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1  Introduction
With the development of sensor technology, there are more and more data sources for 
recording the same process. For example, 3-D wind speed, dynamic pressure, aircraft 
rotation axis (roll, pitch, yaw), and angle of attack are used to predict the attitude of the 
aircraft [1]. The electromagnetic vector-sensor consists of 6 spatially arranged antennas, 
which measure the electric and magnetic field signals in the three directions of the inci-
dent wave [2]. These signals derive from observations of different dimensions. However, 
they are constructed into vectors and processed as multi-channel signals in most exist-
ing literature. In geometric algebra (GA)-based algorithms, the hypercomplex signals are 
transformed into multivectors, such as complex entries, quaternion entries, and higher 
dimensional entries [3], and handled holistically [4]. The product operation of GA, 
namely geometric product, allows a set of vectors to be mapped to scalars and hypersur-
faces. Besides, geometric calculus (GC) [5, 6] can perform calculus with hypercomplex 
numbers clearly and compactly. Owing to the convenience of GA-based models, GA has 
been studied in many applications, such as classification, direction of arrival estimation, 
and image processing [7–9].
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Adaptive filters (AF) have been extensively applied in many areas such as system iden-
tification, active noise control, and echo cancellation during the past decades [10]. The 
least mean square (LMS) and normalized LMS (NLMS) are widely used owing to their 
simplicity and ease of implementation. However, they show a slow convergence speed 
with highly colored input signals. The affine projection algorithm (APA), suggested by 
Ozeki and Umeda [11], is one method to overcome this problem. The APA and its vari-
ants [12–14] were found to be attractive choices with faster convergence than the NLMS 
and lower computational complexity than the recursive least squares (RLS).

However, standard AFs treat different dimensions as multi-channel signals, which may 
lose the structural information between different dimensions [15]. The GA-based adap-
tive filters (GAAF) have been used for simultaneous filtering of multi-dimensional sig-
nals for its faster convergence speed and suitability of multivector for multi-dimensional 
signal modeling. For example, quaternion adaptive filters were used to forecast Saito’s 
Chaotic Signal and wind speed with superior performance [16]. GA-based beamformer 
of electromagnetic vector-sensor arrays has a better convergence performance than the 
standard beamformer [17, 18]. GAAF algorithms have great advantages in processing 
multi-dimensional signals.

Hitzer extended the quaternion AF to the GA-based nonlinear AF for hypercomplex 
signals of high dimensions [19]. Afterward, the authors in [1] proposed the GA-LMS 
to estimate the rotor in a three-dimensional point-clouds registration problem and ana-
lyzed its performance. The GA-LMS was later used to recover the 6-degrees-of-freedom 
alignment of two point clouds [20]. The authors in [21] developed a robust adaptive fil-
ter based on maximum GA correntropy criteria against non-Gaussian noise. The GA-
based Normalized Least Mean Fourth (GA-NLMF) and GA-NLMS derived in [22] have 
a certain improvement in the convergence speed compared with NLMS. However, their 
convergence speed is reduced considerably by the colored input signals, commonly 
encountered in real applications.

Based on the principle of minimal disturbance and the orthogonal affine subspace the-
ory, this article introduces the APA in the GA domain to deal with the hypercomplex 
system with colored signals. Firstly, the fundamentals of geometric algebra are presented 
in Sect. 2. We then propose the algorithm and analyse its stability in Sect. 3. Finally, sev-
eral simulations are conducted to analyse the performance and the stability of the pro-
posed algorithm.

2 � Fundamentals of geometric algebra
The GA G(Rn) was introduced by William K. Clifford, also called Clifford algebra. The 
GA enables the algebraic representation of magnitude and orientations and provides a 
coordinate-free framework to make the calculations efficiently.

