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Abstract

In recent years, with the rapid development of various technologies such as the
Internet of Things and the Internet, the demand for massive device connections and
a variety of differentiated new business applications has continued to increase. In
order to better cope with the rapid growth of mobile data in the future, 5G also
came into being. Then, B5G was proposed and applied in industries such as
traditional voice/video, smart city, automotive car or ship, unmanned aerial vehicle,
marine monitoring, IoT, and intelligent industry. In these scenarios, B5G is required to
achieve seamless global coverage. As these scenarios are complex and changeable,
analysis of the coverage of 5G base stations has become a challenge. We
decompose the environment around the base station into multiple grids, and
analyze the signal strength of each grid. A signal propagation model needs to be
constructed to predict whether each grid is covered. The commonly used wireless
propagation model is an empirical model based on a mathematical formula for
statistical analysis of a large amount of test data during the establishment of a 5G
local area network. It has universal applicability, but has insufficient prediction
accuracy for specific scenarios. Therefore, it is necessary to calibrate and modify the
typical propagation model according to the specific environment to obtain an
accurate propagation model that matches the current area. We improved the
traditional wireless communication model, and proposed a deep-learning-based B5G
coverage analysis method named Dubhe which is one of the planets of the Big
Dipper. In a real cell scenario, the mean square error of the link budget of the typical
UMa model is 17.9 dBm, while the mean square error of the proposed Dubhe model
constructed in this article is only 6.78 dBm. The recognition rate of weak coverage
can reach 42.86%.
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1 Introduction
With the development of B5G technology [1], the application of B5G on a glo-

bal scale continues to expand at the same time. In the process of deploying

B5G networks, operators need to reasonably select base station sites within the

coverage area to achieve strong coverage in all areas. In the entire wireless net-

work planning process, efficient network expansion is of great significance for

accurate B5G network deployment. Due to the complex propagation
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environment of radio waves, it will be affected by various factors on the propa-

gation path, such as plains, mountains, buildings, lakes, oceans, forests, atmos-

phere, and the curvature of the earth itself. This makes electromagnetic waves

no longer propagate in a single way and path and produce complex transmis-

sion, diffraction, scattering, reflection, refraction, etc. Therefore, it is a very dif-

ficult task to establish an accurate model.

Existing wireless propagation models can be distinguished according to re-

search methods, which are generally divided into empirical models, theoretical

models, and improved empirical models. The empirical model is obtained by

obtaining a fixed fitting formula from empirical data. Typical empirical models

include Cost 231-Hata [2], Okumura-Hata [3], etc. Theoretical model is based

on the electromagnetic wave propagation theory, considering the reflection, dif-

fraction, and refraction of electromagnetic waves in space to calculate the loss.

The more representative theoretical model is volcano model [4]. The improved

empirical model can provide a calculation model for more detailed classification

scenarios by introducing more parameters into the fitting formula. A typical im-

proved empirical model is SPM [5].

In the propagation model modeling, in order to obtain a propagation model

that meets the actual environment of the target area, a large amount of add-

itional measured data, engineering parameters, and electronic maps need to be

collected to correct the propagation model. In addition, wireless LTE networks

have become popular all over the world, with billions of users around the

world generating large amounts of data every moment. How to reasonably use

these data to assist wireless network construction has become an important

topic.

In recent years, big data-driven AI machine learning technology has made

great progress, and it has been successfully used in the field of language and

image processing. With the development of parallel computing architecture,

machine learning technology also has the ability of online computing. Its high

real-time and low complexity makes it possible to closely integrate with wire-

less communication. The original B5G wireless propagation model is an empir-

ical model derived from mathematical formulas based on statistical analysis of

a large number of test data under the establishment of a B5G local area net-

work. It has universal applicability, but the prediction accuracy for specific sce-

narios is insufficient [6]. Therefore, it is necessary to calibrate and modify the

typical propagation model according to the specific environment to obtain an

accurate propagation model that matches the current area.

In response to the above problems, we propose a B5G coverage analysis

method based on deep learning. Geographic information and signal characteris-

tics are analyzed by the deep learning model named Dubhe to calculate the

path loss and coverage of the signal in a complex environment. Dubhe can ac-

curately predict the wireless signal coverage strength in the new environment,

which can reduce network construction costs and improve network construction

efficiency.

