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1  Introduction
Mobile Edge Computing (MEC) is a promising technology for future wireless networks 
as it can provide low-latency and context-aware services for terminal users [1, 2]. With 
the improvement of software and hardware capabilities, Unmanned Aerial Vehicles 
(UAVs) have become efficient edge computing node due to easy deployment and good 
communication quality for ground users [3–5]. However, the UAV network has lim-
ited energy [6, 7] and is vulnerable to eavesdropping attacks [8–10]. Thus, designing an 
energy-efficient and secure offloading mechanism is significant. Hence, we study the 
energy-efficient and secure offloading in air-to-ground MEC networks by jointly opti-
mizing offloading strategies and resource allocation.

For solving long-distance and backhaul link congestion problem in cloud computing 
[11], the MEC paradigm deploys cloud servers close to the mobile devices, for instance, 
by integrating computing servers inside Base Stations (BSs) or Access Points (APs) on 
the network architecture. Mobile users can utilize both the computing and storage 
resources of surrounding BSs and idle end devices [12] by cellular communication and 
Device-to-Device (D2D) communication. Recently, higher mobility and lower cost of 
UAVs have led to significant research interests in the UAV-assisted MEC systems. UAVs 
as a computing server can improve communication conditions and service quality to 
mobile users [13].
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By deploying a UAV-assisted MEC system, end devices can efficiently complete delay-
sensitive applications. In [14–20], the secure data offloading mechanisms were inves-
tigated along with the research on UAV-assisted MEC systems [21–24]. Physical layer 
security has become one of the constraints when data offloading occurs in the MEC sys-
tem. Thus, it’s critical to design an energy-efficient [25, 26] and secure data offloading 
framework. However, the main way to avoid eavesdropping is to apply jamming signals 
or change the transmission power in existing work. And the optimization problem in 
these works is often difficult to resolve with traditional optimization methods. Hence, 
to solve the above problem, we exploit secure channel access by channel switching [27–
31] and propose a two-stage task and resource assignment method that exploits convex 
optimization theory [32] and fading memory joint strategy fictitious play with inertia 
(FM-JSFP) [33] to formulate the problem and resolve it.

The main contributions of this paper are summarized as follows.

•	 The designed multi-phase task offloading mechanism based on the time block is as 
per the MEC framework. Further, optimizing offloading objects, offloading rate, and 
channel access jointly formulate the system function (i.e., the weighted sum of energy 
consumption and eavesdropping rate) minimization problem with task delay and 
computing capacity.

•	 To solve the non-convex optimization problem, we propose a distributed two-
stage source allocation algorithm. The algorithm based on the convex optimization 
method and FM-JSFP algorithm enables UDs to make sub-optimal decisions. And it 
does not need a central decision controller.

•	 Simulation results demonstrate that the proposed scheme improves the system 
energy-saving and security compared with some benchmark schemes. What’s more, 
it achieves the sub-optimal performance on system function.

2 � Related work
Recently, the UAV-enabled MEC systems have investigated in the existing studies. The 
work presented in [13] considers a resource scheduling mechanism in UAV-enabled 
MEC systems for Internet of Things Devices (IoTD). Further, UAV provides comput-
ing and energy resources to IoTD at the same time. Finally, the energy consumption of 
the system decreases by multi-resource scheduling. In [21], the authors studied a UAV-
assisted MEC system having a moving UAV endowed with computing capabilities to 
offer sufficient computing resources to mobile users (MUs) and limited local task pro-
cessing capabilities. The system aims at minimizing the overall energy consumption for 
the MUs. In [34, 35], the authors considered a wireless communication system having 
a rotary-wing UAV equipped with a computing server to assist several mobile termi-
nals (MTs). The proposed method effectively reduces the maximum energy consump-
tion among all MTs by transforming the non-convex optimization problem into efficient 
sub-problems. In [22], the authors studied complement time and energy optimization 
problem in the UAV-enabled MEC system.
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Some of the works focused on multi-UAV-assisted MEC scenarios. In [36], the 
researchers established a new multi-UAV MEC system. It also presented an efficient 
two-layer optimization scheme for jointly optimizing the horizontal deployment posi-
tion of UAVs and task scheduling, intending to minimize the energy consumption of 
all UAVs. The proposed algorithm has potential applications in large-scale mobile 
user scenarios. In [5], the authors formulated the sum power minimization prob-
lem with latency and coverage constraints as three subproblems and their respective 
solutions. The study also considered the energy consumption of all User Equipments 
(UEs) and UAVs as the UAVs are also power constraints. However, the offloading data 
mechanism for UEs covered by the same UAV is unclear. In [37], the authors focus 
on the scenario with multiple UAVs having different computing capacities supporting 
data collection and processing for IoTDs. The Time Division Duplexing (TDD) mode 
is applied to every IoTDs served by one UAV. Dissimilar to the above traditional opti-
mization methods (i.e., based on the convex optimization theory), [38] proposed a 
reinforcement learning (RL)-based user association and resource assignment algo-
rithm for addressing the minimum energy consumption problem. However, the trans-
mission mechanism for the user offload data is not provided (i.e., TDD mechanism, 
FDD mechanism, or others in reality). In [39], system energy consumption minimi-
zation problem was studied in the UAV-assisted MEC system. To solve the MINLP 
problem, a two-stage offloading scheme based on convex optimization and stochastic 
learning automata (SLA) algorithm was proposed. The simulation results show that 
the distributed hierarchical mechanism is suitable for solving complex optimization 
problems.