The GA can be viewed as a geometric extension of the linear algebra Rn . Vectors in 
Rn are also vectors in G(Rn) . Take a, b vectors in Rn , the geometric product of a and 
b is defined as ab = a · b+ a ∧ b , on the basis of the inner (·) and outer (∧) product. 
Since the outer product doesn’t satisfy the commutative law, namely a ∧ b = −(b ∧ a) , 
the geometric product is also non-commutative in general. Unless otherwise specified, 
all products in this article are geometric products.
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Take R3 for example, G(R3) has 23 = 8 dimensions, with basis {1, e1, e2, e3, e12, e23, e31, I} . 
All bases can be divided into four parts, namely one scalar, three unit orthogonal vectors 
ei (basis for R3 ), three bivectors eij � eiej = ei ∧ ej , i �= j (ei · ej = 0, i �= j) , and one trivec-
tor I � e123 = e1e2e3 = e1 ∧ e2 ∧ e3 . To illustrate, take a = e1 and b = 3e1 + 2e2 . Then, 
ab = e1(3e1+2e2) = e1 · (3e1+2e2)+e1∧ (3e1+2e2) = 3+2(e1∧e2) = 3+2e12 (a sca-
lar plus a bivector).

Multivector is the fundamental element of GA. The multivector A consists of its r-vectors 
�·�r as follows:

in which 〈A〉0 , 〈A〉1 , and 〈A〉2 are scalar, vector, and bivector, respectively. The foundation 
of GA theory is the ability to fuse scalar, vector, and hyper-planes into a unique element, 
namely multivector.

Analogous to the conjugation of complex numbers and quaternion, the reverse of the 
multivector A is defined as

Taking the bivector A = �A�0 + �A�1 + �A�2 for an example, its reverse is 
Ã = �̃A�0 + �̃A�1 + �̃A�2 = �A�0 + �A�1 − �A�2.

The scalar product (∗) is defined as A ∗ B = �AB� , in which �·� ≡ �·�0 . In addition, the 
magnitude of a multivector is defined as |A|2 = Ã ∗ A = �ÃA�.

3 � Methods
An array of multivector consists of a collection of multivectors. Give M multivectors 
{U1,U2, . . . ,UM} in G(R3) , the M × 1 array collects them as follows:

The reverse transpose operation, denoted by (·)∗ , is the extension of the reverse opera-
tion of multivector to arrays of multivectors. For example, the reverse transpose of the 
array (3) is u∗ =

[
Ũ1 Ũ2 . . . ŨM

]
.

Consider reference data D(k), which is a multivector, observed at time k that comes from 
the linear model

where wo = [Wo
1 Wo

2 . . . Wo
M]T is an unknown M × 1 array of multivector to be esti-

mated with (·)T denotes transpose, V(k) accounts for measurement noise, U(k) denotes 
input signal observed at time k, and u(k) = [U(k) U(k − 1) . . . U(k + 1−M)]T . 

(1)A = �A�0 + �A�1 + �A�2 + · · · =
∑

r

�A�r ,

(2)Ã �

n∑

r=0

(−1)r(r−1)/2�A�r .

(3)u =




U1

.

.

.

UM


 =




u(1, 0)+ u(1, 1)e1 + · · · + u(1, 7)I
.
.
.

u(M, 0)+ u(M, 1)e1 + · · · + u(M, 7)I


.

(4)

D(k) = u
∗(k)wo + V (k)

=

M∑

i=1

Ũ(k + 1− i)Wo
i + V (k),
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The model allows one to assign heterogeneous signals from differ-
ent sources si(k) , i = 0, 1, . . . , 2n − 1 , to each entries of the multivector, e.g., 
U(k) = s0(k)+s1(k)e1+s2(k)e2+s3(k)e3+s4(k)e12+s5(k)e23+s6(k)e31+s7(k)I . For 
example, fusion and linear prediction of aircraft parameters can be assigned as follows: 
s0(k) is angle of attack, s1(k) is East-West wind, s2(k) is North-South wind, s3(k) is verti-
cal wind, s4(k) is roll, s5(k) is yaw, s6(k) is pitch, s7(k) is dynamic pressure.

The squared Euclidean norm providing a measure of distance in LA is represented by 
the array product ||u||2 � u

∗
u , which is a scalar. However, the result of the array product 

in GA is a multivector rather than a scalar. Therefore, we take the scalar part of the array 
product �u∗

u� as the distance measure of the array of multivectors.

