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1  Introduction
The traditional direction of arrival (DOA) method generally uses a uniform linear array, 
and the number of estimable target sources is less than the number of array elements. 
Classical methods such as multiple signal classification (MUSIC) method [1–3] or esti-
mation of signal parameters via rotational invariance techniques (ESPRIT) method [4, 5] 
use N array elements to estimate at most N-1 target signals, and the degree of freedom 
of the array is limited. Therefore, in the case of a certain number of array elements, how 
to optimize the array structure to obtain a larger array aperture to improve the DOA 
estimation accuracy and multi-target resolution has always been a hot issue for scholars 
[6–8].

In recent years, with the continuous in-depth study of the array element structure, 
domestic and foreign scholars have proposed many non-uniform array structures [9–
11]. For example, the nested array structure can estimate up to 2N signal sources by 
using N array elements. The nested array is not only easy to construct, but also easy to 
obtain the specific position of the array element and higher array freedom. However, 
because the distance between some elements in the nested array is very small, mutual 
coupling between the antennas will be caused, thereby affecting the performance of the 
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array DOA estimation. With the appearance of the co-prime array structure, the effect 
of mutual coupling between antennas in nested arrays has been solved by it. At the same 
time, the degree of freedom of the array is greatly improved by increasing the differ-
ence information of the array element position [12–15]. Although the traditional DOA 
method can easily be extended to two dimensions to deal with a planar array or a circu-
lar array, the traditional DOA method uses a parallel uniform linear array composed of 
several linear sub-arrays, which leads to a problem of large computational complexity. In 
order to improve the accuracy of two-dimensional DOA estimation, anti-interference, 
etc., a multi-input multiple-output (MIMO) radar is proposed. MIMO radar uses multi-
ple antennas to transmit different waveforms and receive reflected signals from multiple 
targets. Therefore, it can achieve large degrees of freedom (DOF) based on waveform 
diversity, thereby improving spatial resolution, enhancing parameter identification, and 
improving target detection performance [16–20]. The method that Li et al. proposed [21, 
22] combines MIMO and coprime array to estimate DOA, which improves the estima-
tion performance of DOA. However, the uniform linear arrays were still used as coprime 
array to construct effective differential arrays with ideal characteristics, which can only 
provide one-dimensional DOA estimation; as a result, the accuracy of two-dimensional 
DOA estimation is not very high. Therefore, this paper proposes a new coprime array 
model based on MIMO (MIMO-CA). To improve the accuracy of two-dimensional 
DOA estimation, the transmitting array of the array combination is a special irregular 
array, and the receiving array is a uniform linear array.

Bautista and Buck et al. [23] proposed the use of compressed sensing for sparse matrix 
processing, which reduces the computational complexity of DOA estimation, but it is 
not used in the MIMO coprime array structure. So et al. [24] proposed a fast DOA esti-
mation method with parallel uniform linear arrays, which constructs a sub-array, but 
when there are many sources, additional matching is required, and the sensors are not 
fully utilized. Tayem et al. [25, 26] proposed a new array, that is, each of the three paral-
lel sub-arrays is consistent, but it is impossible to detect more sources under the same 
number of array elements. Therefore, on the basis of the new array combination method 
(MIMO-CA) proposed in this paper, it combines the methods of compressed sensing 
[27–30] and proposes a new two-dimensional DOA method, that is, a new method for 
2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA). First of all, 
this method can be realized by constructing an equivalent array of sparse array, that is, 
using the sparse array topology of virtual array elements to analyze a larger number of 
two-dimensional DOA sources, and can automatically match the corresponding azimuth 
and elevation angles. Besides, by transforming the two-dimensional DOA estimation 
into two independent one-dimensional DOA estimation problems, only one variable can 
be estimated, thus reducing the computational complexity. Then, when the number of 
information sources is greater than or equal to the number of array elements, a virtual 
differential array is established, and sparse reconstruction and least squares operations 
are performed. The sparse matrix is processed through the compressed sensing method, 
so that M + 4 array elements can identify 2M2 sources. Finally, experiments verify the 
validity and reliability of SA-MIMO-CA for 2-D DOA estimation.