Studies on security mechanisms for IoT devices in MEC systems have emerged. In 
[14], the researchers investigated a new MEC framework achieving secure communica-
tion for IoT applications. It exploits the key for achieving a reliable connection between 
the mobile users and the servers. In [15], the authors consider the physical layer security 
problem of terrestrial MEC systems. Mobile stations optimize system energy consump-
tion under the constraints of anti-eavesdropping. In [16, 17], the authors study secure 
offloading decisions based on security-awareness in MEC systems. IoT devices prefer 
servers not attacked by the jammers for obtaining stable and secure services.
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Fig. 1  The illustration of UAV-enabled air-ground MEC network
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The earlier studies [18–20] investigated secure offloading for UAV-enabled MEC sys-
tems. U. A. Khan et al. [18] exploited chaotic cryptography to encrypt offloading tasks 
for security. Further, the study formulated an energy consumption minimization prob-
lem and solved it with heuristic algorithms. In [19], the authors considered a three-node 
model (i.e., a UAV, a access point, and an eavesdropper) and studied the energy-effi-
ciency and secure offloading problem. The Access Point (AP) transmitted the noise 
signals to the eavesdropper for degrading the eavesdropping quality. Besides, [20] also 
considered the secure communication problem in the UAV-enabled MEC system. Both 
the legitimate UAV and idle ground users transmit jamming signals, alleviated the exist-
ence of passive eavesdropping.

Despite prior investigations on energy-efficiency and secure offloading mechanisms, 
there are a few differences between the current work and the afore-discussed studies. 
The specific expression is as follows: 1) We propose a secure channel access scheme 
to avoid eavesdropping attacks, as the existing anti-eavesdropping approaches cannot 
completely eliminate the risk of eavesdropping . 2) We study the distributed offloading 
scheme in UAV-enabled air-to-ground MEC Networks.

3 � Method
The aim of this paper is to study a distributed energy-efficient and secure offloading 
scheme in air-to-ground MEC networks. This paper designs a task offloading mecha-
nism, which considers the delay sensitivity of user tasks and the limited computing 
resources of mobile equipments. What’s more, the energy consumption and eavesdrop-
ping rate minimization problem is formulated for system energy-constraint and physi-
cal layer security. To solve the complex non-convex problem, the two-stage offloading 
optimization framework is designed. The two-stage offloading scheme based on convex 
optimization method and learning-based algorithm achieves the sub-optimal solution 
with low complexity.

The effectiveness of the two-stage offloading scheme are supported by the experimen-
tal evaluation with the random generated network topology and user parameters, while 
the simulations have been carried out with Matlab R2017b.

Fig. 2  The illustration of each UD’s processing slot
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4 � System model and problem formulation
4.1 � System model

In this paper, we consider a heterogeneous UAV-enabled air-to-ground MEC network 
as depicted in Fig. 1. In the MEC network, there are K ground users (Users Devices, i.e., 
UDs), W legitimate UAV nodes (Helpers Devices, i.e., HDs) and an eavesdropper (EV). 
UDs have low latency and critical tasks to process and so need to seek assistance from 
HDs under some circumstance. To reduce tasks execution costs while fulfilling demand, 
UDs need to optimize them offloading decision. Notably, the computing capacity of HDs 
is more powerful than UDs. Hence, UDs can avail better service quality (e.g., lower delay, 
lower energy consumption) from HDs in the constraints of the computing capacity of 
HDs.

