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1  Introduction
With the development and integration of information technology, computer technol-
ogy and automobile manufacturing industry, the IOV proposed to improve the level of 
automobile intelligent driving is known to public. IOV is a branch of industrial Internet 
of things (IOT) technology, so it also has the advantages of sensing technology, mobile 
communication technology and intelligent analysis of the IOT [1]. Intelligent networked 
automobiles make the IOV technology in automotive industry a hot spot. Then IOV 
technology takes the moving automobile as the object of information perception, and 
greatly improves the safety performance of the automobile by strengthening global opti-
mization and control [2]. IOV is the specific implementation and application of tradi-
tional Internet of things technology in automotive field. And it can greatly improve the 
intelligence and efficiency of traffic management by wireless communication technol-
ogy and intelligent information processing technology. Therefore, IOV technology can 
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realize the intelligent monitoring and decision-making of vehicle information to realize 
the intelligent control of vehicles [3].

The face recognition technology under the background of artificial intelligence has 
been developed and applied rapidly in many fields because of its wide application range, 
strong operability and rich information. At present, the applications of face recognition 
mainly include face detection, identity recognition and emotion recognition. Commu-
nity is an important part of a city, but due to the lack of intelligent means in the tradi-
tional community management mode, it can not meet the residents’ needs for safe and 
efficient community service. This paper focuses on face emotion recognition technology 
which can be applied to vehicle environment in community public space. Although the 
accuracy of facial emotion recognition in vehicle environment is disturbed by many fac-
tors such as angle fluctuation and transmission quality, its data has the characteristics of 
high feature discrimination and strong expression ability. Therefore, emotion recogni-
tion technology has high research value in the field of IOV real-time monitoring applied 
to fatigue driving, safety verification, malicious collision and pedestrian safety detection 
[4].

Emotion recognition is different from automobile manufacturing, the latter is the 
product of second industrial revolution with a long development process. However, it 
has become a hot research field with its excellent performance and application value 
[5]. The early concept of emotion recognition was pointed out in “Affective Computing” 
by Professor Picard of the Massachusetts Institute of Technology [6]. The emotion of 
human was often expressed by facial expressions, voices, gestures. Some scholars had 
conducted emotion recognition and analysis for these aspects [7–9]. American psy-
chologist Mehrabian believed that facial expressions have the strongest ability to trans-
mit information, and they can be utilized to achieve a recognition accuracy of 55% in 
emotion recognition [10]. We believed that the voice and posture of face are affected by 
subjective psychological factors, which leads to insufficient representation ability. The 
common facial expression recognition was static image recognition, but the prediction 
of emotion required dynamic facial expression because of its persistence. In addition, 
the development of physiology had made the recognition of human emotions by physi-
ological data a hot field. In 2001, Picard et al. utilized multi-dimensional physiological 
signals to realize five levels of emotion recognition [11]. Subsequently, a large number 
of scholars began to analyze and research on physiological data and video emotion [12, 
13]. In 2006, Savran et al. utilized the International Affective Picture System (IAPS) as 
a stimulus material to construct a data set “2005 emotional database” containing facial 
data and physiological data [14]. Koelstra et al. utilized pictures and music as stimulus 
materials to obtain expression videos and physiological data, then they established the 
current popular emotion data set “DEAP” [15]. Later, Soleymani and others utilized the 
stimulation of network resources to construct “MAHNOB HCI” data set containing 
facial details, audio and physiological data [16]. It can be seen that research on the cor-
relation of physiological data and video emotion to complete emotion recognition had 
become one of the mainstream directions in related fields [17]. In addition, a large num-
ber of physiological and emotional data brought high load, high power consumption 
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and resource shortage to the IOV system. And Fifth generation (5G) network can be 
well applied to the communication and transmission of IOT with its sufficient spectrum 
resources. Therefore, a large number of scholars had studied and analyzed the optimiza-
tion of 5G communication technology and its combination with IOT、IOV [18, 19].

