the hid-

den layer h corresponding to the input x, that is, different weights are given to features

of different importance levels, and associate it with the output to achieve the purpose

of information filtering. The structure development of the attention model is shown in

Fig. 9. The attention model is roughly divided into three layers: input layer, hidden

Fig. 8 The structure of GRU
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layer, and attention layer. We take the data of three sections of Dt
h, Dt

d, and Dt
w as the

input part of the network structure of attention mechanism.

The hidden layer state (h1,h2,…,ht) is obtained by Conv-GRU.

(1) The influence of each current input position on the i position can be calculated, as

shown in Formula (6).

(2) Soft-max normalization is performed on et to obtain the attention weight

distribution, as shown in Formula (7).

(3) Vector ct can be obtained by weighted sum of αt, as shown in Formula (8)

et ¼ vTa relu Wasi−1 þ Uahtð Þ ð6Þ

αt ¼ exp etð ÞP
k¼1Tx exp etð Þ ð7Þ

ct ¼
XT
i¼1

αtht ð8Þ

Where, Va, Wa and Ua are the weight values of the attention network, relu(·) is the

activation function, T is the total number of time intervals, and S is the current input

state, exp(·) is an exponential function based on the natural constant e.

6 Results and discussion
6.1 Assessment method

In this paper, root mean square error (RMSE), mean absolute error (MAE), determin-

ation coefficient, and three evaluation indexes are adopted. The formula is as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1

PX
x¼1

PY
y¼1 d̂

x;yð Þ
t −d x;yð Þ

t

� �2

T � X � Y

vuut
ð9Þ

Fig. 9 Structure of attention
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MAE ¼
PT

t¼1

PX
x¼1

PY
y¼1 d̂

x;yð Þ
t −d x;yð Þ

t

���
���

T � X � Y
ð10Þ

R2 ¼ 1−

PT
t¼1

PX
x¼1

PY
y¼1 d̂

x;yð Þ
t −d x;yð Þ

t

� �2

PT
t¼1

PX
x¼1

PY
y¼1 d

x;yð Þ
t −d x;yð Þ

t

� �2 ð11Þ

where T is the time point, X and Y are the coordinate information of the time point re-

spectively, represents the cellular traffic predicted value at time T with coordinates of

(X,Y), and represents the cellular traffic actual value of at time T with coordinates of

(X,Y).

RMSE is used to measure the deviation between the predicted value of the model and

the true value. MAE can better reflect the actual situation of the error of the predicted

value of the model. For both of them, the smaller they are, the better the model fitting ef-

fect will be; otherwise, the worse the effect will be. The value range of R2 is [0,1]; the

closer its value is to 1, the more independent variables can explain the variance of the

dependent variable, the better the model's effect; otherwise, the worse the model's effect.

6.2 Comparative experiment of multiple models on different datasets

In order to illustrate the advantages of the att-MCSTCNet (Conv-LSTM) model and

att-MCSTCNet (Conv-GRU) model, this paper selects several classical wireless cellular

traffic prediction methods for performance comparison.

The benchmark methods are shallow machine learning methods and deep learning

methods. Among them, shallow machine learning methods include LR [7] and SVR [8],

while deep learning methods include LSTM [9], STDenseNet [19], STNet [18],

STMNet [18], and STCNet [18]. On different datasets, RMSE, MAE, R2 of different

models are shown in Tables 3, 4, and 5. In the Tables 3, 4, and 5, F0, Fr, Fd, Fw, Fm, Fs,

and Fc respectively represent temporal characteristics, recently characteristics, daily

cycle characteristics, weekly cycle characteristics, timestamp characteristics, spatial

characteristics, and three cross-domain data characteristics. "√" in the table indicates

that the model uses this characteristic.

As can be seen from Tables 3, 4 and 5, the two models we proposed in this paper

have better performance in RMSE, MAE, and R2 than other models in three different

business datasets. Taking the RMSE as an example, for Sms dataset, the RMSE of the

att-MCSTCNet (Conv-LSTM) model has increased by about 13.70 ~ 54.96%, and the

RMSE of the att-MCSTCNet (Conv-GRU) model has increased by about 14.56 ~

55.82%. For Call dataset, the RMSE of the att-MCSTCNet (Conv-LSTM) model is im-

proved by about 10.50 ~ 28.15%, and the RMSE of the att-MCSTCNet (Conv-GRU)

model is improved by about 12.24 ~ 29.89%. For Internet dataset, the RMSE of the att-

MCSTCNet (Conv-LSTM) model has increased by approximately 35.85 to 100.23%,

and the RMSE of the att-MCSTCNet (Conv-GRU) model has increased by approxi-

mately 38.79 to 103.17%. And for three datasets, the att-MCSTCNet model with Conv-

GRU structure has better prediction performance than the att-MCSTCNet model with

Conv-LSTM structure. The RMSE increased by about 0.85 ~ 2.94%. The reasons for

the best performance of the att-MCSTCNet (Conv-LSTM) and att-MCSTCNet (Conv-

GRU) models are the following two points: firstly, the spatiotemporal correlation of
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wireless cellular traffic data was captured by Conv-LSTM and Conv-GRU structures;

secondly, attention mechanism structure was added in the att-MCSTCNet model, use-

ful information of wireless cellular network traffic was seized, and useless information

was suppressed, so the training performance of this model was further improved.