3.1 � GA affine projection algorithm

The GA-APA also follows the principle of minimal disturbance and the orthogonal affine 
subspace theory as the standard APA. In mathematical terms, the criterion for design-
ing the affine projection filter can be formulated as an optimization problem subject to 
multiple constraints. We will minimize the scalar product of the change of the estimated 
weight array and its reverse transpose (the distance measure of the array space of wo ), 
which is defined as

subject to the set of N constraints

where N is smaller than or equal to the length M of the weight array. The number of con-
straints N can be viewed as the order of the affine projection algorithm.

We apply the method of Lagrange multipliers to solve this optimization problem. 
Combining formulas (5) and (6), then we get the following cost function

where E(n) = D(k − n)− u
∗(k − n)ŵ(k + 1) and �n is a multivector. For convenience of 

presentation, we introduce the following definitions:

•	 An M × N  matrix U(k) defined by 

•	 An N × 1 array d(k) defined by 

•	 An N × 1 array � defined by 

Then, the second term of the cost function (7) can be represent as

(5)�||δw||
2� = (ŵ

∗
(k + 1)− ŵ

∗
(k)) ∗ (ŵ(k + 1)− ŵ(k)),

(6)D(k − n) = u
∗(k − n)ŵ(k + 1) for n = 0, 1, 2, . . . ,N − 1,

(7)J (k) = �||δw||
2� +

N−1∑

n=0

�Ẽ(n)�n�,

(8)U(k) = [u(k) u(k − 1) · · ·u(k − N + 1)].

(9)d(k) = [D(k) D(k − 1) · · · D(k − N + 1)]T.

(10)� = [�0 �1 · · · �N−1]
T
.
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Now, we will get the derivative of the cost function J(k) with respect to the weight array 
w(k + 1) following the rules of GC. In GA, the differential operator ∂w = ∂ŵ(k+1) has the 
algebra properties of a multivector in G(Rn) . In other words, the gradient ∂wJ (k) can be 
calculated by the geometric product of the multivector-valued quantities ∂w and J(k).

Any multivector A ∈ G(Rn) can be decomposed into blades [5, Eq. (3.20)] via

in which Ai is a scalar valued, and {ei} and {ei}, i = 0, . . . , 2n − 1 are two different bases 
of G(Rn) . {ei} is the reciprocal blade basis, which is an important analytical tool for dif-
ferentiation in GA. The reciprocal blade basis can convert non-orthogonal to orthogonal 
vectors, vice versa. Since orthogonal elements cancel out mutually, the analytical proce-
dure is simplified. Suffice to know that the following relation holds for reciprocal bases 
ei · e

j = δ
j
i , where δji = 1 for i = j and δji = 0 for i  = j (Kronecker delta). In particular, 

applying (12) to ∂w results in

The gradient ∂wJ (k) is obtained by multiplying (13) and (7), yielding

in which ∂1w,l = ∂w,l�δ
∗
wδw� and ∂2w,l = ∂w,l�−ŵ

∗
(k + 1)U(k)�� . As a matter of fact, arrays 

of multivectors can be decomposed into blades. Thus, employing (12) once again, we can 
rewrite δw and δ∗w in term of their 2n blades as follows:

Plugging (15) into ∂1w,l , we have

(11)

N−1∑

n=0

�Ẽ(n)�n� = �(d(k)−U
∗(k)ŵ(k + 1))∗��

= (d∗(k)− ŵ
∗
(k + 1)U(k)) ∗ �.

(12)A =

2n−1∑

i=0

ei�e
iA� =

2n−1∑

i=0

ei�eiA� =

2n−1∑

i=0

eiAi
,

(13)∂w �

2n−1∑

l=0

el�el∂w� =

2n−1∑

l=0

el∂w,l .

(14)

∂wJ (k) =

2n−1∑

l=0

el∂w,l

(
�||δw||

2� + �(d∗(k)− ŵ
∗
(k + 1)U(k))��

)

=

2n−1∑

l=0

el
(
∂w,l�δ

∗
wδw� + ∂w,l�−ŵ

∗
(k + 1)U(k)��

)

=

2n−1∑

l=0

el
(
∂1w,l + ∂2w,l

)
,

(15)δw =

2n−1∑

p=0

epδw,p and δ∗w =

2n−1∑

q=0

ẽqδ
T
w,q .
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Thus, the first term of the gradient (14) can be obtained by