The emotion recognition model proposed in this paper was constructed by the rules 
shown in Algorithm  1 and expression recognition model. Therefore, the real labels of 
testing set were needed to verify the performance of the emotion recognition model. 
There were three common ways to set labels of video emotion. The labels of video emo-
tion in first method was directly defined by the known experimental conditions of 
subjects. The labels of video emotion in second method was defined by the emotional 
self-description of subjects after experiment. The label of video emotion in third method 
was defined based on the physiological data of the subjects during video shooting. We 
thought the third method was more reliable than the previous method. Because speci-
fied experimental conditions may not be able to stimulate the corresponding emotions 
for everyone and self-description was easily disturbed by psychological factors. The test-
ing set was obtained by the video of subjects under the natural scene video similar to 
vehicle environment to make the research more valuable.

Therefore, the video emotion recognition process was mainly divided into three pro-
cesses, the definition of video emotional label, the training of video expression recogni-
tion models and the recognition of video emotion.

2 � Experiment and proposed method
2.1 � Preparation of physiological data

At present, there are many video data sets about emotion recognition, including the 
early Cohn Kanade dataset plus (CK+) [20] and recent DEAP data set. These data sets 
have the advantages of rich content and strong representation. However, the above video 
data sets only have standard faces, which is very different from the facial video data sets 
with multi angles and large quality fluctuation under the background of IOV applica-
tions. Therefore, the facial video of young people’s specific behavior is collected to study 
the facial emotion recognition in the vehicle environment. In addition, the physiologi-
cal data are obtained to complete accurate emotion prediction and inference. Figure 1 
shows the physiological data of the subjects in the video state.

The first channel is Heart rate based on PhotoPlethysmoGraphy (PPG). The second 
channel is the value of GSR. The third channel is the value of electrical signal of respira-
tion. The fourth channel is the value of ElectroCardioGram (ECG). The fifth channel is 
the value of ElectroEncephaloGram (EEG).

2.2 � The definition of video emotional label

The GSR of human is controlled by human nervous system, it has strong physiological 
characteristics [21]. A large number of studies have shown that emotional fluctuations 
can cause significant changes in GSR [22, 23]. Therefore, GSR is selected to define video 
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emotional label to improve work efficiency. Related studies utilizes the feature extraction 
method of the University of Augsburg in Germany to find that the emotion of subjects 
can reflect their characteristics on GSR. This conclusion can also be shown in Fig. 2 [24].

Above images are derived from the characteristic results of some subjects and they 
are not very persuasive. However, the following applicable conclusion can be obtained 
by observation and testing of data set when levels of emotion are categorized into three 
categories.

•	 Happy: Within the range of video, there are denser multi-band peaks, which are 
mostly distributed at the beginning of the video;

•	 Quiet: Within the range of video, there is basically no peaks or only once at both 
ends;

•	 Unhappy: Within the range of video, there are peaks at the beginning and end of the 
video, or only dense peaks appear in the middle of the video with almost no intervals.

After above rules are summarized, the emotional label of the testing video is defined 
by the value of GSR and verification. The specific experimental steps are as follows.

Data preprocessing Firstly, the most representative GSR in the physiological data is 
completed noise reduction and smoothing. The abnormal value in the data is updated 
to its nearby value to complete data noise reduction. Savitzky–Golay filter is utilized to 
smooth the data. The Savitzky–Golay filter is a digital filter that fits adjacent data points 

Fig. 1  Partial physiological data of experimental data set
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to a low-order polynomial by linear least squares [25]. The solution of least squares equa-
tion can be found when the data spacing is equal. Figure 3 is a diagram of its smoothing 
process.

The blue point in each window of Fig.  3 is the center point of the window, and the 
mathematical principle of filtering is (1).

The Savitzky–Golay filter utilizes the least squares to regress a small window of data to 
a polynomial, and then utilizes the polynomial to estimate the point at the center of win-
dow. Where hi is the smoothing coefficient. hiH  is fitted by the principle of least squares in 
(1).

On the same curve, different widths of window can be selected at any position to meet 
the needs of different filtering. This is useful for processing time series data at different 
stages.

The definition of emotions in videos Emotional swings are short and continuous when 
they are not stimulated by a strong external environment. Therefore, the definition 
method of dividing time segment is utilized to define the emotional label of each short 
video. The total length of each video is about 3  min. It includes the process from the 
beginning of experiment to the completion of the specified action and then the end of 
experiment. Therefore, we believe that this process can reflect a variety of specific emo-
tions. It is stipulated that every 15 s video is defined as an emotional video to improve 
the accuracy of definition. There is a 5 s interval between every two emotional videos. 

(1)xk ,smooth = x =
1

H

+w
∑

i=−w

xk+ihi.

