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1 Introduction

The problem we investigate in this paper is that of determining the locations of all sen-
sors in a network, given noisy distance measurements between some sensors. It is usually
assumed that the positions of some of the sensors are known, which are referred to as
anchors. This is called a localization problem. Specifically, we present a distributed algo-
rithm that solves the maximum likelihood estimation problem for localization when the
measurements are corrupted with Gaussian noise. Our algorithm is based on applying
the Levenberg-Marquardt algorithm to the resulting nonlinear least-squares problem. It
requires a good initialization, and we initialize it with an approximate estimate obtained
from the algorithm proposed in [1], which is based on a convex relaxation of our nonlinear
least-squares problem formulation.

Over the years there has been a considerable interest in wireless sensor network
localization using inter-sensor distance or range measurements [2—4]. Wireless sensor
networks are small and inexpensive devices with low energy consumption and com-
puting resources. Each sensor node comprises sensing, processing, transmission, and
power units, some with mobilizers [5, 6]. The applications are many, e.g., natural disas-
ter relief, patient tracking, military targets, automated warehouses, weather monitoring,
smart space, monitoring environmental information, detecting the source of pollutants,
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and mobile peer-to-peer computing to mention a few, as well as underwater applications
[7]. The information collected through a sensor network can be used more effectively if it
is know where it is coming from and where it needs to be sent. Therefore, it is often very
useful to know the positions of the sensor nodes in a network. The use of global position-
ing system is a very expensive solution for this [8]. Instead, techniques to estimate node
positions are needed that rely just on the measurements of distances and angles between
neighboring nodes [2, 9]. Deployment of a sensor network for these applications can be
done in a random fashion, e.g., dropped from an airplane in a disaster management appli-
cation, or manually, e.g., fire alarm sensors in a facility or sensors planted underground
for precision agriculture [5].

Localization in this setting is mostly based on optimizing some cost function which is
dependent on the model uncertainties. The most widely used technique is based on max-
imizing a likelihood function, know as maximum likelihood estimation, which in general
is equivalent to a non-convex optimization problem of high dimensionality [10, 11]. Both
centralized and distributed algorithms have been used to solve the problem [12]. The
centralized algorithms require that each sensor/agent sends its information to a cen-
tral unit where an estimate of the sensors position can be computed using for example
second-order optimization methods. Then the results are sent back to the agents.

The disadvantage of these algorithms is that the processing in the central unit can be
computationally heavy, specially when the number of sensors are large. Distributed algo-
rithms overcome this obstacle. These algorithms enable us to solve the problem through
collaboration and communication between several computational agents, which could
correspond to the sensors, without the need for a centralized computational unit. The
disadvantage of these algorithms is that they might not result in as accurate estimates
of the positions as for centralized algorithms. Moreover, they might require excessive
communication between the senors, specially for large network sizes. The algorithm we
propose in this paper is somewhere between a centralized and distributed algorithms in
the sense that, instead of having one central unit as in a centralized algorithms, the sen-
sors are grouped together in a structured way, where one computational agent is assigned
for each group. The sensors then send their measurements to their groups computational
agent and those agents in turn carry out the computations by communicating with one
another. As a result, neither the computations in the proposed algorithm are as heavy as
in centralized algorithms, nor the communication burden is as intensive as in distributed
algorithms in which all the adjacent sensors communicate together in order to find a
solution to the localization problem.

There have been various techniques developed to distribute the computations. We will
now survey different distributed methods for localization. First, we discuss approaches
which are based on the original non-convex maximum likelihood formulation. They
all solve the maximum likelihood problem exactly. The authors in [13], propose a dis-
tributed multidimensional scaling algorithm which minimizes multiple local nonlinear
least-squares problems. Each local problem is solved using quadratic majorizing func-
tions. In [14], the authors present two distributed optimization approaches, namely
a distributed gradient method with Barzilai-Borwein step sizes, and a distributed
Gauss-Newton approach. In [15], a decentralized algorithm is devised based on the
incremental subgradient method. In [11], the authors propose a distributed alternating
direction method of multipliers approach. To this end, an equivalent equality constrained



Ahmadi et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:74 Page 3 of 26

problem of the original nonlinear least-square problem is considered by introducing
duplicate variables in the optimization problem which allows for a distributed solution. In
[16], the authors reformulate the problem to obtain a gradient Lipschitz cost which in turn
enables them to propose a distributed algorithm based on a majorization-minimization
approach. The main shortcoming of the surveyed approaches is that they take many iter-
ations to converge, and hence are slow, since many communications are required to reach
a solution. The reason for this is either because they are based on first-order optimiza-
tion methods, or as is the case for the Gauss-Newton method, a consensus algorithm is
used in order to compute the search direction. Also it is difficult to effectively initialize
the algorithms, since the likelihood function might have several local maxima. The latter
problem can be overcome by using some approximate algorithm for localization which is
easy to initialize. Then the solution from this approximate method is used to initialize the
non-convex optimization problem solver. Good approximate problems can be obtained
from convex relaxations of the maximum likelihood problem.

We will now continue the survey with methods based on convex relaxations of the max-
imum likelihood formulation. These are not only used for initialization of non-convex
formulations, but are also of interest per se assuming that the approximation provides
a good enough approximate localization. A good survey of semi-definite programming
relaxation methods is given in [4]. The authors in [3], and [12], use the relaxation in [4]
to devise distributed algorithms based on the alternating direction method of multipliers
and second-order cone programming approaches, respectively. A nice property of these
algorithms is that they have convergence guarantees. This, however, comes at the cost of
solving a semi-definite programming at every iteration of the algorithm which imposes
a substantial computational burden. In [17], a distributed algorithm in which only linear
system of equations have to be solved at each iteration is proposed. They distribute the
computations using message-passing over a tree. Another way to decrease the computa-
tional cost at each iteration is to consider a disk relaxation of the localization problem
instead of an semi-definite programming relaxation. Based on this idea, the authors in [1]
and [18], devise distributed algorithms for solving the resulting problem which rely on
projection based methods and Nestrov’s optimal gradient method, respectively. In [19],
the authors propose a hybrid approach based on the disk relaxation in [1] and a semi-
definite programming relaxation, by fusing range and angular measurements. It should be
stressed that the solutions from relaxation based methods do not provide global optima.
The quality of the solutions are highly dependent on how tight the relaxation is.

