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Inthis paper, we study the cache prediction problem for mobile edge networks where
there exist one base station (BS) and multiple relays. For the proposed mobile edge
computing (MEC) network, we propose a cache prediction framework to solve the
problem of contents prediction and caching based on neural networks and relay
selection, by exploiting users’ history request data and channels between the relays
and users. The proposed framework is then trained to learn users' preferences by using
the users’ history requested data, and several caching policies are proposed based on
the channel conditions. The cache hit rate and latency are used to measure the
performance of the proposed framework. Simulation results demonstrate the
effectiveness of the proposed framework, which can maximize the cache hit rate and
meanwhile minimize the latency for the considered MEC networks.

Keywords: Mobile edge computing, Popularity prediction

1 Introduction

Recently, the increase in the number of mobile devices (MDs) and Internet data has pre-
sented huge impacts and challenges on mobile communications [1-3]. The proposed
mobile edge network effectively solves the problem of high load and low latency in the
process of user-Internet interaction [4, 5] and becomes a powerful tool for improving
communication quality and user experience [6-8]. In the mobile edge network scenar-
ios, as the network edge nodes are close to the users, the system can capture and analyze
the effective information from a large amount of data without uploading it to the cloud
for processing. The mobile edge network can reduce network congestion and latency to
ensure data timeliness and user experience. Therefore, mobile edge computing (MEC)
and mobile edge caching are two important approaches in mobile edge networks.

With more and more mobile users and smart devices accessing the Internet, computa-
tion offloading is an important research area in the MEC network. Users transfer compu-
tational tasks to edge servers to reduce latency, user computational energy consumption,
and system transmission costs. In [9, 10], the authors have offloaded computational tasks
to edge nodes and proposed some intelligent learning based schemes to reduce system
latency and energy consumption. In [11-13], the authors have considered a dynamic
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offloading strategy in the system of multiple users and multiple computational access
nodes.

In the mobile edge network, when users send contents requests to the remote server
through the central base station, a data transfer is required by the users from the base
station (BS) to the remote contents-providing server. When a large number of users send
requests in a short period of time, this process can cause tremendous pressure on the
network and degrade user experience. By combining caching with mobile edge networks,
we can reduce transmission latency and energy consumption, improve user experience,
reduce repeated transmission of the same contents, and improve transmission efficiency.
In [14], the authors have combined caching with mobile edge networks to investigate
a cache-assisted MEC network. And the results have shown that wireless caching net-
works can effectively reduce transmission time, and caching can significantly mitigate the
impact of increasing computational task size. In [15-17], the authors have considered the
communication, caching, and computation problems in multi-user cache-assisted MEC
systems and proposed a joint caching and offloading scheme.

To deal with the explosive growth of data traffic and user demand, caching becomes
a promising technology in recent years and receives a lot of attention in reducing net-
work traffic and alleviating backhaul load. Huge cache space at the BSs and relays can
increase vendors costs in practice, we generally consider limited cache space at the MEC
scenario. In [18], the authors have considered caching problem in MEC scenarios with
limited storage. Using edge caching technology, we can shift a large amount of data traf-
fic to the edge of the network, such as access points, small cell base stations, and mobile
users. We can use various wireless access technologies to improve network spectrum effi-
ciency, network coverage and network capacity in order to reduce communication costs.
In [19], the authors have investigated the problem of contents popularity prediction in fog
radio access networks and used deep learning to predict contents popularity. It has been
shown that reinforcement learning can be used to find the optimal cache replacement
policy with the aim of maximizing the cache hit ratio.

In this paper, we propose a cache prediction framework in the MEC network to max-
imize the cache hit rate and reduce latency. First, we propose a wireless MEC network
with a BS and several relays to solve the problem of contents prediction and caching
policy. By analyzing the communication cost, we formulate the problem as two subprob-
lems: maximize the cache hit rate and minimize the request latency. Next, we perform
contents prediction by training deep neural networks to learn the preferences of users
around the BS. And then we analyze the relay-to-user channel to determine the location
of requested contents and the caching policy. Finally, the simulation results demonstrate
that the proposed approach can improve the cache hit rate and reduce system latency.