Fig. 2  The relationship between common emotions and GSR
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Then the emotional label of each short video is defined based on the relationship from 
Fig. 2 and the value of GSR after preprocessing.

2.3 � Structure and principle of the proposed model

The expression recognition model of the paper is a combination of convolutional codec 
and SVM classifier. And the model and Algorithm 1 cooperate to complete the predic-
tion of video emotion. The model features extracted by the convolutional codec have 
strong abstraction. The feature can reduce the training noise caused by the large differ-
ence of facial style. The core of the codec is image convolution and image deconvolution.

Image convolution is developed from signal convolution. Image convolution is 
obtained by expanding the one-dimensional signal in two dimensions and rotating its 
convolution kernel by 180°. Image convolution introduces the three calculation concepts 
of convolution kernel F  , stride S , and padding P . Their calculation relationship is shown 
in (2) and (3) [26].

Above equations represent the calculation of the output image when the size of input 
image is [W ×H × D] . Where W ′ and H ′ represent the width and height of output 
image, and the depth D′ of the output image is determined by the number of convolution 
kernels.

(2)W ′
= (W − F + 2P)/S + 1,

(3)H ′
= (H − F + 2P)/S + 1.

Fig. 3  The principle of Savitzky–Golay filtering
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In a convolutional network, reasonable settings of F  , S , P are required to ensure that 
the size of image is controllable and the number of network layers continues to rise. Fig-
ure 4 shows a common image convolution process.

The value of S is 1 in the convolution process shown in Fig.  4. A total of four con-
volutions occur in the convolution shown in Fig. 4. The process of convolution can be 
digitized when the image is expanded as shown in Fig. 5 and the convolution kernel is 
expanded into matrix.

The matrix of the convolution kernel is shown in (4).

Therefore, the operation of convolution can be expressed by (5).

where Y  represents the result of convolution, and C represents the matrix of the convo-
lution kernel. First convolution is the multiplication of the first line of (4) with the matrix 
of image in (5), and subsequent convolution is also based on this process of calculation. 
A vector with size of [4 × 1] is subsequently obtained after the calculation of (5). The 
output image after convolution can be restored by following the reverse process of Fig. 5. 
Therefore, the convolution process can be described as a multiplication of weight matrix 
with an image vector.

(4)







w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0
0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0
0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0
0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2






.

(5)
Y = CX .

Fig. 4  Schematic diagram of image convolution

Fig. 5  Matrix representation of the image
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Fig. 6  The structure of the expression recognition model

Fig. 7  The training set of the expression recognition model
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The process of convolution is essentially a combination of forward propagation and 
backward derivative propagation. The principle of deriving x in back propagation is (6).

where yi can be expressed by (7).

Then (8) can be obtained by (7).

And (9) can be obtained by substituting (8) into (6).

The multiplication of matrices can be achieved by changing Σ in (9) to the form of a 
matrix.

where Cij is the matrix of forward propagation, and C∗j is the matrix of backward prop-
agation. In the process of deconvolution, the mathematical meanings of above two 
parameters need to be exchanged. The relationship of calculation corresponding to 
deconvolution is shown in (11) and (12), which means that W  and H before convolution 
are obtained by calculation of  W ′ and H ′ after convolution.

(6)
∂Loss

∂xi
=

∑

i

∂Loss

∂yi
×

∂yi

∂xi
.

(7)yi =

16
∑

j=1

CijXj .

(8)
∂yi

∂xj
= Cij .

(9)
∂Loss

∂xi
=

4
∑

i=1

∂Loss

∂yi
× Cij .

(10)
∂Loss

∂xj
=

(

∂Loss

∂y

)T

× C∗j = CT
∗j ×

(

∂Loss

∂y

)

.

Fig. 8  Partial results of face detection and the expression recognition model



Page 10 of 19Fu et al. EURASIP J. Adv. Signal Process.         (2021) 2021:81 

Therefore, the structure of the expression recognition model is shown in Fig. 6.
Where ’Conv’ represents for convolution and ’Deconv’ represents for deconvolution.

2.4 � The training and testing of the expression recognition model

The initialization state of the testing set is unlabeled to ensure the rationality of emo-
tional label. Therefore, another data set with self-descriptive labels is utilized to complete 
the training of the model. Figure 7 shows partial data set utilized to train the expression 
recognition model.