As mentioned above solutions from relaxed formulations may be used to initialize the
non-relaxed formulations. In [2], a semi-definite programming relaxation of the prob-
lem, combined with a regularization term is used to initialize a gradient-descent method
for solving the exact maximum likelihood problem. In [20], the authors propose a hybrid
solution to the localization problem. To this end, they apply a distributed alternating
direction method of multipliers approach in two stages. In the first stage, they use the
disk relaxation formulation of the localization problem as in [1], and then there is a
smooth transition to the second stage where they use the original non-convex formulation
asin [11].

Although the algorithm in [20], has faster convergence rate than what is presented in
[1], the number of communications per sensor is not significantly lower, and in addi-
tion to that there is an extra communication overhead because of the existence of several
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duplicate variables which needs to be passed among the sensors. Notice that the num-
ber of duplicate variables in each sensor is proportional to the number of sensors that a
senor can communicate with, which causes a considerable amount of computations and
communications, specially if the network size is large. Also note that for the algorithms
in both [1], and in [20], the computations are distributed in such a way that each sen-
sor has to carry out its own computations and exchange messages with adjacent sensors.
The authors in [20] argue that this way of distributing the computations might require an
excessive communication burden, specially for large network sizes. Because of this, they
discuss the possibility of devising a regional reinterpretation of their algorithm, where
the sensors are partitioned in regions and there is one computational agent per region
which is responsible for carrying out the computations and exchanging messages with the
adjacent computational agents. We will see later that in our proposed algorithm, we also
distribute the computations in such a way that not every sensor has to be involved in the
computations.

In this paper, we propose a distributed algorithm based on the Levenberg-Marquardt
method [21], with a localization accuracy which is better than the algorithm in [1], but
with much fewer communications per sensor/agent. The accuracy is better since we solve
the maximum likelihood problem and not only an approximation of it. This will show that
the claim in [19], that the algorithm in [1] has equal localization accuracy compared to the
one in [20], is debatable. We use an approximate estimate obtained from the relaxation
based algorithm presented in [1], as the initial starting point for our algorithm. We will
see that since the number of communications between agents in our algorithm is far less
than the algorithm presented in [1], our algorithm can be utilized on top of the algorithm
in [1], in order to improve the estimate in terms of accuracy with much less iterations
than what are used in [1], and achieving better accuracy. Note that both algorithms in
[1] and [20] which are based on Nesterov’s gradient and alternating direction method
of multipliers approaches, respectively, are first-order methods whereas the Levenberg—
Marquardt algorithm is a pseudo-second-order method as it uses approximate Hessian
information. It is known that in general second-order methods require fewer iterations in
order to converge than first-order methods. The reason is that second-order methods use
both gradient and curvature information of the objective function, whereas first-order
methods rely solely on the gradient of the objective function. As a result the number of
communications between agents in the distributed Levenberg-Marquardt algorithm is
expected to be lower than for the algorithms in [1] and [20].

1.1 Contributions
We propose a distributed algorithm for localization that solves the localization problem
to highest accuracy using few communication and computations.

1.2 Example

In order to introduce the notation and to exemplify what results will be derived, a simple
one-dimensional example will be considered. Relevant applications of this are e.g. a metro
line in-between two stations with anchors at the stations or a mine tunnel with anchors
at the intersection of tunnels. The anchors are positioned at p. and p2 and the position
of the other sensors pé,j =1,2,3,4,are such that pl < p! < ... < pt < pﬁ. Moreover,
we assume that each sensor can measure the distance of the adjacent sensors. We depict
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this in what is known as the inter-sensor measurement graph shown to the left in Fig. 1.
The nodes represent the sensors and anchors, and there is and edge between two nodes
if they can measure the distance to one another. Assume that we are given measurements
R;j between sensors i and j and measurements Yj; between sensors i and anchors j with
Gaussian measurement errors with zero mean and unit variance. Then, the maximum-
likelihood problem of estimating the positions of the sensors is equivalent to

minilgnize (psl —pl - y11)2 + (ps2 —pl - R12)2

+ (P —p2 - R23)2 + (i -p2 - R34)2
+ (P2 - Pt — Vw)?

where P =[p! ... p}], which is a linear least-squares problem.

The maximal subgraphs of the inter-sensor measurement graph in Fig. 1, which are
complete, i.e. contains an edge from every node to every other node, are called cliques and
givenby C1 = {pl, i}, o = {pi,p2}, Cs = {pl. 12}, Cu = {pi. pl} and G5 = {pl P2}
They can be arranged in a tree as is seen to the right in Fig. 1. This tree is called a clique
tree. It is not unique, but it can always be arranged in such a way that any element in
the intersection of two cliques will also be elements of cliques on the path between the
two cliques. This is called the clique intersection property. It is not possible in general for
any inter-sensor measurement graph to derive a clique tree. For this to be possible, the
graph has to be what is called chordal. We will discuss this in more detail later. However,
for our example, the graph is chordal, i.e. any cycle of length four or more in the graph
has a chord. It is now possible to solve the least-squares problem over this clique tree by
using each of the cliques as computational agents. This is done by associating terms of the

1
p. O
a (1) C1 = {pt.p!}
e 1.9
9 02 - {ps?ps}
2
p: O
s (3) C5 = {p2,p3}
3
O
Pe (4) Cy = {p3,p%}

4
(@)
Ps 6 C'5 — {pésl’pg}

p: O

Fig. 1 Inter-sensor measurement graph to the left and a corresponding clique tree to the right
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objective function with different cliques. A valid assignment is that the variables of the
terms that are assigned to a clique should belong to the clique. Therefore, we assign