At the beginning period, the tasks that need to be processed are generated at the 
UDs and it has two ways to process them at this time: (1) Computing all tasks locally, 
(2) Selecting a HD to assist themselves. In some cases, UDs choosing to compute all 
tasks locally cannot complete the missions under the task delay constraint. Therefore, 
UDs must offload the tasks to idle HDs at this time. For simplicity, we assume that 
each UD selects one HD as the helper and a specific HD can assist an unlimited num-
ber of UDs under resources constraint. Notably, for multiple UDs choosing the same 
HD, the computing resources allocated by each UD will reduce.

Nevertheless, the UDs deciding to offload tasks will exploit a single channel to 
transmit the offloading data and interfere with other UDs occupying the same chan-
nel. UDs and HDs finishing the computing tasks will transmit the results of the com-
puting tasks to the logical cluster head (pre-assigned by a specified UAV) for data 
aggregation.

However, during data offloading, malicious eavesdroppers can obtain the data due 
to the sharing of wireless channels, which leads to user safety and privacy violations. 
Therefore, considering security measurement as a factor is essential in making offload-
ing decisions.

UDs and HDs sets are K=
{

1, . . . k , . . . ,K
}

 and W={1, . . . ,w, . . . ,W } , respectively, and 
the set of available channel is M = {1, . . . ,m, . . . ,M} . Besides, suppose there is a multi-
antenna eavesdropper EV. EV eavesdrops on multiple channels. We define the position 
of legitimate UAV w as 

(

xw , yw ,H
)

,w ∈ W . Similarly, the position of EV is 
(

xEV , yEV ,H
)

 
and the position of UD k is 

(

xk , yk , 0
)

, k ∈ K . Essentially, UDs can estimate the location 
of EV [40]. Therefore, we assume that the location of EV is known as a priori. Consider-
ing the air-to-ground channel as the line-of-sight (LOS) link, the channels power gain 
from UD k to HD w and EV is hk ,w =

β0

(xk−xw)
2+(yk−yw)

2
+H2

 and 

hk ,EV =
β0

(xk−xEV )
2+(yk−yEV )

2
+H2

 . Here, β0 represents the channel power at the reference 

distance d0 = 1 . Thus, the data transmission rate between UD k and HD w is as follows:

(1)Rk ,w = Blog2









1+
pk ,whk ,w

N0 +
�

i∈K\{k},j∈W:qi,j=qk ,w

pi,jhi,w









.
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Here B is the channel bandwidth, N0 denotes the background noise power, and pk ,w 
represents transmission power of UD k. Similarly, the eavesdropping rate (if it exists) 
between UD k and EV is as follows:

Here pk ,EV  is the transmission power between UD k and eavesdropper EV. Though, the 
exact value of hk ,EV  is difficult to obtain. However, the probability distribution can usu-
ally be estimated [41]. Therefore, the value of hk ,EV  can be used as a priori in this paper.

The computing task of UD k(k ∈ K) can be defined as νk = {γk , ηk , τk} , where γk is the 
number of tasks to be processed in UDs, ηk represents the number of CPU cycles per 
byte required for computing when UDs and HDs process tasks, τk is the maximum delay 
requirements of tasks processing. Let Sk={Dk ,Qk} indicate the strategy profile of UD k, 
where Dk=

{

ρw
k |w ∈ W , 0 ≤ ρw

k ≤ 1
}

 represents the UD k’s task assignment and associa-
tion with HDs. For example, ρw

k = 0 when UD k decides to process all tasks locally and 
ρw
k = 1 when it transmits all task data to HD w. Qk=

{

qk ,w
}

 is the transmission channel 
between UD k and HD w when computation offloading exists; note that qk ,w represents 
the channel selected by UD k. Particularly, qk ,w = 0 represents that UD k computes all 
tasks locally. UD k’s work process has five phases, as shown in Fig. 2.