The content of this paper is mainly structured as follows. Section  2 gives the array 
configuration and signal model of the SA-MIMO-CA method. Section 3 gives the DOA 
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estimation method based on the sparse array. Section 4 gives the experimental results 
and analysis (Table 1).

2 � Preliminaries
In this section, the array model and signal model of this article are mainly given.

2.1 � Array model

As shown in Fig. 1, MIMO targets 4 transmit arrays and M receive arrays, that is, the 
total number of arrays is M + 4. Due to the nature of the MIMO array model, the array 
can be virtualized so that the number of virtualized arrays is 4M. The array arrange-
ment of the transmitting array is shown in Fig. 1, and the receiving array is M uniform 
linear arrays with a spacing of 2Md along the x-axis direction, where d = �/2 and � is 
wavelength.

Due to the nature of the MIMO radar, the virtual array is shown in Fig. 2.
Due to the need to construct a coprime array, the last element of sub-array 2 is dis-

carded to form a coprime array, as shown in Fig. 3.
As shown in Fig. 3, the coprime array consists of three sparse linear uniform arrays. 

Sub-array 1 has 2 M array elements, and its array element spacing is Md; and sub-arrays 
2 and 3 have M-1 and M array elements, and its array element spacing is. The array ele-
ment spacing d is �/2 , where � is the wavelength of the corresponding carrier frequency. 
By choosing M ∈ N

+ and 2M ∈ N
+ to be relatively prime (where N+ is expressed as a 

Table 1  Main contributions

The serial number Content

1 A new mutual-
prime array 
model is 
proposed

2 A new 2 D DOA 
estimation 
method is 
proposed

Fig. 1  MIMO coprime array model
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set of positive integers), the minimum cell spacing along the y-axis is �/2 . This article 
assumes that the array sensor is located at

where 2m ∈ [0, 2M − 1], m1 ∈ [1,M − 1], m2 ∈ [0,M − 1], n,m1,m2 ∈ N
+ , where (x,y) 

represents the coordinates in the x − y plane. To make the distinction simple, let 2M = N. 
Then the array sensor is located at

2.2 � Signal model

For the estimation of the one-dimensional wave arrival angle direction, compared with the 
traditional coprime array, the main difference is that these sub-arrays are no longer col-
linear, and are placed in parallel at distances d and Ld, 

(

L ∈ N
+
)

 , that is, the minimum unit 

(1)
{

(

x, y
)

|(0,M2md) ∪ (d, 2Mm1d) ∪
(

d + Ld, 2M2d + 2Mm2d
)}

(2)
{(

x, y
)

|(0,M2md) ∪ (d,Nm1d) ∪ (d + Ld,MNd + Nm2d)
}

Fig. 2  MIMO array model after virtual

Fig. 3  Virtual post-coprime MIMO array
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spacing d along the x-axis. As L increases, the aperture of the array also increases, and the 
resolution also increases. But the larger the aperture, the signal will be correlated, so the 
value of L should not be very large.

The output is

where θk and ϕk in Eq. (3) are the azimuth and elevation angles of the kth source, respec-
tively. ⊗ is expressed as the Kronecker product. n(l) is another noise vector whose ele-
ments are independently and evenly distributed in (i, i, d) and obey the Gaussian 
distribution CN

(

0, σ 2
n INi

t

)