A@D = (bt —pL—Vn)’

to Cq,

5 (L p2) = (02 — P! — Ri)’
to Co,

5212 = (02 - P2~ Ran)’
to Cg,

£ (B308) = (b — 2~ Ra)”
to Cy4, and

fs 0) = (p5 — 2 - yzg)2
to Cs. Hence, the least-square problem is equivalent to
minimize fi (p5) +/o (25.25) +15 (03 23) +fu (05,55) + f5 ()

We then start with the leaf clique C5 and its corresponding function f; (pf) and minimize
it with respect to the variables that are not shared with its parent. There is no such variable
and hence the minimization is not carried out. We then let ms4 (pf) = fs (p;), which
is called a message function or value function. This is added to the objective function
corresponding to the parent of Cs, i.e. to fa (p2, pf). Notice that any quadratic function can
be represented with a matrix and a vector, and hence this is the only information that has
to be passed to the parent. We then again minimize the resulting function with respect to
the variables that are not shared with its parent, i.e. p%. Since the problem is convex and
quadratic, this is equivalent of solving a linear equation, and after back substitution of the
solution, the objective function value will be a quadratic function of pf’, which we denote
by m43 (pf) We then add the message function to the objective function corresponding
to the parent of Cy i.e. to f3 (p2, pf) and repeat the procedure until we reach the root
clique. For the root clique C1, we now can optimize f (psl) + ma (psl) with respect to the
remaining variable p, where my) (p!) is a2 message from the child clique. By parsing this
solution down the clique tree the remaining optimal variables can be computed assuming
that the parametric solutions have been stored in the nodes of the clique tree.

The fact that the problem is convex and quadratic, makes it easy to compute the
messages. In general, this is not the case, but we will use this procedure not for the
optimization problem itself but for computing the search directions in a non-linear least-
square method, in particular the Levenberg-Marquardt method [21]. These equations
are linear equations and correspond to a quadratic approximation of the problem at
the current iterate of the Levenberg-Marquardt method. All other computations in the
Levenberg-Marquardt method also distribute over the clique tree. We see that what we
are doing in this example is nothing but serial dynamic programming. In general, the
clique tree will not be a chain, and then we will carry out dynamic programming or
message passing over a tree, see [22] for details. The clique tree is not unique. For the
example we can just as well make Cs the root and C; the leaf. Moreover, we can take
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Cs as root and get two branches with C; and Cs as leafs. This will facilitate parallel
computations.

1.3 Outline

In Section 2, we review the maximum likelihood formulation of the localization problem.
In Section 3, we discuss how to find the clique tree and how to assign subproblems, in
order to distribute the computations for a general optimization method. In Section 4, we
review the Levenberg-Marquardt algorithm for solving non-linear least-square problems.
In Section 5, we discuss how to distribute the computations in the Levenberg-Marquardt
algorithm using the clique tree. Numerical experiments are presented in Section 6 ,and
we conclude the paper in Section 7.

1.4 Notations and definitions

We denote by R, the set of real scalars and by R”*", the set of real n x m matrices.
The transpose of a matrix A is denoted by A”7. We denote the set of positive integers
{1,2,...,p}, with N,. With x;, we denote the ith componenet of the vector x. For a
square matrix X, we denote with diag(X), a vector with its elements given by the diagonal
elements of X.

A graph is denoted by G(V, &), where V = {1, ..., n} is its set of vertices or nodes and
& C V x Vdenotes its set of edges. Vertices i,j € V are adjacentif (i,j) € £, and we denote
the set of adjacent vertices of i by Ne(i) = {j e V|(i,j) € 5}. A graph is said to be com-
plete if all its vertices are adjacent. An induced graph by V' € V on Q(V, ), is a graph
Qi(V', &), where & =EN V' x V. Aclique C; of Q(V, £) is a maximal subset of V' that
induces a complete subgraph on Q, i.e., no clique is properly contained in another clique
[23]. Assume that all cycles of length at least four of Q(V, £) have a chord, where a chord
is an edge between two non-consecutive vertices in a cycle. This graph is then called
chordal [24, Ch. 4]. It is possible to make graphs chordal by adding edges to the graph.
The resulting graph is then referred to as a chordal embedding. Let Co = {Cl, e Cq}
denote the set of its cliques, where g is the number of cliques of the graph. Then there
exists a tree defined on Cq such that for every C;, C; € Cq where i # j, C; N C; is con-
tained in all the cliques in the path connecting the two cliques in the tree. This property
is called the clique intersection property [23]. Trees with this property are referred to as
clique trees.

2 Maximum likelihood localization

The localization problem that we consider in this paper can be formulated as a network of
ng sensors with unknown positions pﬁ eR%ieN n,» and n, anchors with known positions
pil eRY e {ns +1,...,ns + n,}, where d € {1, 2, 3} is the dimension of the localization
problem. The goal is to find the position of the sensors. We assume that the sensors are
capable of performing computations and that they also can measure their distance to
some of the adjacent sensors and/or anchors. However, later we will see it is enough to
assume that some of the sensors are capable of performing computations for the proposed
distributed algorithm. Let us define the set of neighbors of each sensor i, Ne, (i) € N,, as
the set of sensors to which this sensor has an available range measurement. In a similar
fashion let us denote the set of anchors to which sensor i can measure its distance to by
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Ne, (i) € {ns +1,...,n5+ ng}. Define the inter-sensor and anchor range measurements

for each sensor, i € N,

Ry = Dy (p;‘, IJ;) +Ej, jeNedi),

Yij = Zij (Pé’l’/é> +Vij, j € Nea(i) o

respectively, where D;; = ||p§ — p£||2 and Z; = ||p§ — p’;;||2 are the noise-free sen-
sor distance and the noise-free anchor-sensor distance, respectively. The quantities
E; ~ N(0,0) and Vij ~ N(0,0) are the measurement noises. It is assumed that the
inter-sensor and the anchor-sensor measurement noises are independent. With these
definitions, the maximum likelihood problem for localization can be written as

minilgnize % Z( Z 93 (Pir%)‘*’ Z Qg (pé)) (2)

i=1 jeNe,(i) jeNe (i)

where P = (psl, . ,pgs) € R and where

Qy (i k) = Dy (Phrh) = Ry Jj € Neo(i)
Qy () = Zj (Ploth) = Vi, j € Neald)

for i € N,,. The problem is a nonlinear least-square problem and hence is non-convex.
It is in general NP hard [25], and although the problem is guaranteed to have a global
minimum [1], it is difficult find it [3]. The goal, therefore, is to find good local minimum
for the problem.