4.1.1 � Global information interaction and offloading decision

Above all, all UDs and HDs begin to interact with others after the task generation. Inter-
active information includes task delay, the size of tasks (only UDs need to provide this 
information), and computing capacity (of both UDs and HDs). Further, UDs exploit an 
efficient task offloading mechanism to decide the sub-optimal strategy (including UDs’ 
offloading rate, offloading object, and transmission channel) and the sub-optimal strat-
egy should improve the energy efficiency and safety of the air-to-ground MEC system as 
much as possible under the constraints of the tasks delay and the computing capacity.

4.1.2 � Tasks offloading

According to (1), the transmission time of task data (offloading part) of UD k is:

Accordingly, the communication energy consumption of UD k is:

(2)ck = Blog2









1+
pk ,EV hk ,EV

N0 +
�

i∈K\{k},j∈W:qi,j=qk ,w

pi,jhi,w









.

(3)toffk =
γkρ

w
k

Rk ,w
.

(4)Eoff
k ,w =

γkρ
w
k

Rk ,w
· pk ,w .
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The set of UDs helps by HD w are Zw =
{

zw,1, zw,2, . . . , zw,lw
}

 , where lw is the number 
of UDs helped by HD w. We suppose that each HD equally distributes the computing 
resources to the assisted UDs.

4.1.3 � Remoting computation

The association HD of UD k begins to implement computing tasks after task offloading. 
The time duration in this phase is:

Here, fw is the computing capacity of HD w (in GHz) and αw = 1
lw

 . Then, the overall 
energy consumption of w (HDs only have the computing energy consumption) is as 
follows:

Here κw is a factor indicating the effective capacitance coefficient related to the hard-
ware architecture of the computing units [42].

Local computation: Then the time for UD k to perform local computing is as follows:

Here fk denote the CPU frequency of UD k (also in GHz). Therefore, the energy con-
sumption of UD k’s local computing is:

Here κk is a constant coefficient which reflects the energy consumption of CPU when 
processing data tasks (same as κw above). Finally, for the tasks generated by UD k , its 
whole execution time is:

The overall energy consumption of UD k (including computing part and communication 
part) is:

while the whole energy consumption of HD w (only the computing part) is:

(5)tremote
k =

γkρ
w
k ηk

αwfw
.

(6)Ec
w = κw

∑

n∈Dw

γnρ
w
n ηnαw

2f 2w .

(7)tck =
γkηk

(

1− ρw
k

)

fk
.

(8)Ec
k = κkγkηk f

2
k

(

1− ρw
k

)

.

(9)T total
k = max

{

toffk + tremote
k , tck

}

.

(10)Ek = Ec
k + Eoff

k ,

(11)Ew = Ec
w .
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4.1.4 � Results aggregation

After performing all tasks, both UDs and HDs will upload results to the logical cluster 
head (a pre-specified role, played by a legitimate UAV) for data aggregation. The cluster 
head will collect the data analysis results or forwarding them to other nodes needing 
information. Most of the existing research works related to MEC usually ignore the size 
of the data. Similarly, we do not consider the data size of the results in this study and 
thus, ignoring the time spent in this phase.

In this paper, we consider a quasi-static scenario in which all mobile devices states 
have no change during an offloading time block (e.g., within a few hundred millisec-
onds). In other words, the location relationship between mobile devices is almost 
unchanged, and the UDs does not need to process the newly arrived task data.

4.2 � Problem formulation

In this section, the objective is minimizing the weighted sum of system eavesdropping 
rate and energy consumption under multiple constraints. The optimization problem is 
as follows:

Here, the Ek and Ew indicate the respective energy consumption of UD k and HD w and 
ε1 and ε2 are weighting factors. Ck represents the eavesdropping rate from UD k to the 
eavesdropper, and Ck = ck . The constraint C1 represents that the remote computing 
and offloading time of UD k should less than Tk (corresponds to the constraints of task 
delay). The constraint C2 indicates that the time of local computing of each UD cannot 
exceed Tk . Besides, the constraint C3 shows that the range for tasks offloading rate of 
UD k should be within [0, 1] . The system energy consumption reduces when UDs offload 
the data to HDs, but it increases the risk of eavesdropping. Therefore, it is a trade-off 
between low energy consumption offloading and safe communication. UDs optimize the 
optimization variables (i.e., offloading rate, offloading object, and offloading channel) to 
minimize the objective function.

(12)

(P0) : min
Dk ,Qk ,∀k∈K

ε1

(

∑

k∈K

Ck

)

+ε2

(

∑

k∈K

Ek +
∑

w∈W

Ew

)

s.t. tremote
k + toffk ≤ Tk , ∀k ∈ K,C1

tck ≤ Tk , ∀k ∈ K, C2
0 ≤ ρw

k ≤ 1, ∀k ∈ K, C3.