Therefore, values of the model parameter can be obtained by training the model on 
the data set shown in Fig. 7. Subsequent testing follows the principle of video frame 
image analysis. Nearly 30 frame images appear each 1 s in the testing video. Following 
recognition process is defined so that the label of the expressions can be accurately 
defined within 1 s.

CascadeClassifier in Opencv is utilized for face detection in the process of model 
testing. This is a cascaded classifier utilizing Harr feature of images. The principle of 
Harr feature can be utilized to complete face recognition well [27]. Figure 8 shows the 
partial results of face detection and the expression recognition model.

Therefore, the recognition result of expression in each frame image can be obtained. 
Figure  8 shows that a face is detected by CascadeClassifier and it is recognized as 
happy by the expression recognition model.

The most important thing in this section is that the result of expression recogni-
tion of each frame image is transformed into the expression recognition result of the 
image per second. The expression in 1 s is considered to be ‘Unhappy’ if the number 
of ‘Unhappy’ frame images in 1  s is greater than 6 and greater than the number of 
‘Happy’ frame images. If not, the judgments of other expressions are subsequently 
continued. The expression in 1 s is considered to be ‘Happy’ if the number of ‘Happy’ 
frame images in 1 s is greater than 4 and greater than the number of ‘Unhappy’ frame 
images. And the expression in 1 s is considered to be ‘Happy’ if the number of ‘Happy’ 
frame images in 1 s is greater than 0 and greater than the number of ‘Unhappy’ frame 
images when the number of ‘Quiet’ frame images in 1 s is less than 5. The expression 
per second is defined as ‘Quiet’ when above conditions are not met.

2.5 � Emotion recognition for short videos

Emotion sequence represented by ‘1’, ‘0’ and’2’ can be obtained after the expression 
prediction model is trained and tested. Above three numbers represent three emo-
tions defined in Sect. 2.2. The emotion prediction of each short video is completed by 
Algorithm 1 after the emotional label per second is obtained.

(11)W = S
(

W ′
− 1

)

− 2P + F ,

(12)H = S
(

H ′
− 1

)

− 2P + F .
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Where N  represents the total number of expressions per second in the video. N0 , N1 , 
N2 respectively indicate the number of corresponding expressions. n0 , n1 , n2 are utilized 
to represent the number of different expressions in the video each 15 s. The number of 
‘Happy’ and ‘Unhappy’ is defined as ni1 and ni2 of interval video in each 5 s to reduce the 
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loss of useful information. In addition, the distance between first ‘1’ appearing in each 
interval video and last ‘1’ in 15 s video of previous section is defined as d11 . The distance 
between last ‘1’ appearing in each interval video and first ‘1’ in 15 s video of previous 
section is defined as d12 . Therefore, the emotion recognition model needs the character-
istics of different subject analyzed by Algorithm 1.

2.6 � The overall structure of the emotion recognition model

The overall flow chart of the model is shown in Fig. 9 to clearly show the process of emo-
tion recognition.

3 � Results and discussion
3.1 � The result of preparation

The data set utilized for training needed to be grayed and standardized. The prepara-
tion of data set utilized for testing was divided into two parts. First, video needed to be 
grayed and standardized, then corresponding GSR needed to be completed data noise 
reduction and smoothing. Partial results of the latter was shown in Figs. 10 and 11.

Fig. 9  The overall structure of the emotion recognition model

Fig. 10  The value of GSR during experiment for a subject
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3.2 � The setting of parameter

The training parameters of the proposed expression recognition model and comparison 
models were shown in Table 1. 

These parameter were mainly applied to the proposed facial expression recognition 
model and its comparison model: Resnet18 and VGG16. The initial weights obtained by 
transfer learning on ImageNet were applied to the comparison model.

The parameters of CascadeClassifier were shown in Table 2.

3.3 � Model evaluation method

The evaluation of the model in the paper was obtained by matching the label defined by 
GSR with the result of emotion recognition model. The former was utilized as the true 
value of video emotion, the latter was the predicted value. (13) for model evaluation was as 
follows.

(13)Accuracy =
TP+ TN

TP+ FN+ FP+ TN
.