The outline of this article is organized as follows. We investigate the system model and
formulate the problem for the considered system in Section 2. The proposed problem
solution framework is described in Section 3. Section 4 presents the simulation results
and conclusions are shown in Section 5.

2 System model and problem formulation

As shown in Fig. 1, we consider a wireless edge cache-enabled network, in which BS is
equipped with a storage and connected to M relays {R,,|m = 1,2,...,M} with cache
space through backhaul link. Among them, the relay node covers N MDs {MD,|n =
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Fig. 1 System model

1,2,...,N}, and the buffer space of each relay node is C. The MEC server is located in BS,
which regularly predicts the popularity of files through the collected historical data and
updates the caching strategies of the relay nodes.

2.1 System model

Let {Ti(a;, B, vi)|li = 1,2,...,1} denote the information of computational task store at
the BS, where «; is the size of input computational task, §; is the number of CPU cycles
required to accomplish the task, and y; denotes the size of computation result of the task.
In order to maximize the use of the BS and relays with limited space, and to satisfy the
needs of most MDs, we need to accurately predict the request contents of MDs around
the BS, and then to compute the contents in advance at the BS. Therefore, we use cache
hit rate to measure the performance of prediction. In particular, the cache hit rate Py;; is
defined as

N I
=1 Qi1 ¥ni
U b

(1)

Ppyy =
where U is the total number of requests sent by users around the BS, and x,,; is the caching
strategy defined as,

2)

Xni =

)

1 if the file i result requested by the user # is cached at the BS,
0 otherwise.

The BS gets the files that users may request by predicting the file popularity, calculates
these files in the edge server, and then sends the results to the corresponding relay node
for caching. We assume that the data rate of the wireless link between the BS and relay
R, based on the Shannon theory is given by,

Pg 1B m|?
Cam = W, log, (1 4 BmlZBml '2 Bl ) )

B,m

3)

where W ,,, denotes the wireless bandwidth and /5, ~ CN(0, €p,,) denotes the channel
gain between the BS and relay R,, [20-22]. Py, is the transmit power at the BS and aém
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is the variance of the additive white Gaussian noise at the BS [23-25]. Let fg denote the
computational capability of the BS, and express the computational latency as
Liompute = %‘ (4)
The transmission latency, caused by the BS sending the task result T; to the relay R,,, can
be calculated as,
PV
Bm = Cp

(5)

Similarly, the data rate of the wireless link between the relay R,, and the user MD,, based
on the Shannon theory is given by,

Pm,n|hm,n|2>

Cm,n = Wm,n logz (1 + ) (6)
Om,n

where W), , denotes the wireless bandwidth and 4,,,,, ~ CN (0, €,,,) denotes the channel
gain between the relay R,, and the user MD,,. Py, is the transmit power at the relay
Ry, and o2, is the variance of the additive white Gaussian noise at the relay R,,. The
transmission latency, caused by the relay R, sending the task result T; to the user MD,,
can be calculated as,

i Y (7)

m,n — °
’ Cm,n

In this paper, the BS uses idle time to compute the task and transmit the result of the task
to the nearby relay in advance according to the prediction in the proposed scenario. When
the user request the task results, the user can get the correspond results from the nearby
relay without waiting. The waiting latency is mainly caused by computation latency at the
BS and transmission latency from the BS to the relay. We reduced waiting latency of the
user by increasing the predictive cache hit rate. So, the latency reduction can be expressed
as

Lie = Xn,i (Liompute + Lf?,m) . (8)
The higher L, indicates higher cache hit rate.
2.2 Problem formulation

The problem in this study consists of two subproblems: maximizing cache hit ratio and

minimizing request latency.