To summarize, the contributions of this paper are listed as follows:
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1. Analyze and summarize typical empirical models, and analyze the shortcomings of

these models in B5G scenarios.

2. We use deep learning methods to calibrate and modify the empirical models

according to the specific environment to obtain a more accurate model that

matches the current region.

3. We use deep learning technology to establish a signal coverage analysis model

Dubhe, and accurately analyze the strength of wireless signal coverage in various

scenarios. It can reduce the cost of base station construction, improve the

efficiency of base station construction, and achieve full range of B5G signal

coverage.

The rest of this paper is organized as follows: Section 2 introduces classical signal

propagation model. Section 3 describes the dataset and the details of the proposed

method. In Section 4, the experimental results are analyzed and compared. Section 5

closes with a summary and conclusion.

2 Typical empirical models
2.1 Cost 231-Hata

The Hata model is a classic model of signal link budget in cities. The COST-231 Hata

model is an extended version of the Hata model, with an application frequency of 1500

~ 2000 MHz [7]. The definition of Cost 231-Hata is as follows:

PL ¼ 46:3þ 33:9 log10 f −13:82 log10hb−αþ 44:9−6:55 log10d
� �þ Cm ð1Þ

where PL is defined as the propagation path loss (dB), f is the carrier frequency

(MHz), hb is the effective height of the base station antenna (m), hue is the effective

height of the user antenna (m), α is the user antenna height correction term (dB), d is

the link distance (km), and Cm is the scene correction constant (dB).

The 5G signal frequency bands used in the People’s Republic of China mainly include

the following:

China Mobile: 2515 MHz–2675 MHz, a total of 160 MHz, the frequency band num-

ber is n41, 4800 MHz–4900 MHz, a total of 100MHz, the frequency band number is

n79.

China Telecom: 3400 MHz–3500 MHz, a total of 100MHz, the frequency band num-

ber is n78.

China Unicom: 3500 MHz–3600 MHz total 100 MHz, frequency band number is

n78.

However, the application frequency of Cost 231-Hata is 1500 ~ 2000 MHz, and the

calculated PL can only be used as a reference feature [8].

2.2 UMa

The Uma [8, 9] model is a new propagation model defined in the 3GPP protocol that is

suitable for the current 5G high frequency development trend. The channel measure-

ment frequency range is 0.5G–100 GHz, and the signal propagation effective distance

is 10–5000 m [10]. 3GPP protocol 38.901 defines UMa, and its empirical formula is as

follows:

Under line of sight (LOS) conditions:
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PLUMa−LOS ¼ PL1; 10m < d2D≤d
0
BP

PL2; d
0
BP < d2D≤5km

�
ð2Þ

where

PL1 ¼ 28:0þ 22 log10 d3Df gm þ 20 log10 f cf gGHz ð3Þ

PL2 ¼ 28:0þ 40 log10 d3Df gm
þ 20 log10 f cf gGHz−9 log10 d0

BPf g2m þ hBSf gm− hUTf gm
� �2� �

ð4Þ

Under non-line-of-sight (NLOS) conditions:

PLUMa‐NLOS ¼ max PLUMa‐LOS; PL
0
UMa‐NLOSð Þ; 10m≤d2D≤5km ð5Þ

PL0UMa‐NLOS ¼ 13:54þ 39:08 log10 d3Df gm þ 20 log10 f cð ÞGHz−0:6 hUTf g−1:5ð Þ ð6Þ

where PLUMa − LOS is the path loss under line-of-sight propagation. PLUMa ‐ NLOS

is the path loss under non-line-of-sight propagation. d2D is the horizontal dis-

tance from the mobile terminal to the base station; d'BP is the breakpoint dis-

tance set for the model. d3D is the straight-line distance from the mobile

terminal to the base station. fc is the signal carrier frequency used by the base

station. hBS is the effective height of the base station antenna. hUT is the effect-

ive height of the user terminal.

