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Abstract 

The anterior cruciate ligament (ACL) plays an important role in stabilizing translation 
and rotation of the tibia relative to the femur. Individuals with ACL deficiency usu-
ally demonstrate alterations in gait characteristics. Evidence indicates that walking 
speed, alterations in kinetics and kinematics on the ACL deficient limb, and inter-limb 
asymmetries between deficient and intact knees may contribute to poor long-term 
outcomes following ACL deficiency. They corrode function of the knee joint and put it 
at higher risk of degeneration. For the purpose of developing an automatic and highly 
accurate system for detection of ACL deficiency, this study investigated the classifica-
tion capability of different dynamical features extracted from gait kinematic and kinetic 
signals when evaluating their impact on different classification models. A general 
feature extraction framework was proposed and various dynamical features, such as 
recurrence rate, determinism and entropy from the recurrence quantification analy-
sis, fuzzy entropy, Teager-Kaiser energy feature and statistical analysis, were included. 
Different classification models, including support vector machine (SVM), K-nearest 
neighbor (KNN), naive Bayes (NB) classifier, decision tree (DT) classifier and ensemble 
learning based Adaboost (ELA) classifier, derived for discriminant analysis of multiple 
dynamical gait features were evaluated for a comparative study. The effectiveness of 
this strategy was verified using a dataset of knee, hip and ankle kinematic and kinetic 
waveforms from 43 patients with unilateral ACL deficiency. When evaluated with 2-fold, 
10-fold and leave-one-out cross-validation styles, the highest classification accuracy 
for discriminating between groups of ACL deficient and contralateral ACL intact knees 
was reported to be 91.22 % , 95.12% and 96.34% , respectively,by using the SVM classi-
fier and the optimal feature set. For other four classifiers, KNN achieved the accuracy of 
78.05% , 85.37% and 87.80% , respectively. NB achieved the accuracy of 57.56% , 60.98% 
and 61.22% , respectively. DT achieved the accuracy of 77.56% , 80.49% and 83.66% , 
respectively. ELA achieved the accuracy of 73.66% , 78.05% and 79.27% , respectively. 
Compared with other state-of-the-art methods, the results demonstrate superior per-
formance and support the validity of the proposed method.
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1 Introduction
The anterior cruciate ligament (ACL) contributes mainly to the knee joint stability which 
can stabilize translation and rotation of the tibia relative to the femur [1, 2]. ACL injury 
is one of the most common musculoskeletal pathology causing pain and reduced perfor-
mance of daily living activities, which is also linked to altered joint kinematics, kinetics 
and load partitioning in gait because of the loss of stability [3–5]. Currently, diagnosis 
of ACL injury mainly relies on clinical exam [6], arthroscopy [7] or imaging like X-rays 
[8] and magnetic resonance imaging (MRI) [9]. However there exist some limitations 
in these tools. For example, it is subjective through clinical exam due to the experience 
of the physicians. It is invasive for the arthroscopy [7] while it is highly required for the 
imaging in terms of cost, radiation, and equipment requirements [10]. In addition, the 
obtained images do not provide any functional or dynamical information concerning the 
association between ACL and daily activities [10]. Because of the radiation, subjects are 
not recommended to be exposed to X-rays or MRI frequently when undergoing medical 
examinations, which makes it difficult to monitor the progression of ACL injury over 
time.

Therefore, developing an alternative diagnosis method, such as gait analysis, which 
can offer quick, dynamic, non-invasive, objective and low cost measurement is required 
in the clinical applications. It has been reported in the literature that ACL-deficient 
(ACLD) patients may demonstrate abnormalities in their gait patterns several years 
after the injury [11–17]. It has been revealed that patients with ACL deficiency tend to 
adopt an asymmetrical gait pattern which includes reduced knee flexion and internal 
knee extensor moment, thereby reproduce the abnormality of the injured leg also in the 
contralateral intact leg [18, 19]. Some studies have deduced that degenerative changes 
might result from altered gait or functional mechanics of the ACL deficiency [20, 21]. All 
these findings indicate that gait analysis might act as an alternative or assistant tool for 
the diagnosis of ACL deficiency in addition to the traditional techniques. How to extract 
variable and effective information from gait for the diagnosis of ACL injury still remains 
an open question.