There are also work reported in which only sensor to anchor measurements are con-
sidered and not inter-sensor ones, see, e.g. [26—28], in which a range-free based convex
method, a convex relaxation based method using range measurements and a sensor

selection based method using range and angle measurements, are proposed, respectively.

3 Clique tree and assignment strategy

In order to solve the problem in (2) in a distributed way, similar to the approach for the
one-dimensional example in Section 1, we base our computations on a clique tree which
will be used as the computational graph.

Let us assume that if sensor/anchor i can measure its distance to sensor/anchor j, so
can j measure its distance to i. This then allows us to describe the range measurement
available using an undirected graph G(V, £) with vertex set V. = {1,...,ns + n,} and
edge set £ C V x V. An edge (i,j) € &, if and only if there is a range measurement
between i and j. We assume that the graph is connected. Consider the network with 4
sensors and 4 anchors in Fig. 2. The sparsity graph for this network is shown in the top
graph of Fig. 3. The graph is not chordal and therefore as mentioned in Section 1, we
first find a chordal embedding of the graph before we are able to obtain a correspond-
ing clique tree. One possibility is to add an edge between nodes 2 and 3 to obtain a
chordal graph. A corresponding clique tree is shown in the bottom graph of Fig. 3. For
more complicated networks, one may use general purpose algorithms to generate the
chordal embedding and subsequently the clique tree. Although the problem of finding
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Fig. 2 A sensor network with 4 sensors (red crosses) and 4 anchors (green circles). An edge between two
nodes, implies existence of a range measurement between two nodes

a chordal embedding of a graph by adding a minimal number of edges is NP-hard, sub-
optimal methods can be used [29]. One such method is given in [30]. A MATLAB code
for chordal embedding and the corresponding clique tree which is based on the approach
proposed in [30], is provided in [31]. Once the clique tree is found, we choose one of
the cliques as the root of the tree. Once the root of the tree is specified, the terms of
the problem in (2) are assigned to the cliques. We use the assignment strategy given in
Algorithm 1. The purpose of the algorithm is to have a balanced distribution of the terms
in the objective function. The resulting assignment relies on the ordering of the cliques.
Consequently, different ordering of the cliques may result in different assignments of
terms in the objective function.

(1) C1 = {2,3,4,6}
Co = {3,4,8} (2) (3) Cs ={1,2,3,7}
e C6 = {172)5}

Fig. 3 Sparsity graph (on the top) and Clique tree (on the bottom) for the network in 2
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Algorithm 1 A simple assignment strategy
1. Given the graph G(V, £), the cliques {Cy, ..., Cy} and @ = {Q;; | (i,) € &} for the
problem in (2)

2: while € is not empty do
fork=1,...,9do
for (i,j) € Cx do
if ;; is not assigned then
Assign it to agent k
Q = Q\Qjj
break
end if
10: end for

Y % N 9o W

11:  end for
12: end while

The clique tree can be constructed in a distributed way. We start with the anchors and
they start by communicating with sensors that they can communicate with. This will
give us the initial knowledge of the sparsity graph. Then the senors that the anchors can
communicate with can do the same and tell the anchors about what neighbors they have
found, and then it goes on like that. This will give us the sparsity graph, and we can cen-
trally at the anchors compute the clique tree and distribute out that information. It is
clear that if we lose a measurement, assuming that does not make the sparsity graph dis-
connected, then we can still have the same clique tree, by just making an embedding of
the missing measurement. However, if we get an extra measurement, then if we want to
include it we have to recompute the clique tree. However, if the new sensor is only provid-
ing measurements to sensors in the same clique, it can form a new clique with the sensors
it can communicate with, and the clique tree can be easily augmented with this clique.
If all the sensors of a clique fail, then the sensor network and the corresponding sparsity
graph will be disconnected, see e.g. Theorem 3.7. in [32], which violates our assumptions.

Remark 1 Note the each clique is a grouping of sensors. Adding artificial edges between
sensors in order obtain a chordal embedding is a way to virtually group them. In other
words, the added edges corresponds to saying that terms in the objective function are func-
tion of variables which they are actually not. Later when we assign different terms of the
objective function to the clique tree those added edges are of no relevance. The only purpose
of adding edges was to be able to obtain a clique tree.

Remark 2 It should be noted that for the distributed Levenberg—Marquardt algorithm
which is discussed later, what clique is chosen as root does not affect the number of commu-
nications required for converging to a solution. However, it affects how computations can
be carried out in parallel, see [33].

4 Levenberg-Marquardt algorithm
We will now discuss the Levenberg-Marquardt algorithm and how it can be used to solve
the maximum likelihood formulation in (2). Consider the nonlinear least-square problem
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minimize F(x) (3)
X

where F(x) = % Z:’;lfi(x)z and f; : R” — R. The problem in (2) can be written as in (3),
where each and every ;; in (2) corresponds to a f; in (3) and x = P. We assume that the
terms f;s are differentiable. Necessary condition for a local minimum x is that

m
VE@) =) fi®).Vfilx) =J ) f(x) =0

i=1
where J(x),:xn is the Jacobian of f(x) = (fi(x),...,fm(x)). One of the well-known and
efficient methods to solve this problem is the Levenberg-Marquardt algorithm which is
a variation of the Gauss-Newton algorithm, [21, Ch. 10]. The method has been very suc-
cessful in practice [34, Ch. 10], with a convergence rate which is better than linear and
sometimes it can even be quadratic.