The path loss under non-line-of-sight propagation can also be simplified as

PL ¼ 32:4þ 20 log10 f cf gGHz þ 30 log10 d3Df gm ð7Þ

The initial parameter setting of this model is that the base station antenna height is

25 m, and the user terminal height range is 1.5–22.5 m. We need to optimize the de-

sign of the basic propagation model according to the actual base station layout, actual

propagation environment and user terminal measurement conditions to adapt to the

real regional signal propagation laws.

2.3 Limitations of typical empirical models

Typical empirical models are difficult to apply in complex signal propagation

scenarios. Cost 231-Hata is only suitable for macro cellular systems with a cell

radius greater than 1 km, while the UMA model is suitable for typical urban

scenarios. These traditional models can only be used in specific environments.

There are also restrictions on the application frequency, Cost 231-Hata is lim-

ited to 1500 ~ 2000 MHz, and Uma is limited to 0.5 G–100 GHz. In the case of

line-of-sight and non-line-of-sight, the parameters of the propagation model also

need to be changed. This makes these traditional models unable to analyze ef-

fectively when faced with complex environments. Observing the Cost 231-Hata

and UMa models, it is not difficult to find that there are common parts in the

calculation formula, and accurate analysis can be performed only by adjusting

the parameters. In view of these problems, it is very important to propose a

general model that can automatically adjust parameters.
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3 Materials and methods
3.1 Materials

The data used in this article is a wireless signal propagation data set provided by Hua-

wei. The data set contains measured data of 4000 cells, with a total of 12,011,833 pieces

of data. It is divided into three parts: engineering parameter data, map data, and re-

ceived power.

3.1.1 Engineering parameter data

The engineering parameter data records the engineering parameter information of the

stations in a certain cell, and there are 9 fields in total. The corresponding meaning of

each field is shown in Table 1.

In order to facilitate data processing, the map is rasterized, each grid repre-

sents an area of 5 m × 5 m. As shown in Fig. 1, (Cell X, Cell Y) records the co-

ordinates of the upper left corner of the grid where the site is located. Other

engineering parameters (height, azimuth, electrical downtilt, mechanical down-

tilt) are shown in Fig. 2. The mechanical downtilt is achieved by adjusting the

bracket behind the antenna panel, which is a physical signal downtilt. The elec-

trical downtilt is achieved by adjusting the coil inside the antenna, which is an

electrical signal downtilt. The actual downward tilt angle of the signal line is the

sum of the mechanical downward tilt angle and the electrical downward tilt

angle.

3.1.2 Geographic information data

Geographic information data records information such as topography and land-

forms. There are 8 fields in total, and the corresponding meaning of each field

is shown in Table 2. Considering the diversity and complexity of map types, ac-

tual features such as urban areas, rural areas, and lakes are abstracted into

numbers, and these numbers are called feature type name numbers. In Table 3,

you can see the actual feature type corresponding to the feature type name

number.

Like the engineering parameter data, the map data are also rasterized. Each grid rep-

resents an area of 5 m × 5 m, where (X, Y) records the coordinates of the upper left

corner of the grid where the map is located.

Table 1 Description of engineering parameter data

Name Description Unit

Cell index Unique ID of the cell –

Cell X The grid position of the site to which the cell belongs, X coordinate –

Cell Y The grid position of the site to which the cell belongs, Y coordinate –

Height The height of the transmitter relative to the ground m

Azimuth Horizontal direction angle of cell transmitter Deg

Electrical downtilt Vertical electric downtilt of cell transmitter Deg

Mechanical downtilt Vertical mechanical downtilt of cell transmitter Deg

Frequency band Cell transmitter center frequency MHz

RS power Cell transmitter transmit power dBm
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3.1.3 RSRP tag data

The RSRP tag data are used as the actual measurement result to be compared

with the result predicted by the machine learning model in supervised learn-

ing. There is 1 field in total, and the corresponding meaning is shown in

Table 4.

3.2 Data preprocessing

We transform the information obtained from the map into three feature maps

required for training: height feature map, scene feature map, and signal feature

map.

Fig. 1 Coordinate description of rasterized map

Fig. 2 The meaning of engineering parameter data
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3.2.1 Height feature map

The height feature map includes height (hb), cell building height, cell altitude, altitude,

and building height., as shown in Fig. 3.