2.2.1 Maximizing cache hit ratio
The problem of maximizing the cache space of the BS can be translated into the problem
of maximizing cache hit rate, which can be written as

max Py (9a)
I
st. C1:) T; <L, (9b)
i=1
where L is the maximum cache space of BS. C; indicates that the number of files cached

at the BS which cannot exceed the cache space limit of the BS. Similarly, Py;; gets higher
while L,, = Y L, gets higher.
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2.2.2 Minimizing request latency

When there are multiple relays around the user, the BS needs to consider which relay
should send the results after predictions, so that the user would take less time to get the
file results. From (6), we can see that by considering the transmission channel condition
and bandwidth between the relays and the user, the user MD,, would take less time to
get the results of task T;. For the considered system, the goal of latency in the process of
contents placement can be expressed as

M N I
min Ly =Y Y Y L. . (10)
m=1n=1 i=1
The conventional approach for predictive modeling involves complex feature engineer-
ing and deep analysis of the data by hand. In this paper, we aim to improve hit rate by
learning user preferences through large historical data. A deep neural network (DNN)
[26-28] based predictive framework needs to be developed to learn user preferences.
We can feed the data directly into the networks without manual processing and can
mine more information from the data. So we use DNN to solve the problem of content
popularity prediction, which is given as follows.

3 The proposed problem solution method

In this paper, we propose a framework to solve the problem of the contents prediction and
contents caching in MEC system. Specifically, BS adopts DNN to make cache prediction
after collecting the users’ information and cache the corresponding files according to the
location of the users and the BS. The proposed framework is described in Algorithm 1.

3.1 Neural network for request prediction

Firstly, users need to send requests to the nearby BSs when they perform online activities,
such as online browsing and shopping. The BS can observe and record historical infor-
mation about the users’ behaviors of sending requests. In our proposed system model, we
use the BS to collect user information, which includes data of user attributes and request
contents. Through the collection of these information by the BS, we can mine the users
request behavior.

Secondly, we need to pre-process the user information after collecting. When there
are categorical features in the users’ and items’ information dataset, the values of cate-
gorical features are generally discrete rather than continuous. We then need to digitize
the categorical features. Generally, the categorical features are converted into one-hot
encoding when dealing with such categorical features. However, because of the long cat-
egorical features, this approach has some problems, such as sparse encoding and huge
input dimensions. Therefore, in this paper, when preprocessing the users and items infor-
mation dataset, we convert these categorical features into numbers, which are used as the
index of the embedding matrix of size (K, L), where K is the number of categorical fea-
tures and L is the size of the input layer. The embedding matrix is used before the training
phase to transform the input of a positive integer into a fixed size vector.

We then generate the training and testing samples based on the users and items data
after pre-processing. Figure 2 shows the proposed contents prediction framework. We use
two independent neural networks to extract user features {u;, u, . . ., un} and file features
{r1,72,...,r1}, and then input the proposed user and file features into the next network.
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Fig. 2 The proposed contents prediction framework

Next, we obtain the feature matrices of MDs and contents of size (1,L). The activation
function of the output layer is ReLU which from [29] is generally defined as
0, if x<0O,
fx) = (11)

x, otherwise.

The preference values of the MDs is generated by the inner product of feature matrices.
The problem in this work is that we need to predict not a pre-defined category, but an
arbitrary real number. The neural networks solving regression problems generally have
only one output node, and the output value of this node is the predicted value. The loss
function can well reflect the gap between the trained network model and the actual data.
We gradually adjust the trained network by calculating the loss function to make the loss
smaller and make the prediction model more accurate. For regression problems, we use
mean squared error (MSE) in this paper which is the expected value of the square of
difference between the estimated value and the true value. The loss function of MSE can
be obtained from [30] as

MSE = (y — f(x))?, (12)

where y is the true value and f (x) predicted value of the model.

Finally, we can use the trained network to evaluate the new computational tasks. If the
new tasks have high popularity, it indicates that the tasks match the preference of most
users around the BS and there are high probabilities that the users will request the tasks in
the future, which can be computed and cached in advance by the base station with MEC
server.

In this paper, the proposed prediction framework uses the full-connection networks of
DNN to learn the users preferences. The computational complexity of the proposed pre-
diction framework is from the matrix operation of the full-connection networks. There-
fore, the total computational complexity of the proposed framework is O(L Z][=1 K;_1Kj),
where L is input dimension, J is the number of network layer and K; represents the neural
size at the jth layer (1 <j <)).