To compare the superiority of the att-MCSTCNet model more intuitively, the experi-

mental results are shown in Figs. 10, 11, and 12; as can be clearly seen from Figs. 10,

11 and 12, the proposed att-MCSTCNet (Conv-LSTM) model and att-MCSTCNet

(The Conv-GRU) model has better prediction performance than other models, and att-

MCSTCNet (Conv-GRU) has better prediction performance than att-MCSTCNet

(Conv-LSTM).

6.3 Comparative experiment of different structures in the att-MCSTCNet model

In order to further analyze the difference between the Conv-GRU structure and Conv-

LSTM in the att-MCSTCNet model, we conducted comparative experiments on the

number of training parameters, training time, and changes in model training loss of dif-

ferent structures.

Table 6 shows the amount of training parameters for the two structures under the

att-MCSTCNet model. It can be clearly seen that the Conv-GRU structure has fewer

training parameters than the Conv-LSTM structure, which shows that the Conv-GRU

structure is better than the Conv-LSTM structure. The amount of training is less, and

the training is faster.

To fully explain the advantages of the Conv-GRU structure, we analyze the training

time and the training_loss and valid_loss of the model training. Train loss is the loss on

the training data, which measures the fitting ability of the model on the training set.

Valid loss is the loss on the validation set, which measures the fitting ability on unseen

data, which can also be said to be the generalization ability. Taking the Sms dataset as

an example, the experimental results are shown in Figs. 13, 14, and 15.

As can be seen from Fig. 13, the iteration time of Conv-GRU structure is less than

that of Conv-LSTM structure, so in the case of more iterations, the Conv-GRU struc-

ture saves a lot of time than the Conv-LSTM structure.

Table 3 Performance comparison of various models and other models on the Sms dataset

Model Multiple factors RMSE MAE R2

F0 Fr Fd Fw Fm Fs Fc

LR √ 94.1253 35.6864 0.5765

SVR √ 72.6544 30.5419 0.7571

LSTM √ 69.0916 40.1357 0.7715

DenseNet √ 62.7586 27.512 0.8057

STMNet √ √ 58.6207 29.6203 0.8191

STNet √ √ √ 57.8182 28.132 0.8276

STCNet √ √ √ √ 52.8665 28.1034 0.8559

att-MCSTCNet (Conv-LSTM) √ √ √ √ √ √ √ 39.1589 22.6542 0.9274

att-MCSTCNet (Conv-GRU) √ √ √ √ √ √ √ 38.3087 21.8829 0.9303
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Figs. 14 and 15 are a comparison of the train_loss and valid_loss of three differ-

ent structures. They are respectively the convolution LSTM structure (Conv-

LSTM), convolution LSTM structure based on attention mechanism (att_Conv-

LSTM), and convolution GRU structure based on attention mechanism (att_Conv-

GRU). Experimental results show that compared with train_loss and valid_loss of

other two structures, the att_Conv-GRU structure converges faster, and the loss

value after stabilization is smaller; this shows that the train_loss or valid_loss func-

tion has obtained a local optimal solution, thus the fitting effect of the att_Conv-

GRU structure model is better. The main reason is that the Conv-GRU structure

has one less gating unit than the Conv-LSTM structure, which means that the

GRU parameter calculation is less, so the Conv-GRU structure training requires

fewer parameters than Conv-LSTM, the iteration time is less than conv-LSTM, and

Conv-GRU has a faster convergence rate. In particular, train_loss and valid_loss of

Conv-GRU with the addition of attention decrease faster, and the loss value after

stabilization is lower, thus the attention mechanism can further improve the fitting

effect of the model.

Table 4 Performance comparison of various models and other models on the call dataset

Model Multiple factors RMSE MAE R2

F0 Fr Fd Fw Fm Fs Fc

LR √ 50.8571 25.903 0.8102

SVR √ 45.8714 21.9142 0.8438

LSTM √ 44.4286 21.2136 0.8521

DenseNet √ 44.3864 19.144 0.8602

STMNet √ √ 39.7341 17.8913 0.8896

STNet √ √ √ 37.0857 16.8159 0.9129

STCNet √ √ √ √ 33.207 16.2393 0.9204

att-MCSTCNet (Conv-LSTM) √ √ √ √ √ √ √ 22.7051 14.2622 0.9628

att-MCSTCNet (Conv-GRU) √ √ √ √ √ √ √ 20.9656 13.1964 0.9683

Table 5 Performance comparison of various models and other models on the internet dataset

Model Multiple factors RMSE MAE R2

F0 Fr Fd Fw Fm Fs Fc

LR √ 232.3171 156.1111 0.9085

SVR √ 212.9878 130.6113 0.9245

LSTM √ 237.0122 141.6667 0.907

DenseNet √ 199.8171 122.5536 0.9362

STMNet √ √ 187.8049 116.6111 0.9448

STNet √ √ √ 186.0366 105.6131 0.9489

STCNet √ √ √ √ 167.9386 96.0912 0.9532

att-MCSTCNet (Conv-LSTM) √ √ √ √ √ √ √ 132.0883 85.244 0.9711

att-MCSTCNet (Conv-GRU) √ √ √ √ √ √ √ 129.1509 84.8507 0.9723
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6.4 Model parameter optimization experiment

6.4.1 Model depth selection

Different network layer depths under the same model will have different effects on

the prediction performance of the model. A suitable network layer depth can

maximize the prediction effect of the model, so this experiment analyzes five ex-

periments based on the att-MCSTCNet model. As a result, models of different

depths are shown in Table 7.