The relative height Δhv of the grid and the signal line can be calculated

through the height of the transmitter relative to the ground, the mechanical

downtilt θMD, the vertical electrical downtilt θMD, the grid position of the trans-

mitter and the target grid position, the altitude of the base station, and the alti-

tude of the signal receiving place.

First, we need to calculate the distance d between the two grids.

d ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cellX−Xð Þ2 þ cellY−Yð Þ2

q
ð8Þ

The calculation method of Δhv is as follows:

Δh ¼ hb þ CellAltitude− tan θMD þ θEDð Þ � d þ Altitudeð Þ ð9Þ

Table 2 Description of geographic information data

Name Description Unit

Cell building
height

The building height of the grid (cell X, cell Y) where the cell site is located. If the grid
has no buildings, it is 0

m

Cell altitude The altitude of the grid (cell X, cell Y) where the cell site is located m

Cell clutter
index

The feature type index of the grid (cell X, cell Y) where the cell site is located –

1.1.1.1.1.1.1.1.
X

Grid position, X coordinate –

1.1.1.1.1.1.1.2.
Y

Grid position, Y coordinate –

Building height Grid position, the height of the building on the Y coordinate grid (X, Y), if the grid has
no buildings, it is 0

m

Altitude Altitude on the grid (X, Y) m

Clutter index The index of the feature type on the grid (X, Y) –

Table 3 Number meaning of feature type name

Clutter
index

Description Clutter
index

Description

1 ocean 11 High-rise buildings in urban area (40m ~ 60 m)

2 lake 12 Medium- and high-rise buildings in urban area
(20 m ~ 40 m)

3 Wetlands 13 High-density buildings < 20 m in urban area

4 Suburban open area 14 Multi-storey buildings < 20 m in urban area

5 Urban open area 15 Low-density industrial building area

6 Road open area 16 High-density industrial building area

7 Vegetation area 17 Suburb

8 Shrub vegetation 18 Developed suburban area

9 Forest vegetation 19 Countryside

10 Urban super high rise buildings
(> 60 m)

20 CBD business circle
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3.2.2 Scene feature map

B5G signal is sent by the transmitter in a straight line. According to the position of the

transmitter and the signal receiver, the grid number of 20 scenes that the signal passes

through is counted to form the scene feature map.

The scenes includes: ocean, lake, wetlands, open suburban areas, urban open

areas, road open area, vegetation area, shrub vegetation, forest vegetation, urban

super high-rise buildings (> 60 m), high-rise buildings in urban area (40 m ~ 60

m), medium- and high-rise buildings in urban area (20 m ~ 40 m), high-density

buildings < 20 m in urban area, multi-storey buildings < 20 m in urban area,

low-density industrial building area, high-density industrial building area, suburb,

developed suburban area, countryside, and CBD business circle. The specific

scene feature map is shown in Fig. 4.

Through the inequality jCellX ∙xCellY −y−CellY ∙X
CellX þY jffiffiffiffiffiffi

y
xþ1

p < 5 , the terrain with a radius of five

grids for each point on the straight line from the transmitter to the signal re-

ceiving end can be calculated. Among them, (Cell X, Cell Y), (X, Y) and (x, y)

are the transmitter coordinates, the receiver coordinates and the terrain coordi-

nates of the pathway, respectively. Counting all (x, y) terrain numbers is the fea-

ture map of the terrain.

3.2.3 Signal feature map

The signal characteristic graph is composed of distance from transmitter to sig-

nal receiving end, signal transmission power of transmitter, and transmitter

frequency.

Table 4 Description of RSRP label data table

Name Description Unit

RSRP Reference signal receiving power of grid (X, Y), label column dBm

Fig. 3 Schematic diagram of Δhv
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3.3 Dubhe: 5G link budget model

Comprehensive formulas (1)–7), the path loss of different areas and different terrains

can be simplified to the following formula:

PL ¼ K 1 þ K 2 log10 f cf gGHz þ K3 log10 d3Df gm ð10Þ

where K1, K2, and K3 are the unknown weight. This paper fully considers each

terrain through which the le1 signal propagates, and obtains different weights

for each terrain through the deep learning method, which further improves the

applicability of the model. Dubhe uses a deep learning model to assign values to

K1, K2, and K3.