Fig. 3  Diagram of the two-stage scheme
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5 � Secure and green offloading scheme
5.1 � Problem reformulation

The above optimization problem is a mixed-integer nonlinear programming (MINLP) 
problem and the optimization variables are coupled with each other. Further, the 
closed-form solution of this optimization problem is difficult to obtain. Hence, we 
reformulate the optimization problem (P0) to task assignment and UDs association 
sub-problem, and adding auxiliary variables. The steps are as follows.

First, design a decision matrix π =
{

πi,j

}

,πi,j ∈ R
K×W , where πi,j ∈ {0, 1, 2, . . . ,M} 

indicates tasks offloading object and the transmission channel. For example, πi,j repre-
sent that UD i chooses to offload the tasks to HD j by channel πi,j (especially πi,: = 0 if 
UD i executes computing locally). Notably, the number of non-zero elements in every 
row of π is 1 (i.e., each UD can only find one HD to assist in the computing) and define 
a function δ(·) for redescribing of optimization goals:

A offloading rate vector x = {x1, x2, . . . , xK } represents each UD’s offloading rate, and 
the optimal problem is:

where C(π) =
∑

k∈K Ck . In the following section, we refer to the optimization objective 
as a “system function”. The whole energy consumption of the system (including all UDs 
and HDs) E(π , x) is as follows:

To more clearly describe the problem (P1) , we convert the form of (P1) to 
(

P1′
)

:

Here constant ψk = γk

(

pk ,w
Rk ,w

− κkηk f
2
k

)

 , ζk =
∑

m∈W δ
(

πk ,m

)

γkηkα
2
mf

2
mκm , and 

φ =
∑

k∈K κkγkηk f
2
k  . Notably, for a fixed π , these variables have fixed values.

5.2 � A distributed two‑stage offloading scheme

At the first stage, the ratio between T1,k and T2,k ( T1,k + T2,k = Tk ) is fixed for simplic-
ity. The function of T1,k and T2,k is to limit the maximum value of toffk  and tremote

k  (i.e., 
toffk ≤ T1,k , tremote

k ≤ T2,k ). Splitting Tk was to prevent UDs from making unreasonable 
decisions. For instance, larger values of toffk  represents that UDs offload numerous tasks 
to HDs, which can obstruct the completion of the offloading tasks by HDs within the 

(13)δ
(

πi,j

)

=

{

0, πi,j = 0
1, πi,j = 1.

(14)
P1 : min ε1C(π)+ ε2E(π , x)

s.t. C1− C3.

(15)

E(π , x) =
∑

k∈K

γk

(

pk ,w

Rk ,w
− κkηk f

2
k

)

xk

+
∑

k∈K

κkγkηk f
2
k +

∑

k∈K

∑

m∈W

δ
(

πk ,m

)

γkηkα
2
mf

2
mκmxk

(16)
P1′ : min ε1

∑

k∈K

Ck + ε2
∑

k∈K

(ψk + ζk)xk + ε2φ

s.t. C1− C3.
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maximum delay constraint. Thus, setting a reasonable ratio between T1,k and T2,k is 
imperative. So, constraints for C1,C2 are as follows:

Here constant σk =
T2,kαw(k)fw(k)

γkηk
 , χk =

Rk ,wT1,k

γk
 , and ςk = 1−

(T1,k+T2,k)fk
γkηk

 . w(k) represents 
the particular HD that assisted UD k.

First, a initial decision matrix π0 is randomly produced. After fixing the decision π0 , 
the system function and offloading rate x become linear. Analyzing the monotonic-
ity of the system function (using convex optimization theory) provides the following 
optimal offloading ratio x∗k:

At the second stage, based on the x∗k of the first stage, the optimization objective of the 
system is expressed as:

The above expression depicts that its value depends on the matrix variable π only.
Next, we introduce a learning-based distributed algorithm for joint assignment 

of computing and channel resources mainly based on the fading memory joint 
strategy fictitious play with inertia (FM-JSFP). FM-JSFP is an efficient distributed 
learning method for the offloading decision problem as it has computational pro-
cessability in large networks. Further, it can exploit historical information to make 
decisions. The discount factor � represents the crucial degree of historical infor-
mation. After the fixing of first decision x∗k , the strategy set in the t-th slot of UD 

(17)
xk ≤ σk ,C1

′

xk ≤ χk ,C2
′

xk ≥ ςk ,C3
′

.