Now let us linearize F(x) in the neighborhood of x as
1
Fx + A%) = Fin(Ax) = F(x) +f (0] () Ax + S AxTT @) ] () Ax 4)

Applying the Gauss-Newton algorithm solves the problem in (3) in an iterative fashion
by minimizing (4) at each iterate, i.e.

minimize %AxT](x) T Ax + f () T (%) Ax (5)

A drawback, however, with this approach is that a nearly rank-deficient J(x) may lead to
ill-conditioning. One can circumvent this by using the Levenberg-Marquardt algorithm
where we solve the problem in (3) in an iterative fashion by minimizing a damped version
of (4) at each iterate, i.e.

minimize %AxT(](x) T + u) Ax + fx) T (x) Ax (6)

where u is a damping parameter and the current iterate of x is updated by adding Ax
to it. The size of the damping parameter © determines the behavior of the algorithm,
meaning that for large values of j, the algorithm behaves like the steepest descent method
which is suitable when the current iterate is far from the solution, whereas for small values
of u the algorithm behaves like the Gauss-Newton method which is suitable when the
current iterate is close to the solution. In addition, it should be pointed out that in the
final iterations of the algorithm if the value F(x) in (3) is very small, then the algorithm
behaves like the Newton method. The reason follows from the fact that if f;s are close to
zero, then JT (x)] (x) is a good approximation of the Hessian V2F(x) since

m
V2E@) =) @) + Y _fi@f x) ~Jx)"T@)
i=1
As a result the obtained direction is a Newton direction.
The strategy for updating u is controlled by a parameter called Q defined as

F(x) — F(x + Ax) _ F(x) — F(x + Ax)

@ = Fin ) — o (A~ TanT (uan — /@) f ()

7)

where Ax is the solution to the above optimization problem. For details, see [35]. It should
be noted that this strategy is inherited from the well-known trust-region method and
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also note that the Levenberg-Marquardt algorithm is sometimes viewed as a trust-region
method. See [21, Ch. 10], for details. A suitable choice for the initial value of u is

1o =t x ||diag(J(x0) T (x0)lloo

where the value of 7, as suggested in [35], depends on how good the approximation xg
is compared to the local minimizer x*. If it is known to be a good approximation, then
a small value can be chosen, e.g. 107, otherwise one can choose 1073 or even a larger

value.

5 Distributed computations

We will now discuss how the different computations in the Levenberg-Marquardt algo-
rithm can be distributed over the clique tree. Since each f; corresponds to a £, we
have also assigned the f;s to different cliques of the clique tree. Let ¢4 be the set of i
for which f; have been assigned to clique Cy. Define Fy (xck) = % Zi€¢k (fi(x))z, where
xc, is the sub-vector of x that contains those components of x that fi(x) for i € ¢
depend on. We will make this dependence somewhat more clear by defining the vec-
tor valued functions J_’k (xck) = (]_’Lk (xck)>ie¢k for k € Ny, where j_’ik : RI%! — R are

defined such that f_ik (xck) = fi(x) for all x € R", where i € ¢, k € N;. Then we have
_ - 2
Fy (x¢,) = 3 i (flk (xck)> . Morover,

q
Fx) =Y Fr(xc,) (®)
k=1

We see that we have obtained a sum of nonlinear least squares objective functions that
are coupled through common components of x. Now let Ji (xck) be the Jacobains of fk,
and let us define the matrices E; as the zero-one matrices that are such that Exx = xc,,
forallx € R”, k € N,. It then follows that

q
VE(x) = ZEZ]k (xck)TJ;k (ka)
k=1

q
T @) = > Elk (ve,)" Jic (xc,) Ex ©)
k=1

We see how the matrixes E; distribute the gradients and the approximate Hessians
of the individual functions for the different cliques over the gradient vector and the

approximate Hessian matrix of the overall problem.
We will now discuss how the above structure can be used to solve the problem in (6) in
a distributed way using the clique tree. The only remaining challenge is how to distribute
ul over the cliques. To this end, we introduce modifications of Ej that we call Ex. They
are obtained by identifying the rows which E; have in common with Ej,;;(x), where par (k)
is the parent of the kth clique in the clique tree. Then Ej is defined to be equal to E,
except for these rows, which are set equal to zero. Let us also define Axc, = ExAx. Itis

then straightforward to conclude that the problem in (6) can be written as

q

e Lo T
minimize ,Z; EAxckaAka + 1 Axg, (10)
k=
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where

T -
Hi = EUk (x¢,)” T (¥c,) Ex + REKEL
T -
rie=Jic (xc,) " f* (xc,)

Notice that this optimization problem has the same sparsity graph and corresponding
clique tree as the original problem in (2). Therefore, Ax can be obtained using message
passing over the clique tree. See [22] for details regarding message passing.

A distributed version of the Levenberg-Marquardt algorithm is presented in Algo-
rithm 2, in which it is straightforward to show that || VF(x)|| and Q in (7) can be calculated
distributedly as

q
IVE@I = | 3 1l
k=1
_ ZZ:1 Fi (xck) — F (xck + Axck)
33 wAXTEIExAx — AxTE]

Q (11)

Here, ExAx contains a subset of the components in Axc,, which is only available in
clique Cy and not its parent clique Cpar(k).

Remark 3 It should be pointed out that the proposed algorithm requires the objective
function to be differentiable, which is not the case for the problem in (2) because of the non
differentiability of D;; (pé,pﬂ) and Zj (pg,p/a) atpl = p/s and p. = p/u Nevertheless, we
can still use the algorithm by imposing an extra condition in Line 6 of Algorithm 2 such that
the xc,, update is acceptable only if the next iterate satisfies pé * p/s and pé # p]a for all
i # j. The authors in [36], discuss why Quasi-Newton methods are practical and efficient

for optimizing non-smooth functions.

Remark 4 It is worth mentioning that for Gauss-Newton method in [14], which is a spe-
cial case of the Levenbergh-Marquardt algorithm when p = 0, the search directions are
not computed as efficiently as with the message passing approach used here.