 , where i = 1, 2, 3 . at(θk ,ϕk) = aty(θk ,ϕk)⊗ atx(θk ,ϕk) , 

ar(θk ,ϕk) = ary(θk ,ϕk)⊗ arx(θk ,ϕk) , where aty(θk ,ϕk) and atx(θk ,ϕk) are the steering 
vectors of the transmitting array. At the same time, at(θk ,ϕk)⊗ ar(θk ,ϕk) corresponds 
to the Kronecker product of the receiving direction vector and the sending direction 
vector of the kth target. aty(θk ,ϕk)⊗ atx(θk ,ϕk) and ary(θk ,ϕk)⊗ arx(θk ,ϕk) are the 
same. Let ati(θq ,ϕq)⊗ ari(θq ,ϕq) = ai(θq ,φq) , suppose the relationship after the virtual 
is:

where

Equation (5) represents (θq ,φq) corresponding to the steering vector of the ith sub-array, 
where q = 1, . . . ,Q, i = 1, 2, 3 . yij , 1 ≤ j ≤ Ni

t is the y coordinate of the ith sensor. Where 
Ni
t is the total number of sensors in the ith sub-array, that is, N 1

t = 2M,  N 2
t = M − 1

, N 3
t = M.Similarly, xi represents the position of the ith sub-array along the x-axis, and the 

noise vector element is in the ith sub-array ni(t) , where (i, i, d) is independently and uni-
formly distributed and obeys the Gaussian distribution CN

(

0, σ 2
n INi

t

)

 , where i = 1, 2, 3 . In 

order to transform the two-dimensional DOA estimation problem into two independent 
one-dimensional problems, as shown in Fig.  4, αq ,βq ∈ [0◦, 180◦] , where q = 1, …, Q, 
respectively, are expressed as the angle between the incident direction and the y-axis and 
x-axis The relationship between αq ,βq and θq ,φq is

Therefore, the data vector received in Eq. (4) is

(3)
x(l) = [at(θ1,ϕ1)⊗ ar(θ1,ϕ1), at(θ2,ϕ2)⊗ ar(θ2,ϕ2), . . .

at(θk ,ϕk)⊗ ar(θk ,ϕk)]S(l)+ n(l)

(4)xi(t) =
∑Q

q=1
a
(

θq ,φq
)

ej2π
xi
�
sin(θq) cos(φq)sq(t)+ ni(t)

(5)ai
�

θq ,φq
�

=



ej2π
yi1
�
sin(θq) cos(φq), . . . , ej2π

yi

tit
�

sin(θq) cos(φq)





T

(6)cos
(

αq
)

= sin
(

θq
)

sin
(

φq
)

(7)cos
(

βq
)

= sin
(

θq
)

cos
(

φq
)

(8)xi(t) =
∑Q

q=1
ai
(

αq
)

ej2π
xi
�
cos(βq)sq(t)+ ni(t)
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The corresponding steering vector is

Set s(t) = [s1(t), . . . , sQ(t)]
T to the signal vector, Ai = [ai(α1), . . . , ai(αQ)] is the array 

manifold corresponding to the ith sub-array, where i = 1, 2, 3 , the data vector of the receiv-
ing channel can be written as

The diagonal matrix is expressed as

Although traditional methods can achieve high-resolution DOA estimation, the 
Q < NtQ conditions must be met to obtain the noise subspace. In application, the problem 
of detecting information sources with more than the number of array elements has become 
the focus of research. In this section, an effective method is proposed to achieve the equiva-
lence of differential arrays with a larger number of DOF. In addition, the group sparse array 
technology is used to improve the estimation accuracy of DOA, and the differential covari-
ance equations of xi(t) and xk(t) are constructed.