In the ACL literature, clinical and biomechanical studies typically rely on discrete 
measures to characterize movement disorders [22]. However, singular measures are lim-
ited in their ability to capture all the variability and complexity of human gait. Hence, 
statistical parametric mapping [23] and nonlinear dynamics [24, 25] have been used as 
alternative methods to provide additional insights. Hebert-Losier et al. [26] proposed a 
functional analysis of variance (ANOVA) method based on the interval testing proce-
dure to examine knee-kinematic curves. It helped detect precise time intervals where 
statistical differences occurred between ACLD and ACL-intact (ACLI) groups. Many 
nonlinear parameters linked to the variability of knee motion have been extracted 
to quantify and classify gait patterns between ACLD and ACLI knees. Among these 
parameters, the Lyapunov exponent can assess the knee joint stability [27], the fractal 
dimension and entropy can measure the complexity or the degree of disorder of the 
knee motion [28], the sample entropy (SampEn) [29] and detrended fluctuation anal-
ysis (DFA) can quantify the regularity of the knee joint signals [30, 31]. Stergiou et al. 
[32] and Moraiti et al. [33] proposed the nonlinear measures including Lyapunov expo-
nent to compute the local stability in ACLD knee when compared to the contralateral 
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intact knee. However extraction of these parameters relies on long-length time series of 
gait signals (i.e., hundreds to thousands of gait cycles included). This may not be easy to 
achieve in clinical practice since it is usually required to measure three-dimensional (3D) 
gait kinematics and kinetics of patients with ACL deficiency in a short period.

In addition, the lower extremities act as links of a chain [34, 35]. The position of each 
link in space will influence the adjoining links. Forces applied at one link can propagate 
up and down the entire chain [34]. For example, if one link is injured which results in a 
limitation of motion between two links, then in order to achieve fully normal motion, 
the collection of healthy connections in the chain must necessarily increase their motion 
to make up for the loss in one connection [34]. There exist conditions of the ankle and 
hip that will compel the knee to be subjected to pathological forces through the kinetic 
chain. Movement patterns in the hip and ankle joints of the injured limb have been found 
to be altered after ACL injury [35–37]. It is also necessary to focus on the kinematic and 
kinetic variation of knee, hip and ankle joints between ACLD and ACLI groups. Related 
gait parameters are recommended to be extracted for analysis.