Remark 5 Concerning the computational complexity of the distributed method and its
centralized counterpart, we first realize that the centralized counterpart of the algorithm is
exactly the same as Algorithm 2, expect that the search direction in Line 3 and Q in Line 4
are computed using Problem 6 and Eq. 7, respectively, and the variable update in Line 6 is
done in a centralized manner. Given that at each iteration of both methods, the resulting
search directions (Problem 6 for centralized and Problem 10 for distributed method) and
the Q values (Eq. 7 for centralized and Eq. 11 for distributed method) are identical, the
distributed method will converge to the same solution as its centralized counterpart. Hence
in order to compare the complexity and the computational cost the methods, it is enough
to compare them for one iteration of the algorithm. Next we compare the computational
complexity of Line 3 and Line 4 in Algorithm 2 for both methods. Line 3, i.e. computation
of search directions, which is the major computational burden for both methods, is carried
out by solving the linear system of equations (J (x)TJ(x) + ul) Ax = —f (x) T J(x). In the cen-
tralized method, this is typically done by factorizing J (x)T J(x) + wl, which is the dominant
computation, followed by back/forward substitutions. Common factorizations for this pur-
pose are LDL”, LU, and QR factorizations, which lead to a computational complexity of
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Algorithm 2 Distributed Levenberg—Marquardt algorithm using the clique tree

1: Given the clique tree, k = 0, v = 2, x = xp, € and & = 1o
2: while |[|[VF(x)|| > € do
3 Solve (10) using message passing over the clique tree

4:  Calculate Q using (11)

5. if @ > 0 then

6: xc, =%c, + Axcqi forallg;=1,...,q
7 p=p x max{3,1—(2Q — 1)%}

8 v=2

9: else

10: U= XV

11: vV=2XxV

12:  end if

13 k=k+1

14: end while

at most O(n®), where O(-) is the so-called Big-O notation, see [37] for details. In the dis-
tributed method, however, we solve the linear system of equations using message passing
over a clique tree. The message passing scheme can be viewed as a multi-frontal LDLT fac-
torization technique [22], leading to a computational complexity of at most Ou®). To be
specific, conducting an upward pass from the leave of the clique tree to the root at each
iteration, is equivalent to block-diagonalizing the matrix J (x) TT(x) 4+ wl, with the number
of blocks being equal to the number of cliques in the clique tree. In addition, conducting
a downward pass from the root of the leaves, can be viewed as the back substitution part
when solving the linear system of equations. The computational complexity of the down-
ward pass is negligible compared to the upward pass. Finally, Line 4 in Algorithm 2, i.e.
the computation of Q, has computational complexity of O(mn) for both the centralized
and distributed methods, which is negligible compared to the cost associated with the fac-
torization. To conclude, the proposed distributed method and its centralized counterpart
have similar computational complexity of O(n>).

6 Results and discussion

In this section we compare performance of the proposed distributed Levenberg-
Marquardt algorithm, referred as LV algorithm, which is implemented in Julia [38], with
two algorithms. The first algorithm is a convex relaxation based distributed algorithm
presented in [1]. We refer to it as Disk algorithm since the approach is based on what
is known as the disk relaxation approach. The second algorithm presented in [16], is
a distributed algorithm which directly optimizes the non-convex maximum likelihood
problem. We refer to it as StableML algorithm. We do not conduct a comparison with
other algorithms, since a thorough comparison with Disk has been conducted in [1],
which illustrated the superiority of that algorithm to high performance algorithms in
[18] and [3] both in accuracy and number of communications among agents. Further-
more, in [3], the authors show the superiority of their algorithm to the one proposed
in [12].
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6.1 Simulation data
We conduct experiments for networks of sensors with connected inter-sensor mea-
surement graphs in three simulation setups. In all setups we consider several sensors
which are randomly distributed, and 9 anchors which are uniformly distributed in a
two-dimensional area. We generate the noisy range measurements as

Rij =11 (#5) = () | +Ejl, j € Nex(i)

Yi=11 @) = @) I +Vil, j € Neai)
where (p;*)i is the true location of the ith sensor, E; ~ N(0,0) and Vij ~ N(0,0). We
assume that all noises are Gaussian and mutually independent. We consider 10, 30 and 50
fixed sensors for the first, second and third setup, respectively which are distributed in a
1 x 1 area. We consider four different measurement noise standard deviations (o), 0.01,
0.05, 0.1 and 0.3, and for each setup, 25 realizations of each noise level that are generated
across Monte Carlo runs. We assume there exists a measurement between two sensors or
between a sensor and an anchor if the distance between them is less than the communica-
tion range which is chosen to be between 0.3 and 0.4 depending on the number of sensors
in the network, to ensure that the generated graph is loosely connected. For instance for
the first network with 10 sensors, we choose a large communication range, e.g. close to
0.4. By doing so, the average number of edges connected to each sensor turned out to
be 7.40, 8.63 and 11.92 for the first, second and third network, respectively. As an exam-
ple we depict the resulting sensor network for the third setup with 50 sensors and the
corresponding clique tree in Figs. 4 and 5, respectively. As can be seen, the inter-sensor
measurement graph is connected.

6.2 Performance assessment

Before evaluating the performance of the two aforementioned algorithms, we want to
stress the importance of the number of measurements for the quality of estimates. This, in
our sensor network application, means that the more measurements are available between
sensor i and sensor and/or anchor j, the better estimate will be achieved. Notice that in

1
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Fig. 4 The sensor network with 50 sensors and 9 anchors, considered for our experiment. The sensor nodes
are marked with red crosses and the anchors are marked with green circles. An edge between two nodes,
implies existence of a range measurement between two nodes
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Fig. 5 Clique tree for the network in Fig. 4

the maximum likelihood formulation (2), we have assumed that there is a single mea-
surement between sensor i/ and sensor and/or anchor j, in particular R;; and/or V. Let
us now assume that there are N measurements available between sensor i and sensor
and/or anchor j, in particular Rij and/or yg for k € Ny, where the superscript k denotes
the index of the measurement. With these definitions, the maximum likelihood problem
becomes

e (3 (20 =) + T (2 () 1))

k=1 i=1 jeNe,(i) j€Ne, (i)
(12)

Compared to the problem in (2), although they have the same clique tree, this problem
requires N times more computations in order to calculate the gradient of the objective
function. It can however be shown that solving the problem in (12) is equivalent to solving
(2), by replacing the single measurement with the average of measurements over %, i.e.
7_217 = 22[21 RS and 3_),7 = Zi\[:l y{;, instead of R;; and Vj;, respectively. This follows
from the fact that R;; and )); are sufficient statistics for estimation of x, which follows
from the Neyman-Fisher factorization theorem. For details see [39, Ch. 5].