Then, we calculate the second term of the formula (14) and get

Taking the results of (17) and (18), and setting the gradient (14) equal to zero, we get 
2δ̃w = ˜(U(k)�) . Taking the reverse of both sides of the equation yields

Next, we will eliminate the Lagrange vector � from (19). Firstly, we use the definitions of 
(8) and (9) to rewrite (6) in the equivalent form

Premultiplying both sides of (19) by U∗ and then using (20) to eliminate the updated 
weight array ŵ(k + 1) yields

(16)

∂1w,l = ∂w,l�

2n−1∑

p,q=0

ẽqδ
T
w,qepδw,p�

=

2n−1∑

p,q=0

�̃eqep�∂w,l(δ
T
w,qδw,p)

=

2n−1∑

p,q=0

�̃eqep�( ˙∂w,l
˙δTw,qδw,p +

˙∂w,lδ
T
w,q

˙δw,p)

=

2n−1∑

p,q=0

�̃eqep�(δ
q
l δw,p + δ

p
l δw,q).

(17)

2n−1∑

l=0

el∂1w,l =

2n−1∑

l=0

el
2n−1∑

p,q=0

�̃eqep�(δ
q
l δw,p + δ

p
l δw,q)

=

2n−1∑

l=0

el(

2n−1∑

p=0

�̃elep�δw,p +

2n−1∑

q=0

�̃eqel�δw,q)

=

2n−1∑

l=0

el(�̃elδw� + �δ̃wel�)

= 2δ̃w .

(18)

2n−1∑

l=0

el∂2w,l = −

2n−1∑

l=0

el∂w,l�

2n−1∑

p=0

ẽpŵ
T
p (k + 1)U(k)��

= −

2n−1∑

l=0

el
2n−1∑

p=0

�̃ep∂w,lŵ
T
p (k + 1)U(k)��

= −

2n−1∑

l=0

el �̃elU(k)��

= − ˜(U(k)�).

(19)ŵ(k + 1)− ŵ(k) =
1

2
U(k)�.

(20)d(k) = U
∗(k)ŵ(k + 1).
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Based on the data available, the difference e(k) between d(k) and U∗(k)ŵ(k) at the adap-
tation cycle k is a N × 1 error array denoted

Assuming the array product U∗(k)U(k) to be invertible [23] allows us to solve (21) for � , 
yielding

Substituting this solution into (19), we obtain the optimum change of the weight array

Finally, we introduce the step-size parameter µ into (24), yielding

which is the desired update formula of the GA-APA.
The algorithm is summarized in Algorithm  1. We can notice that GA-APA has the 

same format as standard APA adaptive filters. Since quaternion, complex numbers, 
and real numbers are subalgebras of geometric algebra, the Quaternion APA [24], the 
Complex APA [12], and the real-entries APA can be recovered by the GA-APA. In other 
words, GA-APA is a unified expression of the above algorithms.

1 � Remark

APA is the same as NLMS in the LA domain when the order N = 1 . But, the update 
equation of the first order GA-APA is different from GA-NLMS proposed in [22]. Spe-
cially, the update term of the first order GA-APA is µu(k)(u(k)∗u(k))−1e(k) which is sim-
ilar to the update term of the GA-NLMS µu(k)�u(k)∗u(k)�−1e(k) . We will compare them 
in the simulation section.

3.2 � Stability of the GA‑APA

The mismatch between wo and ŵ(k) is measured by weight-error array

(21)d(k) = U
∗(k)ŵ(k)+

1

2
U

∗(k)U(k)�.

(22)e(k) = d(k)−U
∗(k)ŵ(k).

(23)� = 2(U∗(k)U(k))−1
e(k).

(24)ŵ(k + 1)− ŵ(k) = U(k)(U∗(k)U(k))−1
e(k).