(18)x∗k =







max {ςk , 0}, if ∃πk ,: �= 0 and ψk + ζk ≥ 0
min {σk ,χk , 1}, if ∃πk ,: �= 0 and ψk + ζk < 0
0, if ∀πk ,: = 0.

(19)min ε1C(π)+ ε2E
(

π , x∗
)

.

Table 1  Simulation parameters setting

Parameters Value

Transmission power pk 400mW

Background noise N0 − 100 dBm

Computing capacity of UDs (GHz) U [1.5, 2]

Computing capacity of HDs (GHz) U [4, 4.5]

Capacitance coefficients κk , κw 1× 10-27, 3× 10-28

The amount of UDs K 5

Input data (Mb) U [1.4, 1.6]

ηk U [800, 1000]

Task processing delay (ms) U [500, 700]

Channel bandwidth B 15MHz

The number of channels M 3

Height of UAVs (m) 100

Weighting factor ε1 and ε2 1× 10-6, 2

The channel power gain β0 (dB) U [−22,−18]

�, θ 0.5, 0.02
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k is expressed as Sk = {(wk ,mk)|wk ∈ W ,mk ∈ {1, 2, . . . ,M}}, ∀k ∈ K , which corre-
sponds to the strategy matrix π . In this distributed algorithm, the utility of each 
UD is:

where Sk(t) indicates the action in the t-th slot of UD k and S−k(t) represents the action 
except for UD k. Notably, the sum of the utility of all UDs is the “system function”.

To summarize, Algorithm 1 enlists the specific steps, and Fig. 3 shows the graph-
ical illustration of the distributed two-stage scheme.

(20)u
(

Sk(t), S−k(t)
)

= ε1Ck + ε2(ψk + ζk)xk + ε2κkγkηk f
2
k .
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Fig. 4  The illustration of the location of UDs, HDs, and EV (Take K = 5,W = 4 for example)
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Fig. 5  The system function comparison between the proposed scheme and the optimal scheme versus 
iteration times (notably, the iteration times here refers to the serial number of the second layer of loop in 
Algorithm 1)
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For further clarification, we describe the rules for setting the penalty value (i.e., �k ) in 
detail. We add the penalty value to the utility for the decisions generated (i.e., π ) by Algo-
rithm 1 make the next iteration decision (i.e., x at the next moment) infeasible. Specifically, 
by introducing penalty value �k into utility, UDs tend to choose actions without penalty 
value in the process of iteration. Meanwhile, when decision π without penalty value is fixed, 
there is a feasible solution for decision variable x in the next iteration. In other words, the 
penalty value eliminates the decision (corresponding to matrix π ) that does not satisfy the 
constraints.

5.3 � Algorithm complexity analysis

First, in each slot n, each UD selects a optimal offloading rate x , and the computation 
complexity is O(C1K ) , where C1K  is a small constant. Then, each UD runs the FM-JSFP 
algorithm to decide optimal π based on x above. In the worst case, the FM-JSFP algo-
rithm needs to run Imax times. When the FM-JSFP algorithm runs, UDs select actions 
and the computation complexity is O(C2K ) , where C2K  is a small constant. Then, UDs 
compute their utilities and update belief. The corresponding computation complexity is 
O(C3K ) , where C3K  is a small constant. So the computation complexity of the FM-JSFP 
algorithm is Tend(O(C2K )+O(C3K )) , where Tend is the maximum iteration times of the 
FM-JSFP algorithm. In summary, the time complexity of Algorithm 1 in the worst case 
is:

where Nmax is the maximum iteration times of the outer loop.

(21)Nmax(O(C1K )+ ImaxTend(O(C2K )+O(C3K ))),
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6 � Simulation results and discussion
6.1 � Simulation parameters

In this subsection, we illustrate the main simulation parameter values with Table 1. 
Notably, X ∼ U [b, c] indicates that X obeys the uniform distribution within [b, c] . 
Besides, the computing capacities setting of UDs are weaker than HDs, which is simi-
lar to [43].
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Fig. 6  The energy consumption comparison between the proposed scheme and the optimal scheme versus 
iteration times (notably, the iteration times here refers to the serial number of the second layer of loop in 
Algorithm 1)
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6.2 � Network topology

Figure  4 demonstrates a random topology of 400m-by-400m in air-to-ground MEC 
networks (the location of the eavesdropping UAV is far away). There are five UDs with 
different mission requirements which probably offload data to HDs and four idle HDs 
which can assist UDs in computing tasks, i.e., K={1, 2, 3, 4, 5} and W={1, 2, 3, 4} . 