Another potential diagnosis tool is with the dynamical and nonlinear features and 
machine learning algorithms [38–41]. Christian et  al. [38] proposed a machine learn-
ing method with SVM tool for the discrimination of kinematic gait patterns in patients 
with a ruptured ACL. Features were extracted from motional 3D marker trajectories 
of knees with principal component analysis (PCA) and recursive feature elimination 
method. Seven patients were involved and 100% classification accuracy was achieved. 
Nonetheless, the experiments were based on a small database and the effectiveness is 
doubtable. Berruto et al. [39] employed tibial accelerometers to measure the variation 
of knee pivot-shift in patients with unilateral ACL injuries. Magnitudes of accelerations 
were used as features for the classification of ACLD and ACLI knees and the achieved 
accuracy was roughly 90% . Kopf et al. [40] carried out a study with similar method to 
Berruto et  al. [39], in which inertial sensor modules fastened to the tibia and femur 
were used to grade 20 patients with unilateral ACL deficiency. Acceleration difference 
between ACLD and ACLI knees were used for classification and the reported accuracy 
was 95% (19 of 20). Almosnino et al. [41] used strength curve features to measure the 
difference between injured and uninjured knees with PCA method. Forty-three patients 
with unilateral ACL deficiency were involved and the reported specificity, sensitivity and 
accuracy were 60.5% , 60.5% and 62.20% , respectively. Nonlinear analysis has been widely 
applied to assess the human locomotion during normal and pathological gait. Consider-
ing the characteristics of non-stationary and recurrent nature of gait signals [42], it is 
not suitable to perform the Fourier analysis on long-length biological signals. Therefore, 
in the present study, we adopted a nonlinear data analysis technique, namely Recurrence 
Quantification Analysis (RQA) [43], to analyse the gait signals [44]. This is due to its 
advantages of analyzing linear and nonlinear time signals [45]. RQA is prone to quanti-
fying the dynamics of gait data whose working principle is explore the recurrent nature 
of gait signal in the reconstructed phase space [46]. Phase space reconstruction (PSR) 
of the gait signals facilitates the understanding of gait dynamics with more observables 
[47–49]. PSR further employs Recurrence Plots (RP) to visualize the recurrence of gait 
signal in phase space and depict the structures including single dots, horizontal lines, 
diagonal lines and vertical lines. Quantifying these structures called as RQA, yields 
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several parameters based on different aspects of quantification [46]. In comparison to 
RQA, entropy is used to measure the uncertainty of nonlinear dynamical system and 
equals the rate of information production. Calculation of entropy is usually based upon 
long data sets. Fuzzy entropy is a method suited to measure the complexity of short 
length time series. The key aspects are the use of fuzzy membership function to quantify 
the similarity between a pair of vectors and fuzzy probability to determine the disor-
der or uncertainty [50]. The nonlinear Teager-Kaiser energy operator is able to localize 
instantaneous amplitude changes of signals. Its usefulness has been approved in some 
biomedical signal processing field [51–53]. It generates a time series that can represent 
the instantaneous energy of the original gait system dynamics, which can be used as a 
characteristic feature for the classification of pathological and normal gait patterns.

The main purpose of the current study is to evaluate the effectiveness of different 
dynamical features for the discrimination between ACLD and contralateral ACLI knees 
based on different classification models. Thereby we can assess the capabilities of opti-
mal features representing gait characteristics. In addition, we can develop an automatic 
and non-invasive pattern recognition system to detect the presence of ACL injury. Since 
the lower extremities act as a kinetic chain during dynamic tasks, control of the hip and 
ankle joint will interact with knee motion. Related gait kinematic and kinetic parameters 
from the three joints are extracted. A general feature extraction framework is proposed 
and various dynamical features, such as recurrence rate, determinism and entropy from 
the recurrence quantification analysis (RQA), fuzzy entropy (FuzzyEn), Teager-Kaiser 
energy (TKE) feature and statistical analysis, are included. Different classification mod-
els, including support vector machine (SVM), K-nearest neighbor (KNN), naive Bayes 
(NB) classifier, decision tree and ensemble learning based Adaboost (ELA) classifier, 
derived for discriminant analysis of multiple dynamical gait features are evaluated and 
combined with optimal feature set on the classification accuracy for a comparative study.

2  Methods
2.1  Design

In this section, we propose a pattern recognition method to differentiate gait patterns 
between ACLD knees and contralateral intact knees using dynamical features obtained 
from kinematic and kinetic gait signals. Figure  1 illustrates the block diagram of the 
proposed method for the binary classification problem. The method includes the fea-
ture extraction and classification stages and follows the following steps. In the first 
step, nonlinear and statistical features (including Mean, Standard Deviation, Skewness 
and Kurtosis) are extracted by using different methods, including RQA, fuzzy entropy, 
Teager-Kaiser energy and statistical analysis. In the second step, feature vectors are fed 
into different classification models to discriminate between ACLD and ACLI gait pat-
terns. Finally, different performance parameters are used to evaluate the classification 
results.