3.3.1 K1
From the UMa model, it can be seen that there are three values for K1:

K1 ¼
28:0

28−9 log10 d0
BPf g2m þ hBSf gm− hUTf gm

� �2� �
13:54−0:6 hUTf g−1:5ð Þ

8<
: ð11Þ

K1 can be regarded as the sum of a scene correction constant K1 _ 1 and a function

K1 _ 3 related to height, distance, and scene.

K1 _ 1 is mainly determined by the scene through which the signal propagates. We cal-

culate a scene correction constant K1 _ 1 according to the scene feature map through

the convolutional neural network.

First, we use a multi-layer BP neural network to calculate a value K1 _ 2 based

on the height feature map. Then use the BP neural network to calculate the fre-

quency band, distance, RS power, and K1 _ 1 to obtain a scene weight W about

K1 _ 2. Multiply W and K1 _ 2 to get the value of K1 _ 3. The value of K1 is K1 _ 1

plus K1 _ 3.

3.3.2 K2 and K3
The scene feature map, the height feature map and the signal feature map are spliced

into a one-dimensional vector and the values of K2 and K3 are calculated using a con-

volutional neural network.

The pseudo code of the model is as follows:

Fig. 4 Scene feature map
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The overall calculation process is shown in Fig. 5. The overall model consists of mul-

tiple modules.

3.3.3 Input layer

The input data are four vectors. Vector 1 is a topographic feature map. Vector 2 is the

terrain feature value obtained by convolution of the signal feature map and the terrain

feature map. Vector 3 is a vector composed of height feature map and distance. Vector

4 is a vector composed of terrain feature map, height feature map, and signal feature

map.

3.3.4 Convolution

The convolutional layer contains 16 convolution kernels of length 4. In the conv layer,

the input sequence of each convolution kernel and the boundary of the input layer is 0.

Make the length of the input sequence and output sequence the same. When the scene

feature map is convolved, the parameters of all convolution kernels are made non-

negative, and it is ensured that the parameter W of the first layer is positively correlated

with the output of the last layer. Furthermore, through the analysis of W, the influence

of each scene on the signal can be analyzed.

3.3.5 Batch normalization layer

Batch normalization [11] is to change the distribution of the input value of any neuron

in each layer of the neural network to a standard normal distribution with a mean value

of 0 and a variance of 1. This makes the activation input value fall in a region with a
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larger gradient, avoids the problem of gradient disappearance, and accelerates the con-

vergence of the loss function.

3.3.6 Activation function

The activation function of Relu [12] can be used for more effective gradient descent

and back propagation to avoid gradient explosion and gradient disappearance. The cal-

culation process is simplified and is not affected by other complex activation functions

Fig. 5 Model structure diagram
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(such as exponential functions). The discrete nature of activities reduces the overall

computational cost of neural networks.

relu ¼ max 0; xð Þ ð12Þ

3.3.7 Dropout layer

Dropout refers to temporarily discarding part of the neural network unit from the net-

work according to a certain probability during the model training process to speed up

the model training speed and prevent overfitting [13].

3.3.8 Pooling layer

Max pooling is to take the point with the largest value in the local acceptance domain.

Pooling can keep the main features while reducing the parameters and calculations to

prevent overfitting.

mi ¼ max Y i;Y iþ1;Y iþ2;Y iþ3f gð Þ ð13Þ

3.3.9 Fully connected layer and band gate

The fully connected layer is used to map the feature space to the label space. First, all

the extracted features are transformed into a one-dimensional vector. Then connect all

the eigenvalues to the neurons in the fully connected layer. After each calculation, the

non-linearity is improved by the relu activation function, and finally connected to one

or more neuron output.

3.3.10 Adam optimizer

Adam is considered to be a better optimizer by default in many cases. Comprehensively

consider the first moment estimation and the second moment estimation to calculate

the update step. The implementation is simple, the calculation is efficient, and the

memory requirement is small. The update of the parameters is not affected by the scal-

ing transformation of the gradient. Hyperparameters are very explanatory and usually

do not need to be adjusted or require very little fine-tuning. The learning rate can be

adjusted automatically. It is suitable for large-scale data and parameter scenarios.