The experimental results are shown in Fig. 16. The prediction performance of

the model with different depths is good under the three datasets, but as the net-

work depth increases, the predictive performance of the 3-layer network depth

model is the best. Moreover, when the network depth of the model increases to 4

and 5, the RMSE of the model will increase significantly, because the increase of

network depth will cause the model parameters to increase greatly, which is not

conducive to model training. Therefore, after comprehensive consideration, the att-

MCSTCNet model selects the most appropriate three-layer network depth for

training.

6.4.2 Setting of batch_size

A suitable batch_size can find a relative balance between stability and model calcu-

lation overhead. Because the GPU can play better performance on the nth power

of 2 batch_size, we set the batch_size of the model to 32, 64, and 128 and tested

Fig. 10 RMSE of different models on three datasets

Fig. 11 MAE of different models on three datasets
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the effect of this parameter on the three datasets. The experimental results are

shown in Fig. 17. It can be seen from Fig. 17 that under the same training times,

the model with batch_size of 32 shows better performance than other values, so

the att-MCSTCNet model selects batch_size as 32 for training.

In addition, through repeated experimental verifications, the att-MCSTCNet is

optimized using a stochastic gradient-based optimization technique, the model is

trained for 300 epochs. An adaptive learning rate (lr) is adopted in this work,

whose initial value is set to be 0.01 and will be divided by 10 and 100 at 150

epochs and 225 epochs. In the convolutional layer, the number of feature maps is

16, the size of the convolution kernel is 3 × 3, and Relu is used as the activation

function. The feature map of the output layer is 1, and the size of the convolution

kernel is 1 × 1. During training, the first seven weeks of the entire dataset are used

as the training set, and the last week's data is used as the test set. Both the train-

ing set and the test dataset are constructed using a sliding window method with a

window size of P = 3. The summary of model training parameters is shown in

Table 8.

7 Conclusions
We propose an attention-based multi-component spatiotemporal cross-domain

neural network model (att-MCSTCNet) to predict wireless cellular network traffic.

The model uses the conv-LSTM or conv-GRU structure to model three temporal

properties of wireless cellular network traffic (i.e., recent, daily periodic, and weekly

periodic dependencies) combined with timestamp feature embedding, multiple

Fig. 12 R2 of different models on three datasets

Table 6 Training parameters of different structures

Dataset Structure of the model Amount of training parameters

Sms att-Conv-LSTM 312948

att- Conv-GRU 298284

Call att- Conv-LSTM 312948

att- Conv-GRU 298284

Internet att- Conv-LSTM 312948

att- Conv-GRU 298284
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Fig. 13 Training time of Conv-LSTM and Conv-GRU under synchronous length

Fig. 14 Comparison of train_loss under different structures
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cross-domain data fusion, and other modules to assist the model in traffic predic-

tion. Experiments prove that the proposed model is better than the existing model,

and the att-MCSTCNet model with the conv-GRU structure has better prediction

effect than the att-MCSTCNet model with the conv-LSTM structure. The model

training time is reduced, the workload is greatly reduced, and the prediction per-

formance of the model is further improved.

Due to the complex adoption framework of the model proposed in this paper, the

overall training time of the model is still long. The next step will consider adopting a

simpler and more efficient model architecture in order to improve the training accur-

acy of the model while reducing the training time.

Fig. 15 Comparison of valid_loss under different structures

Table 7 Model structure of different depths

Depth Structure of the model

1 input→Conv-GRU layer→attention layer→DenseNet layer→output

2 input→Conv-GRU layer→Conv-GRU layer→attention layer→DenseNet layer→output

3 input→Conv-GRU layer→Conv-GRU layer→Conv-GRU layer→attention layer→DenseNet layer→output

4 input→Conv-GRU layer→Conv-GRU layer→Conv-GRU layer→Conv-GRU layer→attention
layer→DenseNet layer→output

5 input→Conv-GRU layer→Conv-GRU layer→Conv-GRU layer→Conv-GRU layerr→Conv-GRU layer
r→attention layer→DenseNet layer→output
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Fig. 16 Model prediction performance of different depths under three datasets

Fig. 17 Model prediction performance of different batch_size under three datasets

Table 8 Hyperparameter setting of att-MCSTCNET model

Hyperparameters Value

Loss mse

Optimizer Adam

Batch_size 32

Learning rate 0.01

Epoch 300
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