The cross-covariance matrix of the data vectors accepted by subarrays xi(t) and 
xk(t), 1 ≤ i, k ≤ 3 can be obtained. The cross-covariance matrix is

(9)ai(αq) =

[

ej2π
yi
�
cos(αq), . . . , ej2π

yiNt
�

cos(αq)

]T

(10)xi(t) = AiBis(t)+ ni(t)

(11)Bi = diag
([

ej2π
xi
�
cos(β1), . . . , ej2π

xi
�
cos(βQ)

])

Fig. 4  (θq ,φq) and (αq ,βq) relationship diagram
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where Rs = E[s(t)sH (t)] = diag([σ 2
1 , . . . , σ

2
Q]) is the covariance matrix of the Q × Q 

dimensional signal, and its diagonal term represents the scattered power of the signal. In 
addition,

When i = k, it becomes the identity matrix.
The matrix Rxik is quantized to obtain the following measurement vector:

where

where aik(αq) = ai(αq)⊗ a∗k(αq) , 1 ≤ q ≤ Q , (·)∗ is denoted as conjugate. i = vec(INi
t
) , 

using the van der Monte structure of vectors ai(αq) and ak(αq) , the entry in aik(αq) 
retains the ejπ(Mn−Nm) cos(αq) factor. Therefore, zik can be regarded as a data vector 
received from a single snapshot signal vector bik , and the array manifold Aik corresponds 
to a virtual array whose virtual elements are located in the self-hysteresis and cross-lag 
between different sub-array sets. Due to the relative prime properties of M and N, there 
are fewer redundant elements in these virtual arrays. Therefore, the degree of freedom in 
the common array is greatly increased, so that more sources of Nt can be estimated with 
fewer array elements.

3 � Methods
On the basis of the array model and signal model proposed in Sect. 2, this section pro-
poses a two-dimensional DOA estimation method based on a sparse array to ensure 
the performance of fine processing of multiple sources while increasing the degree of 
freedom.

3.1 � 2‑D DOA estimation method for sparse array

Based on the MIMO-CA array model and signal model mentioned in Sect. 2, the signal 
vector in Eq. (14), Zik ,1 ≤ i, k ≤ 3 , can be sparsely expressed on the entire discrete angle 
grid as

(12)

Rxik = E
[

xi(t)X
H
k (t)

]

=
∑Q

q=1
σ 2
q e

j2π
(xi−xk )

� ai
(

αq
)

aHk
(

αq
)

+ ni(t)n
H
k (t)

=

{

AiRssDikA
H
k i �= k

AiRssA
H
i + σ 2

n INi
t
, i = k

(13)Dik = BiB
H
k = diag

{

[

ej2π
(xi−xk )

�
cos(β1), . . . , ej2π

(xi−xk )

�
cos(βQ)

]T
}

(14)zik = vec
(

Rxik

)

=

{

Aikbik , i �= k

Aikbik + σ 2
n i, i = k

(15)Aik =
[

aik(α1), . . . , aik
(

αQ
)]

(16)bik =

[

σ 2
1 e

j2π
(xi−xk )

�
cos(β1), . . . , σ 2

1 e
j2π

(xi−xk )

�
cos(βQ)

]T
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where A◦
ik is defined as the grid αg , g = 1, . . . ,Gα where aik(αg ) is located, where Gα ≫ Q ; 

b◦ik is a sparse vector, and its nonzero entry position corresponds to the DOA estimated 
by αq , where q = 1, . . . ,Q . For different sub-arrays, nonzero items usually have different 
values, but share the same position when searching. In other words, b◦ik exhibits a set of 
sparsity on all pairs of sub-arrays. Therefore, the estimation of αq , q = 1, . . . ,Q , which 
can be solved in the sparse reconstruction framework [23], making full use of all the 
DOF of mutual lag and cross lag. Many effective methods in the framework of convex 
optimization [27, 28] and Bayesian sparse learning [29] can be used to solve the sparse 
reconstruction problem of complex-valued groups [29, 30]. In this paper, the complex 
multi-task Bayesian compressed sensing method is introduced into the SA-MIMO-CA 
method, mainly because the method has superior performance and robustness to solve 
the coherence problem, as follows,

In order to use self-lag and cross-lag, this paper replanned the vector zik,

The respective steering matrix of each vector is

The dimensionality of the unknown sparse vector is extended to b◦ik , and an additional 
element with a noise power of σ 2

n is required. In this case, use b◦ik to estimate that the first 
Gα is used to determine αq , and discard the last element. In addition, the error vector εik is 
included in (18) to illustrate the difference between the statistical expectation and the sam-
ple average when calculating the covariance matrix. The difference is modeled as i, i, d , and 
since a sufficient number of samples are used in the averaging, a Gaussian complex number 
is produced.