2.2  Dataset description

We conducted a cross-sectional, observational study of individuals with chronic, uni-
lateral ACLD knees. The contralateral unaffected knee was considered as intact. Poten-
tial participants were identified from an orthopaedic clinic database. Those who met 



Page 5 of 23Zeng et al. EURASIP J. Adv. Signal Process.         (2021) 2021:95  

the inclusion criteria (e.g. diagnosed with full tear of their ACL by magnetic resonance 
imaging) were either contacted by telephone or email. The subjects were excluded if they 
had accompanying damage to the posterior cruciate or collateral ligaments, had injuries 
on the contralateral limb, or had difficulty or pain in performing activities of daily liv-
ing including walking. Forty-three participants were recruited from November 2015 to 
July 2016. Subjects’ characteristics are summarized in Table 1. The study was approved 
by the ethical review board (2014/547), The University of Sydney, Australia. A written 
informed consent was obtained from each participant before data collection began.

2.3  Measurement

All measurements and assessments were conducted in a single session at a laboratory 
with one assessor. Before undergoing the gait analysis procedure, the participants com-
pleted a questionnaire that collected demographic information (age, dominant leg and 
time since injury) and three other patients reported outcome measures (visual analogue 
scale, Tegner activity scale and knee injury and osteoarthritis outcome score). Partici-
pated patients had their height and weight measured.

A 16-camera 3D motion capture system (Motion Analysis Corporation, Santa Rosa, 
USA) and force plates (model 9281, Kistler, Winterter, Switzerland) were used to collect 
the data. The camera sampling rate was 200 Hz and it was synchronized with the kinetic 
data sampled at 1000 Hz. Thirty (18-mm-diameter) passive markers were attached 

Fig. 1 Block diagram of the proposed method for the discrimination of ACLD and ACLI knees using different 
features and classification models

Table 1 Descriptive characteristics of the participated patients with unilateral ACL injury

Characteristic (n = 43)

Age (yr), mean (SD) 38.93 (8.04)

Height (cm), mean (SD) 171.27 (9.14)

Weight (kg), mean (SD) 77.70 (14.57)

BMI (kg/m2 ), mean (SD) 26.38 (3.89)

Male/Female 26/17

Number of injured limbs (left/right) 23/20

Time since injury (month), mean (SD) 19.67 (18.70)
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bilaterally on the head of the second metatarsal, navicular tuberosity, calcaneal tuberos-
ity, medial and lateral malleolus, lateral tibia distally, lateral midtibia, tibia tuberosity, 
medial and lateral femoral epicondyle, anterior mid-thigh, greater trochanter and ante-
rior superior iliac spine and one single marker on the spinous process of Sacrum level 
2, thoracic spine level 10 and cervical spine level 7 and manubrium using double-sided 
tape. Each segment was defined using three markers (six degrees of freedom) and ideal-
ized as a rigid body with a local coordinate system defined to coincide with a set of ana-
tomical axes. The 3D positions of markers were used to calculate the location of the joint 
centres. A static trial was collected as a reference to determine body mass and positions 
of joint centres of rotation. Segment angles relative to the laboratory and relative joint 
angles were calculated using joint coordinate systems. Three-dimensional moments 
were calculated using inverse dynamics via Kintrak™ version 7.0 (The University of Cal-
gary, Canada) and were normalized to the individual’s body weight to compensate for 
anatomical differences between the participants.

Subjects walked barefoot along a 10-m walkway at their self-selected habitual (nor-
mal) and fast (walking at a speed fast enough to catch a bus without breaking into a jog) 
speeds. Figure 2 demonstrates the setting used in this study. We investigated whether 
walking speed will influence classification accuracy of the proposed classification models 
and evaluate the robustness of the extracted features and classification models to the 
walking speed. Fast speed trials occurred after normal speed trials and subjects rested 
for 2–3 min between the trials and 5–10 min between each walking condition. The 
average values from repeated trials at both velocities were calculated for comparisons 
between ACLD and ACLI knee. Kinematics and kinetics of knee, hip and ankle joints 
have been obtained from the motion capture system and used for the following feature 
extraction and selection.