3.2 Caching strategy

After predicting the contents and computing the results at the BS for the considered sys-
tem, we perform a relay selection to the results which come from the BS. We propose
a cache policy to store the results, and then the users are able to get the requested task
result in a shorter amount of time. For the task result 7;, the BS selects relay according
to the channel condition between the relay and the user who requests the task 7;. When
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there are M relays around the user MD,, who request the task Tj, the transmission date

rate can be obtained from (6) as

0m = max {Cl,n: CZ,nr cees CM,n}-
me[1,M]

From the set ® = {6,,|m = 1,2,..., M}, we can select a relay which has the largest 6,,
among M of the MD,, — R,, links according to the exhaustive search approach. We have
the minimized latency for the considered system from (10) in the contents placement.

Algorithm 1 Prediction algorithm of popularity based on Neural Network

o: Input: user features u,,, file features r; and historical file popularity of corresponding

users
. Output: file cache policy ®
. Initialize of neural network weight @
. Initialize cache space x
. Training process
fort=1:T do
Extracting user features i, and file features r;
The predicted file popularity is obtained by neural network
Update network parameters through MSE
MSE = (y — f (x))

Performing gradient descent

0

0

0

0

0

0

0

0

0

0

0: end for
0: Save model

0: Prediction process

0: Loading model

o fort; =1:Ndo

0 for t; = 1:I1do

0 Forecast user u,, preference for all files
0 end for

0: end for

0: Exhaustive search

0

Obtain cache policy ® according to (13)

4 Results and discussion

In this section, we present the performance of the proposed framework. We used the
MovieLens dataset containing over 100,000 ratings from 6000 users on almost 4000
movies. Considering that the users’ ratings reflect the users preference level for the movie,
we use the number of high rating as the number of users who requests for the movie. A
movie with higher ratings means that more users prefer this movie. High rating movies
are more likely to requested in the future those of low ratings. The framework of training
phase of the MovieLens dataset can be described in Fig. 3. In addition, we consider the
channels following the Rayleigh flat fading in the considered system [31, 32]. We assume
that all the computational tasks have the same size. The transmit power at the BS and
relays are set to 10 W and 5 W, respectively. The bandwidth between the BS and relays

Page 7 of 16
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Fig. 3 The simulation contents prediction framework

is set to 40 MHz. The bandwidth between the relays and MDs ranges from 1 MHz to
10 MHz. The computation capacity of the BS f3 is set to 10 x 10° cyc/s. The parameters
setting in simulation are summarized in Table 1. The training process of the proposed
prediction framework is shown in Fig. 4, which can indicate that the loss decreased with
the number of training steps increasing and the loss finally reaches convergence.

Figure 5 shows the performance comparison of the cache hit rate, where the cache
size of the BS ranges from 50 to 500. We can observe from Fig. 5 that the cache hit rate
increases as the cache size of the BS increases. The reason is that the BS can store more
computation tasks and improve the probability of hitting the requests. In addition, for
comparison, we plot the strategy of “Random,” which indicates that the BS stores tasks
randomly without considering users’ preferences. The cache hit rate of the proposed
framework is higher than “Random” when the number of users is 3400. For example,
when the cache size is 150, the cache hit rate of the proposed framework is about twice
as high as random caching. This is because that the proposed framework can learn users’
preferences after training and select tasks that the users around the BS are most likely to
request. When the number of users becomes smaller, more users’ requests can be satis-
fied when there is a certain amount of cache space. So, for the proposed framework, the
cache hit rate of 1700 users is higher than the users number of 4100 and 3400. On the
contrary, only more cache space is available to meet more user requests when the number
of users is large. These results verify that the proposed framework can predict the users’
preferences accurately when cache size varies from 50 to 500.