Suppose the elements in b◦ik come from the product of the following zero-mean Gaussian 
distribution

where N (x|a, b) means that the random variable x follows the Gaussian distribu-
tion and the complex Gaussian distribution of the mean a and variance b, respec-
tively. b◦gik = [b̃

◦gR
ik b̃

◦gI
ik ]T is a 2× 1 vector composed of the real part coefficient b̃◦gRik  

and the imaginary part coefficient b̃◦gIik  , corresponding to the gth grid. It can be eas-
ily determined that when γg is set to 0, b◦gik  approaches zero [30–33]. To achieve 
the sparsity of b

◦

ik , a Gamma prior is set to γ−1
g ∼ Gamma(γ−1

g |a, b) , where 
Gamma(x−1|a, b) = Ŵ(a)−1bax−(a−1)e−

b
x and Ŵ(·) are Gamma functions. a and b are 

hyperparameters. The vector γ = [γ1, . . . , γG]
T contains b◦gik  , where g = 1, . . . ,Gα is 

shared with all groups to enhance sparsity. Similarly, the Gaussian prior is N (0, ξ0I2) , εik 
is set, and the Gamma prior is on ξ−1

0  , with hyperparameters c and d. Defining the density 

(17)zik =

{

A
◦
ikb

◦
ik , i �= k

A
◦
ikb

◦
ik + σ 2

n i, i = k

(18)zik = �◦
ikb

◦
ik + εik , 1 ≤ i, k ≤ 3

(19)�◦
ik =







�

A
◦
ik , i

�

, i = k
�

A
◦
ik , 0Ni

t N
k
t ×1

�

, i �= k

(20)b
◦g

ik ∼ N
(

b
◦g

ik |0, γg I2

)

, g ∈ [1, . . . ,Gα]
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function of the two Ga × 1 vectors b◦Rik = [b◦1kik , . . . , b◦GRik ]T and b◦Iik = [b◦1Iik , . . . , b◦GIik ]T 
associated as b◦RIik = [(b

◦R
ik )

T , (b
◦I
ik )

T ]T can be evaluated as

where

Obviously, when γ and ξ0 are given, (23) and (24) can be used to derive the mean and vari-
ance of each scattering system in b◦RIik  . On the other hand, the values of γ and ξ0 are deter-
mined by maximizing the logarithm of the edge likelihood, which can be achieved by the 
expectation maximization method to produce:

where µik ,g and µik ,g+Gα
 are the gth and g + Gα th elements of the µik vector, and �ik ,gg 

and �ik ,(g+Gα)(g+Gα
) are the (g , g) and (g + Gα , g + Gα) th elements in the matrix �ik , 

because γ and ξ0 depend on µik and �ik . Since CMT-BCS is iterative, iterate between 
(22)–(24) and (27)–(28) until the convergence criterion is reached. The estimated value 
α̂q , q = 1, . . . ,Q can obtain the maximum value of Q in 
∑3

i,k=1

(

b
◦gR
ik + b

◦gI
ik

)

, g = 1, . . . ,G . Then the Q × 1 vector in (14), that is, bik , i  = k can 

be estimated by least squares fitting, expressed as

where

(21)Pr

(

b
◦RI
ik |zik ,�

◦
ik , γ , ξ0

)

= N

(

b
◦RI
ik |µik ,

∑

ik

)

(22)zRIik =
[

Re(zik)
T , Im(zik)

T
]T

(23)µik = ξ−1
0 �ik�

T
ik z

RI
ik

(24)�ik =
[

ξ−1
0 �T

ik�ik + F−1
]−1

(25)� =

[

Re
(

�◦
ik

)