In our simulations, we choose N to be 1, 10, and 100. In the experiments, we run our
proposed algorithm based on the formulation in (2) using the average of measurements,
ie. 7_%5 = ZII:[ 1 Rk and yk >N k=1 y We refer to the obtained estimate as LV estimate.
The Disk and StableML algorlthms also run for single measurement, and therefore we use
the average of the measurements for these algorithms as well. We refer to these estimates
as Disk and StableML estimates, respectively.

The Disk and StableML algorithms are terminated if the norm of the gradient of their
cost functions are below 107°. This threshold was chosen based on the experience of
the authors in [1] and [16], so as to guarantee that Disk and StableML generate accu-
rate enough solutions. For the proposed distributed Levenberg—Marquardt algorithm, we
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choose 7 = 107® and € = 107°. It should be noted that the LV and StableML algo-
rithms are sensitive to the initial starting point, and therefore they should be initialized
not very far from optimum to ensure convergence to a good local minimum. Here we use
an approximate solution obtained from the Disk algorithm as the initial starting point for
both LV and StableML algorithms. To this end, we terminate the Disk algorithm if the
norm of the gradient of its cost function is below 10~!. It should be noted that in average
the number of iterations for convergence to this low accuracy is 2 — 3% of the iterations
needed for terminating the Disk algorithm when requiring the norm of the gradient to be
below 107°. There might also be other cheap ways of initializing the algorithm, but we
have not investigated that in this paper. Moreover, the chordal embedding and the corre-
sponding clique tree for all networks are generated using the MATLAB functions in the
toolbox [31]. The generated clique trees for the networks with 10, 30, and 50 sensors, have
8,12 and 15 cliques, respectively.

Let Py, = [pé];il, be the vector obtained by stacking the estimated sensor ith position.

Mg
Alsolet P} = [(pf)l] ~, be the vector obtained by stacking the true position of ith sensor.
We will compare the performance of two different estimates using the root mean squared
error (RMSE) per sensor defined as

RMSE =

1 Q
> 1 Pr—Py(g) | (13)
1

X Mg
q:

where 7 is the number of sensors and Q is the number of problem instances. The argu-
ment g refers to the gth experiment. Figures 6, 7 and 8 illustrate the RMSE results for
different noise levels for the networks with 10, 30 and 50 sensors, respectively. Notice that
the plots for the LV (red) and StableML (green) estimates are similar. It can be seen from
the figures that the LV and StableML estimates perform equally well and in general they
outperform the Disk estimate for low noise levels and as the number of measurements N
increases, they perform even considerably better than the Disk estimate. Note that as we
will see later, the good performance of the StableML estimate comes at the price that it
requires far more communications for convergence compared to the LV estimate. Note
also that, although we have not included the figures for the objective function values for
the nonlinear LS problem, for all the simulations it is the case that the LV and StableML
estimates have ended up in lower objective function values in (2) than the Disk estimate.
Let us also evaluate the bias-variance trade-off for different estimates for the lowest
noise level (¢ = 0.01) and the highest noise level (¢ = 0.3). Now, recall the relation

between mean square error (MSE), variance and bias of the estimate

1 S * 2 1 mean * 12
D NPE = P@) P = — | PP = PY P+
q=1 :

Q
1
| Py(p) — P |2
Q x ns _ qX—; ' ’

Q x ng

Bias?
MSE 1as Variance

(14)

where P = é Zf]):l Pg(q). These values for the cases with o = 0.01, 0 = 0.3, and
N = 100 are illustrated in Figs. 9, 10, and 11, for the networks with 10, 30 and 50 sensors,
respectively. The observations from the results are the followings. In general the LV and
StableML estimates have similar biases, variances and MSEs, although in some cases the
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Fig. 6 The RMSE per sensor results for different noise levels, namely 0.01, 0.05, 0.1, and 0.3, for the network
with 10 sensors. The top left, top right and bottom left plots correspond to N = 1, N = 10, and N = 100,
respectively

LV estimate has slightly lower bias and larger variance compared to the StableML esti-
mate. For ¢ = 0.01, LV and StableML estimates have lower biases and MSEs compared
to the Disk estimate. Irrespective of the value of o, LV and StableML estimates have the
smaller biases in all cases. Whenever Disk estimate beats LV and StableML estimates in
terms of MSE, it has larger bias and smaller variance. We can therefore draw the conclu-
sion that LV and StableML estimates are the method with smallest bias. The only way to
beat LV and StableML estimates in terms of MSE is to have a larger bias and smaller vari-
ance. This is what is expected, since LV and StableML estimates are maximum likelihood
estimates.

In order to compare the number communications between the algorithms, first we have
to note that the way the computations are distributed in Disk and StableML algorithms
are similar. However, they are different than the way the computations are distributed
in the LV algorithm. In the distributed LV algorithm, it is enough to assume that one
sensor per clique is capable of carrying out the computations. Hence, we have as many
computational agents as the number of cliques. This is related to how we distribute our
computations which is based on the clique tree. In the distributed Disk and StableML
algorithms, however, it is assumed that each sensor is capable of carrying out computa-
tions, and therefore those algorithms have as many computational agents as the number
of sensors. It should be noted that, we can use even fewer computational agents than the
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Fig. 7 The RMSE per sensor results for different noise levels, namely 0.01, 0.05, 0.1, and 0.3, for the network
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respectively

number of cliques in the distributed LV algorithm. This is possible because we can always
merge neighboring cliques in the tree. Hence, in our approach we have an upper limit on
the number of computational agents that we may use, but no lower limit.