Figure 6 shows the performance comparison of the cache hit rate, where the number
of users is ranges from 500 to 3000. We can observe from Fig. 6 that the cache hit rate

Table 1 The parameters of simulation

Parameter Value
Number of relays 3
Size of task «;; (MB) 30

Required CPU cycles of task §; (1 0° cycles)
Result of task y; (MB)

Transmit power Pg (W) 10
Transmit power Ppy (W) 5
Bandwidth Bg, (MH2Z) 40
Bandwidth By, (MH2) [1,10]

Computational capability fg (10 cycles/s) 10
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Fig. 4 The loss of the training process

increases as the number of users increases. The reason why the cache hit increases with
number of users is that we cache the tasks with higher predicted popularity when the stor-
age space is certain. The tasks with higher popularity are wanted by more users. So, we
have a higher probability of hitting users’ requests when the number of users is large. In
addition, the hit rate of the proposed prediction strategy is still higher than that of random
caching when the cache size of the BS is the same. For example, when the number of the
users is 2500, the cache hit rate of the proposed prediction strategy is about 25% higher

0.8 T T T T
—%— Random(user number=3400)
—&— Prediction(user number=4100) i
Prediction(user number=3400) >
—P>— Prediction(user number=1700)

0.7 [

Hit rate

O Il Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500

Cache size

Fig. 5 Cache hit rate versus cache size of the BS
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than the random strategy. This is because the BS can store the tasks with higher predicted
popularity after learning. With the increase in storage space, the BS is able to store more
tasks for a certain number of requests from users, and this situation increases the proba-
bility of satisfying user requests. So, when the cache sizes are 450 and 500, the cache hit
rates of both schemes are higher than the scheme where the cache size is 400. This further
demonstrates that the proposed strategy is effective in the process of prediction caching.

Figure 7 shows the performance comparison of the cache hit rate, where the number of
tasks ranges from 500 to 1500. From Fig. 7, we observe that the cache hit rate decreases as
the number of tasks increases. The reason behind this is that the number of tasks the user
requests may exceed the BS’s limited cache space. Moreover, when they have the same
cache size of the BS, the hit rate of the proposed prediction caching is better than that of
random caching. For example, when the number of tasks is 700, the cache hit rate of the
proposed prediction caching is about twice as high as the random strategy. In addition,
we find that the size of cache space of the BS is also related to the cache hit rate. When
the cache sizes are 450 and 500, the cache hit rates of both schemes are higher than that
of the scheme with cache size 400. This is because that limited cache space can only store
a fixed number of tasks and satisfy a limited amount of user requests. The results prove
that the cache hit rate is affected by the number of tasks and cache space.

Figure 8 demonstrates the performance of the latency reduction, where the cache size of
the BS ranges from 50 to 500. For comparison, we plot the presentation of “Random” and
“Without prediction,” where “Random” indicates that the BS selects tasks randomly, while
“Without prediction” indicates that the BS can not store tasks. We observe from Fig. 8
that the latency reduction increases as the cache size of the BS increases. This is because
the BS can store more computation tasks and compute them during free time. The more
tasks being stored at the BS, the more time the considered system can save. Particularly,
the latency reduction of the proposed predictive caching is higher than those of both
the “Random” and “Without prediction” strategies when the number of users is 3400.
From Fig. 7, we can see that when the number of users is 3400 and the cache size is 200,
prediction caching’s L,e is about 70% higher than that of 'Random! This is because the BS
stores and computes the tasks in advance, which can reduce latency of computation and
transmission. The proposed strategy can select tasks according to user preferences while
“Random” can not. So, when the number of users becomes smaller, the latency reduction
for the whole system is lower than that of the other prediction scheme with high users
number. On the contrary, the more cache space the BS has, the more latency is reduced.
These results verify that the proposed strategy can reduce the system latency effectively
when the BS has different sizes of cache space.

Figure 9 demonstrates the performance of the latency reduction, where the number
of users ranges from 500 to 3000. We observe from Fig. 9 that the latency reduction
increases as the number of users increases. The reason is that more users means more
requests sent by the users, so when the BS can store computation tasks and compute them
during free time, the latency reduction of the considered system increases. Particularly,
latency reduction of the proposed predictive caching is the highest when comparing with
“Random” and “Without prediction” strategies, where the cache size of the BS is 400. For
example, the prediction caching saves the most time when the number of users is 2500,
which is about 20% higher than “Random.” This is because the considered system predicts
and stores the contents most likely to be requested by users, effectively reducing latency.
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Fig. 6 Cache hit rate versus the number of MDs

In addition, when the cache size of the BS are 450 and 500, the latency reductions of
both schemes are higher than that of the scheme with cache size 400. So, when the cache
space of the BS becomes bigger, the latency reduction for the whole system is higher than
those of the other prediction schemes with less cache space. Therefore, the more cache
space the BS has, the more latency is reduced. The results prove that latency reduction is
affected by the number of users and cache size.