−Im
(

�◦
ik

)

Im
(

�◦
ik

)

Re
(

�◦
ik

)

]

(26)F = diag
(

γ1, . . . , γG , γ1, . . . , γGα

)

(27)γ (new)
g =

1

9

∑3

i,k=1

(

Tr
[

�ik�
T
ik�ik

]

+
∥

∥

∥
z̃RIik −�ikµik

∥

∥

∥

2

2

)

(28)ξ
(new)
0 =

1

18Gα

∑3

i,k=1

(

Tr
[

�ik�
T
ik�ik

]

+
∥

∥

∥
z̃RIik −�ikµik

∥

∥

∥

2

2

)

(29)b̂ik =

(

Â
H

ik Âik

)

Â
H

ik zik , i �= k

(30)Aik =
[

aik(α̂1), . . . , aik(α̂1)
]
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Therefore, βq , q = 1, . . . ,Q estimates to the following form

where b̂q is the qth element of vector b̂ik , so β̂q automatically matches α̂q . α̂q can be 
obtained in the same way. Therefore, according to Eqs.  (6) and (7), θ̂q and φ̂q can be 
obtained.

3.2 � Steps of the SA‑MIMO‑CA method

The steps of the SA-MIMO-CA method are as follows:

Step1 Construct the MIMO array model to obtain the MIMO coprime array model 
in Fig. 1.
Step2 To obtain a coprime array, discard the last element of the second row of the 
virtual array, and get Eq. (3).
Step3 Use Eqs. (6) and (7) to turn the two-dimensional problem into two independ-
ent one-dimensional DOA estimation problems.
Step4 Use Eq. (12) to obtain the cross-covariance matrix Rxik of the signal.
Step5 Use Eq. (14) to obtain the quantized measurement vector zik.
Step6 Use Eq. (18) to obtain the replanned zik.
Step7 Use Eqs. (29) and (30) to obtain b̂ik.
Step8 The two-dimensional DOA estimation of the Nt signals are obtained by match-
ing Eqs. (32) and (33) (Fig. 5).

4 � Results and discussion
This section mainly gives the experimental results and analysis. In this section, first of all, 
it is verified through experiments that the method in this paper is effective and reliable 
in improving the degree of freedom. Besides, it is verified through experiments that this 
article is effective and reliable in improving the performance of 2-D DOA estimation.

4.1 � Degree of freedom analysis

In the case of one-dimensional, the obtained co-array is equivalent to the traditional 
coprime array, that is, the number of estimated signals can reach: Qav = MN  , that is, 
Qav = M2 . For a given number of physical antennas Nt = 2M + N − 1 = 4M − 1 , Qav 
can be obtained in the following way

(31)β̂q = cos−1−
(

phase
(

b̂q

)

/π

)

(32)θ̂q = sin−1

[

√

cos2
(

α̂q
)

+ cos2
(

β̂q

)

]

(33)φ̂q = tan−1





cos
�

α̂q
�

cos
�

β̂q

�




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Obviously, the effective optimal coprime pair is that 2M and N are as equal as possi-
ble, that is, the array in this paper is selected as the optimal number of array elements. 
In this case, the maximum number of estimated signals Qav is

As shown in Fig.  6, although the value of Qmax of all methods increases with the 
increase of Nt , it is obvious that the method based on the co-prime array (SA-MIMO-
CA method, TDSR-CS method) is significantly better than other methods method. 
When Nt > 6 , the method based on the relative prime array can resolve more sources 
than the number of other array sensors. For other methods, the number of resolvable 
sources is less than the number of sensors.