The advantage of having one computational agent per clique is that the number of com-
munications in general is lower compared to the case where we have one computational
agent per sensor. This is a nice property especially when the communication is costly. The
computations, however, in the former case is heavier than the latter case. Nevertheless,
the effort spent for the computations is considerably less than the effort spent for sending
and receiving messages between agents which include complex operations such as coding,
decoding, synchronization, etc. [20]. See [40], for an estimation of energy consumption
between two sensors in wireless communication. Notice also that one important factor
which affects the number of communications between agents is the number of iterations
needed to get a certain accuracy. As discussed in Section 1, the former case which is based
on a pseudo-second-order method, requires fewer iterations, and so fewer communica-
tions compared to the latter case which is based on a first-order method. The former case
also requires inter-clique communications when the sensor readings are sent to the sensor
which is responsible for carrying out the computations. Notice however that as discussed
before, not all but just the average of the sensor readings needs to be sent as the average
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network with 10 sensorsand N = 100
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Fig. 10 MSE, Variance and Bias’ values in (14) for o = 0.01 (left figure) and o = 0.3 (right figure), for the
network with 30 sensorsand N = 100

is sufficient statistics to the maximum likelihood estimate. The disadvantage of the for-
mer case is that if a computational agent fails or if the communication with the neighbor
agents is lost, the clique tree should be computed from scratch, whereas in the latter case
the failed agent can be dismissed and the algorithm will continue working.

Remark 6 It should be pointed out that although for the distributed LV algorithm it is
enough to have one sensor per clique which is capable of carrying out the computations,
there are two advantages of having more than one sensor per clique for this purpose. One
is that we can distribute the energy consumption of the sensors by letting them take turns
for carrying out the computations. The second advantage is that in case a sensor which
is responsible for the computations fails, there is a backup sensor ready to take over. How
to trigger this can be done in the following way. If the parent/child clique does not get a
message from its child/parent clique for a pre-specifed period of time, it implies that a
failure has happened and another sensor is requested to take over the computations.

In general we have two types communication in the distributed LV algorithm. The first
type relates to the fact that within each clique, each sensor needs to send the informa-
tion regarding the distance to its adjacent sensors to the sensor which is responsible for
carrying out the computations. The second type of communication is about exchanging
messages between the sensors which are responsible for carrying out the computations.
Theses messages can be expressed with matrices which are symmetric, and vectors. In
particular, we need three upwards and downwards pass through the clique tree at each
iteration. To be more specific, we require one upwards and one downwards pass through
the clique tree in order to calculate the search direction in (10) (Line 3 in Algorithm 2)
and one upwards pass through the clique tree in order to calculate different terms of
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VF(x) (Line 2 in Algorithm 2) and Q (Line 4 in Algorithm 2) using (11). For the consid-
ered networks with 10, 30 and 50 sensors, for the first upwards pass, the communicated
messages are a symmetric matrix and a vector with the average sizes of (7 x 7,7 x 1),
(18 x 18,18 x 1) and (43 x 43,43 x 1), respectively. Also, the maximum sizes of the matrix
and the vector are (10 x 10,10 x 1), (26 x 26,26 x 1) and (72 x 72,72 x 1) , respec-
tively. For the downwards pass, the communicated messages are a vector with the same
size as the vector communicated in the first upwards pass. Finally, for the last upwards
pass, the communicated messages are three scalars which can be combined ina (3 x 1)
vector. For the distributed disk relaxation method, however, according to the Algorithm
1 in [1], at each iteration every sensor or agent needs to communicate a (2 x 1) vector
which is called w; with its adjacent agents or sensors. It is obvious that for the largest
network the amount of data to be sent in the distributed LV algorithm is roughly 400—
500 more than for the Disk algorithm. However, as discussed before, what is most costly
in many applications is the number of times contact is established and not how much
information is sent. We will now compare the total number of communications for dif-
ferent algorithms. The total number of communications required for each algorithm to
converge to a solution are depicted in Figs. 12 and 13 for all networks with § = 0.05 and
8 = 0.1, respectively. Both figures correspond to the case with N = 100. It is seen that the
LV algorithm requires roughly two orders of magnitude fewer communications for com-
puting the solution compared to the Disk algorithm and the StableML algorithm requires
even more communications compared to the Disk algorithm. The shaded areas depict the
maximum and minimum values out of 25 problem instances.

It is worth pointing out that for high noise levels, in order to get a better performance
in terms of RMSE, one can proceeds as follows. Given N measurements between sensor
i and sensor and/or anchor j, we can run the LV algorithm for each of the measurements
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using the formulation in (2), which will result in N estimates. We can then compute the
final estimate as the average of the estimates. We can also do the same procedure using
the Disk algorithm. By doing so, although for high noise levels the results will again be
improved, compared to the case where we run the algorithm once using the average of
the measurements, the estimate obtained from using the LV algorithm outperforms the
estimate obtained form the Disk algorithm in terms of RMSE. We verified this in the
simulations, however, for the sake of brevity we do not present the results in the paper.
Notice that the number of communications for this approach is much more than the case
where we run the algorithm once by using the average of the measurements, since we

have to run the algorithm N times.
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7 Conclusion
In this paper we proposed a distributed algorithm for maximum likelihood estimation for
the localization problem which relies on the Levenberg-Marquardt algorithm and mes-
sage passing over a tree. We discussed how the tree can be generated in a distributed
way and also we discussed how one should proceed if a measurement between sensors is
lost, or if a new sensor is added to the network. The resulting algorithm requires much
fewer iterations than first-order distributed methods in order to converge to an accurate
solution, which in turn leads to fewer number of communications among computational
agents. The algorithm also outperforms other distributed algorithms in terms of accuracy
if estimates of small bias with limited number of communications are important. Only by
a larger bias and smaller variance can other methods beat our method in terms of RMSE.
The size of messages communicated between cliques depend on the number of sen-
sors and anchors two adjacent cliques share. In terms of parallel computations, the more
branches we have in the clique tree, the faster the computations can be carried out.
Therefore, we intend to investigate different approaches for finding clique trees in future
research. In addition, different ways of initializing the algorithm in a cheap way will be

investigated.
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