Figure 10 demonstrates the performance of the latency reduction, where the number
of tasks ranges from 500 to 1500.From Fig. 10, we observe that the latency reduction

0.8 T T
—H&— Prediction(cache size=400)

Prediction(cache size=450)
—H— Prediction(cache size=500)
—%— Random(cache size=400)

0.75 ¢

0.65
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03 Il Il Il
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Fig. 7 Cache hit rate versus the number of tasks
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Fig. 8 Latency reduction versus cache size of the BS

increases as the number of tasks increases. The reason is that when the BS stores compu-
tation tasks and computes them in advance, the users of the considered system experience
less latency to obtain the results they want. Particularly, latency reductions of “Random”
and “Without prediction” strategies are lower than that of the proposed predictive caching
when the cache size of the BS is 400. For example, the prediction caching saves the most
time when the number of users is 1100, which is about 55% higher than “Random.” This
is because by predicting, storing, and computing the contents most likely to be requested
by the users, the proposed system takes less amount of time. In addition, the cache size

700 T T

—+H— Prediction(cache size=400)
Prediction(cache size=450)
600 I | —p— Prediction(cache size=500)
—%— Random(cache size=400)
—k—— Without prediction

re

500
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Latency reduction L

0 * sk sk sk
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Number of users

Fig. 9 Latency reduction versus the number of MDs
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Fig. 10 Latency reduction versus the number of tasks

of the BS is related to the latency reduction. when the cache size of the BS is 400, latency
reduction is lower than those of schemes with cache sizes 450 and 500, respectively. This
is because bigger cache size means that more tasks are being computed at the BS after
prediction, and the system can satisfy more requests sent by the users. So, the latency
reduction becomes higher when the cache size becomes larger for the whole system. This
further confirms that the proposed predictive caching is effective.

Figure 11 shows the performance comparison of the latency L,;, where the cache size
of each relay ranges from 50 to 150. For comparison, we plot the presentation of “LCD”
and “Worst,” where “LCD” indicates the placement strategy of largest contents diversity,
while “Worst” indicates the tasks results placed on the relay with the worst channel. We
can observe from Fig. 11 that the latency L, increases as the cache size of each relay
increases. The reason is that the relay can store more task results and the users can get
more tasks results from relay. So the considered system spends more time. In addition, the
latency L, of the proposed placement strategy is lower than those of “LCD” and “Worst”.
Comparing these three methods, we can see that when the cache size of each relay is
110, the proposed placement strategy has the lowest cost, which is about 50% lower than
“LCD” and about 70% lower than “Worst.” This is because that we put the task results in
the relay with the channel best connected to the intended user. These results confirm that
the proposed placement strategy can reduce system latency effectively.

5 Conclusions

In this paper, we considered the problem of predictive caching in the proposed MEC net-
work. The problem of the contents prediction and contents caching are solved by the
proposed framework in the considered MEC system. We used the cache hit rate and
latency to measure the performance of prediction. Specially, we used neural network
for request prediction which was trained to learn users’ preferences. The cache policies
were obtained by the channel conditions between the relays and users. Simulation results
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were shown to prove that the proposed framework could improve the cache hit rate and
reduce system latency. In the future, we will continue to focus on the cache prediction and
explore other wireless technologies to extend our MEC model. Moreover, we will incorpo-
rate some other intelligent algorithms such as the deep learning based algorithms [33-35],
or the federated learning based algorithms [36—38], into the considered systems, in order
to further enhance the MEC system performance.

Abbreviations
BS: Base station; MEC: Mobile edge computing; MD: Mobile device; DNN: Deep neural network; MSE: Mean squared error;
LCD: Largest contents diversity
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