4 Results and discussion
4.1 Performance evaluation index

4.1.1 Poor coverage recognition rate (PCRR)

In the process of forecasting, if weak coverage areas can be effectively identified, it can

better help operators to accurately plan and optimize networks to improve customer

experience. Therefore, in addition to RMSE as an effective test target, the accuracy of

weak coverage recognition is also a very valuable evaluation index.

We divide the data into four types, as shown in Table 5. The value of the weak cover-

age decision threshold Pth is set to – 103 dBm. If the predicted or measured RSRP value

is less than Pth, it is weak coverage and marked as 1, and if it is greater than or equal to

Pth, it is non-weak coverage and marked as 0. According to the difference between the

weak coverage and the non-weak coverage obtained by comparing the predicted value

with the measured value, the following parameters can be counted:
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� True positive (TP): the true value is weak coverage, and the predicted value is also

weak coverage.

� False positive (FP): the true value is non-weak coverage, and the predicted value is

weak coverage.

� False negative (FN): the true value is weak coverage, and the predicted value is non-

weak coverage.

� True negative (TN): the true value is non-weak coverage, and the predicted value is

also non-weak coverage.

PCRR comprehensively considers the goals of Precision and Recall, and its calculation

formula is as follows:

PCRR ¼ 2� Precision�Recall
Precisionþ Recall

ð14Þ

Precision can be understood as the probability that the grid that is predicted to be

weakly covered is actually also weakly covered, which is defined as follows:

Precision ¼ TP
TPþ FP

ð15Þ

Recall can be understood as the probability that the grid whose real result is weak

coverage is predicted to be weak coverage. It is defined as follows:

Recall ¼ TP
TPþ FN

ð16Þ

4.1.2 Root mean squared error (RMSE)

RMSE is an index to evaluate the overall deviation between the predicted value and the

actual measured value, and its magnitude intuitively expresses the simulation accuracy.

Calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
P ið Þ−P̂

ið Þ� �2
r

ð17Þ

where P(i) is the RSRP predicted value of the ith evaluation data set by the machine

learning model, and P̂
ðiÞ

is the actual RSRP measured value of the i-th evaluation data

set.

4.2 Experimental results

4.2.1 Model validity evaluation

The parameters of model training are shown in Table 6.

Epoch represents the number of rounds of training in the training set. Learning rate

represents the step size of each update parameter. beta_1 and beta_2 represent the

Table 5 Definition of TP, FP, FN, and TN

Real result

True (weak coverage) False (non-weak coverage)

Predicted result Positive (weak coverage) TP FP

Negative (non-weak coverage) FN TN
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exponential decay rate of the first and second estimates. Dropout makes the neurons

with a certain probability not to participate in the calculation. Batch size represents the

size of each training batch.

According to the standards established by Huawei, signal energy lower than – 103

dbm is divided into weak coverage areas, and signal energy higher than 110 dbm is

classified into strong coverage areas. Select 10% of the data set as the test set, and the

sample size of positive is 150,631. The sample size of negative is 868,976.

According to Table 7, it can be calculated that the precession = 30.55%, recall =

71.74%

The validity of the model can be judged by PCRR. In the standards developed by

Huawei, the model’s weak coverage recognition rate (PCRR) must be greater than or

equal to 20% in order to be considered a valid model. The PCRR of our model can

reach 42.86%.

4.2.2 Model performance evaluation

We fully considered all the geographic information through which the signal propa-

gated and analyzed the map features constructed by geographic information. Finally,

we used the artificial intelligence model to modify the Uma model, verify it on the real

collected data set, and predict the received signal power. The final average RMSE of

each sample is 6.78 dBm. Figure 6 shows Dubhe’s training process for each step on the

test set.