2.4  Feature extraction

In order to obtain more efficient features, this paper considers parameters of recurrence 
quantification analysis (RQA), Fuzzy entropy and Teager-Kaiser energy along with sta-
tistical features of knee, hip and ankle joint gait data.

2.4.1  Recurrence quantification analysis (RQA)

RQA is utilized to help understand the nature of gait signals and quantify gait with dis-
orders without relaxing the real-time constraints [46]. In the present study, RQA param-
eters are extracted from the recurrence plots (RP) of the knee, hip and ankle kinematic 
and kinetic data, which are various measures of the complexity of the gait signals. RP 
describes the recurrent property of a dynamical system, i.e. visualizing the time depend-
ent behavior of a gait signal xi in a phase space [54], and is defined as follows.

where ǫ is a predefined cutoff distance, N is the total number of considered states, � · � is 
the Euclidean norm, � is the Heaviside function. The binary values of Ri,j can be easily 
visualized using the colours black 1 and white 0, which indicates the time evolution of a 
signal trajectory. In practical applications, RP alone is not a good choice since it is dif-
ficult to witness the small-scale patterns by visual inspection. Hence several measures of 

(1)Ri,j(ǫ) = �(ǫ − �xi − xj�), i, j = 1, 2, ...,N
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(a) Frontal view at the static status (b) Side view at the static status

(c) Back view at the static status

(d) Whole view during walking

Fig. 2 Experimental setup
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complexity which can quantify the small-scale structures in the RP, namely RQA, have 
been proposed. The present study only adopted three measure variables: recurrence rate 
(RR), determinism (DET) and entropy (ENTR). For more details please refer to [43].

RR measures the density of recurrent points in a recurrence plot and is given by

DET measures the ratio of recurrence points forming diagonal lines which represent 
epochs of similar time evolution of the system state. Longer diagonal lines are usually 
discovered in periodic signals while shorter diagonal lines appear in chaotic signals. 
Hence long diagonal lines can be more often visualized in subjects with pathological gait 
than in normal subjects. DET is calculated as follows.

where ℓmin is the length of the minimal diagonal line, p(ℓ) is the histogram of these diag-
onal lines.

ENTR measures the complexity of the recurrence structure, which is given by

The more complex the recurrence structure is, the larger the value of ENTR is. For 
ACLD knees, their pathological gait appears more recurrence while the complexity is 
less.

2.4.2  Fuzzy entropy

Fuzzy entropy is used to measure the variability or irregularity of nonlinear time series 
based on the concept of approximate entropy and sample entropy. Compared to the 
other two kinds of entropy, it is suitable for short-length time series and is described as 
follows [55, 56].

Given a time series {x1, x2, ..., xN } with N samples, one can construct the following vec-
tor sequence

where Xm
i  represents m consecutive x values commencing with the ith point, m is the 

embedding dimension, x̄i is the average of vector Xm
i  and is given by

Define the distance dmij  between Xm
i  and its neighbor Xm

j  as the maximum absolute dif-
ference of corresponding scalar components:

(2)RR(ǫ) =
1

N

N
∑

i,j=0

Ri,j(ǫ)

(3)
DET =

N
∑

ℓ=ℓmin

ℓp(ℓ)

N2
× RR

(4)ENTR = −

N
∑

ℓ=ℓmin

p(ℓ)lnp(ℓ)

(5)Xm
i = {x1, x2, ..., xi+m−1} − x̄i, i = 1, 2, ...,N −m+ 1,

(6)x̄i =
1

m

m−1
∑

j=0

xi+j
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where Xm
i (k) and Xm

j (k) are the k element of Xm
i  and Xm

j  , respectively.
Given n and r, calculate the degree of fuzzy similarity Smij  between Xm

i  and Xm
j  by using 

the exponential function

For each vector Xm
i  , average all the degrees of fuzzy similarity to its neighboring vectors 

Xm
j  and lead to the average degree of fuzzy similarity

The fuzzy probability pmr  (defined in Buckley [57]) that two vector sequences match for 
all m-dimensional points within tolerance r is calculated by