(25)ŵ(k + 1) = ŵ(k)+ µU(k)(U∗(k)U(k))−1
e(k),
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Thus, subtracting (25) from wo , we get

We base the stability analysis of the GA-APA on the mean-square deviation 
y(k) = E[�||ǫ(k)||2�] , where E[·] accounts for expectation. Taking the distance measure 
of both sides of (27), rearranging terms, and taking expectations, then we get

From the equation above, we see that the GA-APA algorithm is stable in the mean-
square-error sense provided the mean-square deviation y(k) decreases with the increas-
ing number of adaptation cycles k. Therefore, the step-size parameter µ is bounded as 
follows:

3.3 � Computational complexity analysis

As we can see from Algorithm  1, the main calculations are in Step  2 and Step  3. The 
number of real multiplications in Step 2 is NMα2 , where α = 2n represents the number 
of basis, N and M are the order of GA-APA and the length of ŵ(k) , respectively. The 
computational complexity of multivector matrix inversion is N 3α2β , where β represents 
the computational complexity of the inverse of a multivector. Therefore, the computa-
tion in Step 3 requires approximately α2(N 3β + N 2(M + 1)+ NM) real multiplications. 
The total number of multiplications in GA-APA is α2(N 3β + N 2(M + 1)+ 2NM) per 
adaptation cycle.

3.4 � Regularized GA‑APA

Since a matrix inversion (u∗
u)−1 is required within the GA-APA, ill-posed problems 

usually occur, especially under the condition of noisy observation data. To avoid this 
problem, we regularize the matrix that needs to be inverted. Then we get the update 
equation of the regularized GA-APA (R-GA-APA)

where γ is the regularization parameter, and I is the N × N  identity matrix of real 
number.

4 � Results and discussion
The proposed algorithm’s performance is evaluated and analyzed in this section. We 
compare the proposed algorithm with the GA-LMS and GA-NLMS in Sect.  4.1. The 
impact of order N and step size µ on algorithm performance is analyzed in Sect. 4.2.

(26)ǫ(k) = w
o − ŵ(k).

(27)ǫ(k + 1) = ǫ(k)− µU(k)(U∗(k)U(k))−1
e(k).

(28)
y(k + 1)− y(k) =µ2E[�||U(k)(U∗(k)U(k))−1

e(k)||2�]

− 2µE[ǫ∗(k) ∗U(k)(U∗(k)U(k))−1
e(k)].

(29)0 < µ <
2E[ǫ∗(k) ∗U(k)(U∗(k)U(k))−1

e(k)]

E[�||U(k)(U∗(k)U(k))−1e(k)||2�]
.

(30)ŵ(k + 1) = ŵ(k)+ µU(k)(U∗(k)U(k)+ γ I)−1
e(k),
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For the sake of generality, the underlying GA in all cases is G(R3) . The regularization 
parameter of the R-GA-APA is γ = 10−3 . The measurement noise is zero-mean uniform 
distributed sequences. The blades coefficients of the colored signal U(k) are obtained by 
filtering 23 = 8 white zero-mean Gaussian random sequences through a first-order sys-
tem G(z) = 1/(1− 0.9z−1) , respectively. All simulation results are obtained by averaging 
100 independent trials.

4.1 � Performance comparison

The variance of measurement noise is σ 2
V = E[|V (k)|2] = 10−3 . The variance of U(k) is 

0.1 for both white and colored signals. In this subsection, the step size value is µ = 0.2 for 
all algorithms. The length M of the optimal weight is 10, namely wo = [Wo

1 Wo
2 · · ·Wo

10]
T

.
Figure 1 shows several mean-square error (MSE) E[|D(k)− u

∗(k)ŵ(k)|2] learning curves 
for the GA-LMS [3], GA-NLMS, GA-APA with N = 1 and R-GA-APA with N = 1 with 
both white and colored input signals. All the multivectors entries Wo

i  are the same, namely 
Wo

i = W1 = 0.25e0−1.5e1−0.5e2+0.75e12−0.4e23+0.3e31−0.25I , i = 1, . . . , 10 . The 
coefficients of W1 are selected in an aleatory manner. As we can see, all algorithms can 
converge at the same speed with white signals under some given parameters. These 
experiments show that the GA-APA and R-GA-APA, the same as the GA-LMS, are 
capable of identifying multivector-valued linear systems. But the GA-LMS and GA-
NLMS suffer from slow convergence with colored input. The GA-APA and R-GA-APA 
achieve better performance with the colored signal with the same parameter. Compar-
ing the GA-APA and the R-GA-APA, we conclude that their performance is roughly the 
same when the regularization parameter γ is small. We will focus our simulations on the 
R-GA-APA since it reaches the same performance as the GA-APA and avoids ill-posed 
problems. Additionally, the first order GA-APA reaches a much faster convergence than 