4.2 � 2‑D DOA estimation performance comparison

4.2.1 � The relationship between SNR and mean square error

Compare the SA-MIMO-CA proposed in this article with the TPAUL method, 
TDUL-PM method, TDSR-CS method and PUL-RARE method to verify two-dimen-
sional DOA estimation performance of SA-MIMO-CA [26, 34–36]. Perform 100 
Monte Carlo simulations for each method, and define the root mean square error as

The maximum number of sources can be estimated: Qav = MN = M2

Restricted to Nt = 2M + N − 1 = 4M − 1

M < N ,M,N ∈ N
+

(34)Qmax =

[

Nt(Nt + 2)

8

]

Fig. 5  Steps of the SA-MIMO-CA method
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where I is the number of Monte Carlo experiments, and Q is the number of sources. We 
set M = 4; that is, the array configuration of the Nt = 4M − 1 = 15 antenna. In addi-
tion, let L = 20. Assume that Q far-field sources with the same power are on the elevation 
plane (θq ,φq) , where θq ∈ [0◦, 90◦] , φq ∈ [−90◦, 90◦] , q = 1, . . . ,Q . The grid interval in 
the angular space is set to 0.1◦ , and the parameter in the Bayesian sparse learning group 
is set to a = b = c = d = 0.

Figure 7 shows the SA-MIMO-CA method and TPAUL method, TDUL-PM method, 
TDSR-CS method, and PUL-RARE method when the number of sources Q = 3 and the 
number of snapshots T = 500 The estimated performance is compared, and the root 
mean square error (RMSE) changes of the method under different signal-to-noise ratio 
(SNR) are investigated. At the elevation angle, the performance of SA-MIMO-CA and 
PUL-RARE methods is close, but at the azimuth angle, when the SNR is 0, the perfor-
mance of SA-MIMO-CA is improved by about 47.1% compared with the PUL-RARE 
method. Compared to the TPAUL method, it has increased by about 61.5%. By compar-
ing RMSE under different SNR, it is concluded that SA-MIMO-CA has better estima-
tion performance than several other methods under low SNR. Specific data are shown in 
Tables 2 and 3.

In different SNR comparisons, the lower the RMSE, the higher the resolution. It can be 
seen from Tables 2 and 3 and Fig. 7 that compared with other methods, the SA-MIMO-
CA method has lower RMSE than other methods. Therefore, the resolution of the 
SA-MIMO-CA method is better in different SNR situations.

(35)RMSEθ =

√

1

IQ

∑I

i=1

∑Q

q=1

(

θ̂q(i)− θq

)2

(36)RMSEφ =

√

1

IQ

∑I

i=1

∑Q

q=1

(

φ̂q(i)− φq

)2

Fig. 6  The relationship between the number of arrays and the number of estimable sources
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(a) The relationship between the SNR of the pitch angle

and the RMSE of the pitch angle

(b) The relationship between the SNR of the azimuth angle 

and RMSE of the azimuth angle
Fig. 7  The relationship between mean square error and SNR (the number of sources is 3)

Table 2  The relationship between the SNR of the elevation angle and the azimuth angle and the 
mean square error

SA-MIMO-CA TPAUL TDSR-CS TDUL-PM PUL-RARE

Pitch angle (mean 
value of RMSE)

0.395 2.628 0.739 1.100 0.397

Azimuth (mean 
value of RMSE)

0.198 0.824 0.401 0.822 0.308
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4.2.2 � The relationship between angle and number of snapshots

Figure 8 shows that the SA-MIMO-CA method, TPAUL method, TDUL-PM method, 
TDSR-CS method and PUL-RARE method are used to estimate the position when the 
number of sources Q = 3 and SNR = 0 . The performance comparison of each method, 
the comparison of RMSE under different snapshots. The overall performance of the 
SA-MIMO-CA method is improved by about 44.5% compared to the TPAUL method 
and about 23.4% compared with the PUL-RARE method. Experimental results show 
that SA-MIMO-CA performs better than TPAUL method and PUL-RARE method 
under different snapshots.

In different snapshots comparisons, the lower the RMSE, the higher the resolu-
tion. It can be seen from Table 4 and Fig. 8 that compared with other methods, the 
SA-MIMO-CA method has lower RMSE than other methods. Therefore, the resolu-
tion of the SA-MIMO-CA method is better in different SNR situations.