Fig. 11  The value of GSR after preprocessing for a subject

Table 1  Training parameters

Parameter Value

batch_size 32

Image_size 112 × 112

learning_rate 1e−3

Table 2  Parameters of CascadeClassifier

Parameter Value

Expansion scale 160 × 160

Scale_factor 7

Min_size 100 × 100

Max_size 1000 × 1000
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where TP referred to predict the target class as the number of target classes, TN referred 
to predict the non-target class as the number of non-target classes, FN referred to pre-
dict the non-target class as the number of target classes, FP referred to predict the target 
class as the number of non-target classes.

3.4 � Experimental results

The results of the emotion recognition model were mainly divided into two parts: the 
training part and testing part. Figure 12 showed the training part of the model.

The loss decay of the model and the increase of accuracy took a total of 120 epochs. 
The expressive ability of feature extracted by the model was very strong, but the train-
ing process of the model was slow. The original image can be restored more accurately 
by this feature. The input images were uniformly grayed and standardized to reduce the 
influence of facial background. The comparison between original image and generated 
image from its features was shown in Fig. 13.

SVM classifier needed to be trained to complete the intact process of model training 
after the abstract features were obtained by the codec model. The training of SVM classi-
fier included the selection of its kernel function γ and penalty coefficient c. The selection 
of the kernel function was shown in Fig. 14.

As shown in Fig. 14, it can be found that the highest accuracy was 97.71% when the 
kernel function was gauss. It can also be obtained that the peak accuracy was about 
97.45% and 91.59%, respectively, when the kernel function is poly and sigmoid. And it 
can be determined that best values of γ corresponding to three kernel functions were 
8.935, 8.935, 2, respectively. On this basis, the process of adjusting the penalty coefficient 
c was shown in Fig. 15.

It can be found that the highest accuracy of classification was 97.83% when kernel 
function was gauss, the value of γ was 8.935 and the value of c was 15.

Fig. 12  The training process of the proposed model
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Resnet18 and VGG16 were trained and verified on the training set to further illustrate 
the superiority of the proposed model in expression recognition. Figure 16 showed the 
result of training and verification of the comparison model on training set.

It can be found from Fig.  16 that the accuracy of Resnet18 was slightly better than 
VGG16, and its highest accuracy of verification reached 97.64% when its epoch was 11. 
But this result was also slightly lower than the proposed model.

The predicted results of the models were matched with the labels defined by GSR 
after the training of three models. The matching accuracy was 82.01% after testing all 
subjects. The number of effective short video emoticons in testing set was 189, and the 
number correctly identified was 155. The testing accuracy of the comparison models 
were both 69.84%. The testing accuracy of three models changed with the increase in the 
number of subjects was shown in Fig. 17.

The three curves quickly reached peaks and their accuracy decreased in the sec-
ond half of them. A confusion matrix was utilized to further show the result of the 

Fig. 13  Original image and generated image from its features

Fig. 14  The classification accuracy of SVM on testing set with different kernel and value of γ 
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proposed emotion recognition model to analyze the limitation of model. The matrix 
was shown in Fig. 18.

Following conclusions can be obtained by combing with the detailed result of emo-
tion recognition in Figs. 17 and 18.

•	 The differences of facial styles leaded to the difficulty of facial emotion recognition 
in some subjects with unclear facial expressions or rich facial expressions. This 
class of subjects on testing set distributed in the second half of the data set. This 
conclusion was also reflected in the misjudgment in Fig. 18;

•	 The model can not detect facial expression due to the subjects’ head down, which 
also leaded to the decrease of accuracy;

•	 The recognition of ‘Quiet’ emotion in scene had high recognition accuracy due 
to the high frequency of ‘Quiet’ emotion. However, the ability of recognition for 
‘Unhappy’ emotion was weak due to the small number of samples.

Fig. 15  The accuracy of classification changed with the value of c 

Fig. 16  The training process of Resnet18 and VGG16



Page 17 of 19Fu et al. EURASIP J. Adv. Signal Process.         (2021) 2021:81 	

4 � Conclusions
Firstly, reliable emotional labels of the proposed emotion recognition model was 
obtained from GSR. Then the model achieved an accuracy of 82.01% by a reasonable 
process of recognition. The proposed model has certain practical value for predict-
ing the human emotion of natural activities in vehicle environment due to its data set 
utilized in the model has certain characteristic similarity with the video data in the 
vehicle environment.

Fig. 17  The diagram of testing accuracy

Fig. 18  Confusion matrix of the proposed emotion recognition model
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