0 200 400 600 800 1000 1200
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Fig. 1  MSE learning curves with white (solid) and colored (dashed) input signals with µ = 0.2,M = 10 and 
σ 2
V
= 10−3 . The order of GA-APA and R-GA-APA is N = 1
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the GA-NLMS. We think it’s because GA-NLMS doesn’t follow the principle of minimal 
disturbance. Although the GA-NLMS introduces the normalization comparing with the 
GA-LMS, it suffers from slow convergence with colored signals.

Figure 2 shows the convergence performance under colored input signals when filter 
weights wo change after 1190 iterations. The filter weights change from the weights W1 in 
the above experiments to W

o

i
= W2 = 0.5e0 + 1.8e1 − 2e2+ 0.86e3 + 0.31e12−

0.9e23− 0.4e31+ 0.34I , i = 1, . . . , 10 . We can see from Fig. 2 that the proposed R-GA-
APA can track the changes of weights faster than the GA-LMS and GA-NLMS after the 
filter weights change suddenly.

The time required for each iteration of different algorithms is given in Table  1. The 
results are obtained using Python on an Inter Core i7 CPU running at 3.6GHz and 16 
GB of RAM. We can see that the proposed algorithm requires more calculation time. As 
the order of the algorithm N increases, the calculation time also increases.

4.2 � Parameters analysis

The comparison results of different orders of the R-GA-APA under colored input 
signals are shown in Fig.  3. The filter weights are wo = [Wo

1 ,W
o
2 , . . . ,W

o
30] , where 

Wo
i = W1 (given in Sect. 4.1), i = 1, 2, . . . , 30 . The variance of V(k) and colored U(k) are 

{10−2, 10−4} and 10−1 , respectively. The step size µ is set to 0.2. As we can see, the con-
vergence rate speeds up with the order N increases. The misadjustment of APA increases 
when the order N increases. As expected, this is also the case with the R-GA-APA, as 
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Fig. 2  MSE learning curves when system weights suddenly change at 1190

Table 1  Time required for each iteration

GA-LMS GA-NLMS GA-APA, N = 1 GA-APA, N = 2

Time (ms) 2.2 2.4 5.1 9.1
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supported in Fig.  3. Despite the speed of convergence, the steady-state error and the 
computational complexity of matrix inversion limit the choice of higher orders.

Finally, we evaluate the impact of the step size on convergence rate and steady-state 
error under colored input signals. The order of the R-GA-APA is set to 1. The σ 2

V  and 
σ 2
U is set to 10−3 and 10−1 , respectively. The length of the filter weight is set to 10, and 

each multivector entries Wo
i  is the same as W1 in Sect.  4.1. Figure  4 shows the MSE 

learning curves of the R-GA-APA with step size µ = {0.05, 0.2, 0.6, 1.2} . We can see 
that the algorithm will have a faster convergence rate with a larger step size. However, 
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Fig. 3  MSE learning curves of the R-GA-APA of different orders N with µ = 0.2,M = 30 and 
σ 2
V
= {10−2, 10−4}
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Fig. 4  MSE learning curves of the first order R-GA-APA of different step sizes µ with M = 10
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the steady-state error goes higher with the step size increases. Therefore, it’s impor-
tant to choose an appropriate step size. We then examine the steady-state errors at 
different step sizes. Figure  5 depicts the steady-state errors at different step sizes for 
σ 2
V = {10−2, 10−3, 10−5} . According to the stability analysis in Sect. 3.2, the step size is 

roughly limited to the interval 0 < µ < 2 when σ 2
U = 10−1 . The simulation shows a good 

agreement with the theoretical analysis.

5 � Conclusions
The GA-APA and the R-GA-APA proposed in this article have improved estimation 
capabilities with highly colored input signals for hypercomplex processes. The struc-
ture of multivectors, allowing us to deal with the hypercomplex processes as a “package”, 
seems to be naturally suited for fusing different dimensional signals. With the increase of 
application scenarios, new types of GA-based AFs, i.e., the RLS and other variants, are 
the main subjects to be studied in the future.
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