4.2.3 � Comparison of 2‑D DOA estimation

In the above two sets of experiments, the performance of the method at low signal 
sources was tested, and the comparison of different SNR and the mean square error 
of different snapshots proved the superiority of the method. Next, conduct a multi-
source experiment. There are Q sources, the number of sources is greater than the 
number of arrays, the SNR is kept to 0, and the number of snapshots is set to 500, 
compared with the TDSR-CS method, as shown in Fig. 9.

Figure  9 shows the DOA estimation performance of each method, each of which 
represents the SA-MIMO-CA method in this paper, the actual value and the TDSR-
CS method when the SNR = 0, and the number of snapshots is 500. The DOA esti-
mation result can be intuitively seen from Fig. 9 that SA-MIMO-CA is closer to the 
actual angle and has better two-dimensional DOA estimation performance.

4.2.4 � Complexity analysis

Because SA-MIMO-CA method and TDSR-CS method can estimate more sources 
under the condition of finite array elements, while other methods can estimate less 
than SA-MIMO-CA method and TDSR-CS method under the same conditions as 
SA-MIMO-CA method and TDSR-CS method. The complexity of SA-MIMO-CA 
method and TDSR-CS method is compared. The complexity of TDSR-CS method 
is O

(

NM2 + 2M3 +
(

M3 +M2
)

Q +M3Q3 + L3
)

 . The complexity of SA-MIMO-CA 
method is O

(

(4M − 1)2 + 2n3 + 9Q2
)

 . The time required for them is compared as 

Table 3  The relationship between the SNR of the elevation angle and the azimuth angle and the 
mean square error (when the SNR is 0)

SA-MIMO-CA TPAUL TDSR-CS TDUL-PM PUL-RARE

Mean square error 
of pitch angle

0.356 0.493 0.680 0.590 0.359

Azimuth mean 
square error

0.176 0.458 0.375 0.352 0.333
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(a) The relationship between the mean square error of the pitch angle

(b)The relationship between the mean square error of the azimuth angle 

 and the number of snapshots

and the number of snapshots
Fig. 8  The relationship between the mean square error and the number of snapshots (the number of 
sources is 3)

Table 4  Relationship between pitch angle, azimuth angle and the number of snapshots

SA-MIMO-CA TPAUL TDSR-CS TDUL-PM PUL-RARE

Pitch angle (mean 
value of RMSE)

0.397 0.755 0.862 0.584 0.505

Azimuth (mean 
value of RMSE)

0.206 0.353 0.824 0.434 0.276
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shown in Fig. 10, from which it can be seen that SA-MIMO-CA method requires less 
time than TDSR-CS method.

5 � Conclusion
Aiming at the problem that traditional array signal processing methods cannot han-
dle multiple sources with high accuracy while increasing the degree of freedom, this 
paper proposes a new two-dimensional DOA estimation method based on MIMO 
radar coprime array. This method mainly uses the characteristics of coprime arrays and 
MIMO radars, which combines the theory of compressed sensing to improve the degree 

Fig. 9  Comparison of two-dimensional DOA estimation

Fig. 10  Comparison diagram of the relationship between running times and time
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of freedom and accuracy of DOA estimation. Through experimental verification, com-
pared with TPAUL method, TDUL-PM method, TDSR-CS method and PUL-RARE 
method, this method can effectively distinguish more signal sources. What’s more, it has 
high two-dimensional DOA estimation accuracy and improves the degree of freedom 
of two-dimensional DOA estimation. Compared with TDSR-CS method, SA-MIMO-
CA method reduces a certain amount of calculation. In the future, the processing of 
coherent sources and non-circular signals will be continue studied. The combination of 
Doppler frequency shift and angle measurement to further reduce the amount of calcu-
lation for target positioning will be considered. The applicability to colored noise will be 
considered.
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