With Cost 231-Hata, the RMSE of the sample is 18.6 dBm. In Method 1, using

the deep learning method to predict the RMSE of RSRP is 7.384 dBm [14]. Method

2 uses multiple linear regression models to predict RSRP [14]. Method 3 uses the

XGBoost model to predict RSRP [14]. In addition, we calculated the RMSE of the

traditional cost231-Hata and the uncorrected Uma model. The mean square error

of cost231-Hata is 18.6 dBm, while the mean square error of the Uma model is

17.9 dBm. The comparison of these six methods is shown in Fig. 7.

It can be seen from Table 8 that the performance of the proposed method has been

greatly improved, compared with the traditional empirical models Uma and Costco31-

Hata. Compared with other existing work, it has also improved a lot.

Table 6 Experimental parameters

Parameter Value

Epoch 20

Learning rate 0.0001

beta_1, beta_2 0.9, 0.999

Dropout 0.05

Batch size 1280

Table 7 Number of TP, FP, FN, and TN in test data set

TP FN TN FP

Number of samples 108,063 42,568 623,403 245,573
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4.2.3 Versatility of the model

The model we designed is more versatile and can be used in more environments. The

20 scenarios mentioned in this article can all use Dubhe to analyze the propagation loss

and coverage of 5G signals. In addition, Dubhe analyzed the terrain of all grids of 5 m

× 5 m through which the signal passed. Therefore, Dubhe can also be used well in

complex scenes. Dubhe can analyze signal propagation loss and coverage well when the

scene changes or in complex composite scenes.

5 Discussion
In the Dubhe, the weight matrix W multiplied by the number of each scene helps us to

further analyze the influence of each scene on signal propagation. The weight of each

terrain is shown in Table 9.

Fig. 6 Model training results

Fig. 7 Comparison of different methods
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Since the objective function is the signal strength of the area and the shared

positive parameters are used later, the larger the weight, the stronger the positive

correlation with the signal strength, and the smaller the number, the greater the

signal loss. From Fig. 8, we can see that topography 1, 4, 7, 8, and 10 cause the

least loss of signal propagation, while topography 3, 13, 14, and 18 are not con-

ducive to signal propagation and will increase the loss. In areas with large signal

loss, the construction of base stations should be strengthened to better cover the

area.

After the model training is completed, the signal receiving strength of the tar-

get grid can be effectively analyzed according to the location of the base station,

the location of the target grid, and the various terrains through which the signal

propagates. It is judged whether the target grid is a weak coverage area, and if it

is a weak coverage area, it is necessary to strengthen the construction of base

stations in this area.

However, due to the limitations of the data set, the model designed in this paper also

has limitations. The data set used in this paper uses static discrete locations for data

collection, so real-time, continuous, and dynamically changing RSRP analysis of the lo-

cation cannot be realized. It can only predict the signal strength received from a desig-

nated base station in a static target area.

6 Conclusions
The main contribution of this paper is to establish an intelligent wireless propa-

gation model based on deep learning, which can quickly predict the average sig-

nal reception rate in a specific environment. The application of traditional

wireless propagation models and wireless intelligent propagation models based on

Table 8 Comparison of various methods

Method RMSE

Deep learning 7.38 dBm

linear regression 8.56 dBm

XGBoost 8.46 dBm

cost231-Hata 18.6 dBm

Uma 17.9 dBm

Dubhe 6.48 dBm

Table 9 The weight of each scene

Clutter
index

Weight Clutter
index

Weight Clutter
index

Weight Clutter
index

Weight

1. 2.4067097 6. 0.9826381 11. 1.0766366 16. 1.3850743

2. 1.6685416 7. 2.2179184 12. 1.853667 17. −
0.6082736

3. −
2.0274625

8. 3.0624619 13. −
1.8139887

18. −
1.2811766

4. 3.192918 9. −
0.04044187

14. − 1.971452 19. 1.3171432

5. 1.2578012 10. 2.3548207 15. 0.2523321 20. 1.4282409

Xu et al. EURASIP Journal on Advances in Signal Processing         (2021) 2021:65 Page 16 of 18



deep learning methods are analyzed. The traditional wireless propagation model

is an empirical model that is statistically summarized on the basis of measured

data, and the intelligence based on deep learning constructed in this article. The

wireless propagation model will automatically adjust the model according to the

geographic information through which the signal propagates, making the propaga-

tion model more applicable and accurate.
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