6.3 � Algorithm convergence and performance comparison

Multiple benchmark schemes mentioned in the simulation results are as follows:

2 3 4 5

The amount of UDs

0

10

20

30

40

50

60

70

80

90

100

Sy
st

em
 F

un
ct

io
n

The proposed scheme
The optimal scheme
The local computing scheme
The random offloading scheme

Fig. 8  The value of the system function of the proposed scheme versus the number of UDs (the simulation 
parameters of the network and the device are different in different scenarios)
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•	 The Optimal Scheme It is an exhaustive method, which achieves the theoreti-
cally optimal solution has high algorithm complexity. With the increases in deci-
sion space, dimensionality explosion can occur. Further, the time complexity is 
O
(

(M ·W )K
)

.
•	 The Local Computing Scheme All UDs perform computing tasks locally without 

considering task delay constraints.
•	 The Random Offloading Scheme UDs randomly select the offloading object and the 

transmission channel. The system function value for this scheme is the average of 
multiple actions (with the simulation number set to 1000).

Figure 5 presents the system function values with the proposed scheme and opti-
mal schemes versus the iteration times. Further, we average the multiple simulation 
results for the algorithm provides the curve shown in the figure. It can be seen that 
the algorithm reaches convergence after several iterations. Besides, the performance 
gap between proposed and optimal scheme is small (reach about 10%).

Figure  6 presents the energy consumption values with the proposed scheme and 
optimal schemes versus the iteration times (let ε1 = 0 and ε2 = 1 ). Similarly, to elimi-
nate the randomness, we run the algorithm many times (the order of 100) and get 
the average value. It can be seen that the algorithm reaches convergence after several 
hundreds of iterations. What’s more, the energy consumption of the proposed scheme 
is similar to that of the optimal scheme (only about 7 % more). On the other hand, 
Fig. 6 also shows that the performance of the proposed scheme in a single target is 
better with low computational complexity.

Figure  7 demonstrates the value of the system function of different schemes 
under different number of HDs. In various scenarios, the performance of the pro-
posed offloading scheme is close to the optimal offloading scheme. As the number 
of HDs changes, the reason why the optimal value of the system function is almost 
unchanged is that UDs workload and channel conditions have hardly changed. In 
terms of the value of the system function, the proposed scheme is better than that of 
the local computing scheme and the random offloading scheme.

Figure 8 presents the performance of the proposed scheme under different number 
of UDs. Notably, the number of HDs and available channel is 4 and 3, respectively. 
It shows that as the number of UDs grows (represent the increase of task load), the 
value of the system function continues to rise. Besides, the gap between the perfor-
mance of the proposed scheme and the optimal scheme is small (the worst-case per-
formance gap is 18% ). Although the gap between the local computing scheme and 
the proposed scheme is not large, the local computing scheme cannot generally meet 
UDs’ task delay requirements.

Figure 9 demonstrates that the convergence value of the proposed offloading scheme 
is close to the optimal offloading scheme for different parameters a. And under different 
parameter settings, the convergence rate is about the same. Notably, parameter a can 
affect the system function value and it is application dependent. Thus, the decision of 
the parameter a need to be inspected in practical tests.
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7 � Conclusion
This paper investigated security and green offloading problem in air-to-ground MEC 
networks. To solve the Mixed-integer Nonlinear Programming (MINLP) problem, the 
optimization problem was decomposed into two sub-optimization problems and the 
optimization variables were decoupled. Further, we proposed a distributed two-stage 
offloading scheme, which considered the requirements of user devices (UDs) for het-
erogeneous tasks, the heterogeneous computing capacity of helper devices (HDs), and 
the presence of eavesdroppers (EV). The proposed scheme based on the convex opti-
mization and learning approach can successfully realize the secure and energy-efficient 
offloading for the system. Simulation results show that the proposed offloading scheme 
achieves better performance than benchmark schemes.
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