Similarly, for the vector sequence Xm+1
i  , we can also define the fuzzy similarity Sm+1

ij  
between Xm+1

i  and Xm+1
j  , and the average degrees of fuzzy similarity Sm+1

r (i) . The fuzzy 
probability pm+1

r  is defined as

Fuzzy entropy FuzzyEn(m, r) of sequence {x1, x2, ..., xN } is defined as the negative natural 
logarithm of the conditional fuzzy probability

For a finite-length time series xi ( 1 ≤ i ≤ N  ), the Fuzzy entropy can be changed to

2.4.3  Teager‑Kaiser energy (TKE) feature

The nonlinear Teager–Kaiser energy operator (TKEO) provides an unconventional per-
spective on the instantaneous energy of a signal [58]. It relates energy to square of the 
signal amplitude and the square of its frequency. The TKEO is defined for discrete-time 
signal x(n) as follows [59]

(7)

dmij = d[Xm
i ,Xm

j ] = max
k∈(0,m−1)

|Xm
i (k)− Xm

j (k)|

= max
k∈(0,m−1)

|[xi+k − x̄i] + [xj+k − x̄j]|

(i, j = 1, ...,N −m+ 1, j �= i)

(8)Smij = exp(−(dmij )
n/r)

(9)Smr (i) =
1

N −m

N−m+1
∑

j=1,j �=i

Smij

(10)pmr =

1

N −m+ 1

N−m+1
∑

i=1

Smr (i)

(11)pm+1
r =

1

N −m

N−m
�

i=1





1

N −m− 1

N−m
�

j=1,j �=i

Sm+1
ij





(12)FuzzyEn(m, r) = lim
N→∞

(

− ln

(

pm+1
r

pmr

))

(13)FuzzyEn(m, r, N) = − ln

(

pm+1
r

pmr

)
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One of the advantages of TKEO is its nearly instantaneous since only three samples 
are required for the energy computation at each time instant. In addition, high time 
revolution combined with a simple operator provides the ability to capture the energy 
fluctuations of the original gait system dynamics as well as efficiently conduct in imple-
mentation [60]. TEKO generates a time series which can represent the instantaneous 
energy of the original gait system dynamics. To measure the variant energy sequence, 
the average value of nonlinear energy in the time domain is calculated as [61]

where N is the number of samples in the time series of gait signals, TKE is used as a fea-
ture of the original time series.

2.5  Feature selection

In order to improve the classification accuracy, this work considers four statistical fea-
tures (Mean, Standard Deviation (Std), Skewness, and Kurtosis) of gait signals in addi-
tion to the parameters of RQA, Fuzzy entropy and TKE. All the 243 features calculated 
from the kinematic and kinetic data of the ankle, knee and hip joints are demonstrated 
in Table 2.

In addition, Mann-Whitney test is utilized to retain the statistically significant fea-
tures between ACLD and ACLI legs. Features with p value less than 0.05 are consid-
ered to be statistically significant and used for classification. It is seen from Tables 2 

(14)φ[x(n)] = x2(n)− x(n− 1)x(n+ 1)

(15)TKE =

1

N

N−1
∑

n=0

φ[x(n)]

Table 2 Description of feature extraction

No Number 
of 
features

Description of feature extraction

1 27 Mean values of the angle, force and moment of the ankle, hip and knee joints in the frontal, 
transverse and sagittal planes

2 27 STD of the angle, force and moment of the ankle, hip and knee joints in the frontal, transverse 
and sagittal planes

3 27 Skewness of the angle, force and moment of the ankle, hip and knee joints in the frontal, 
transverse and sagittal planes

4 27 Kurtosis of the angle, force and moment of the ankle, hip and knee joints in the frontal, trans-
verse and sagittal planes

5 81 RQA (including RR, DET and ENTR) of the angle, force and moment of the ankle, hip and knee 
joints in the frontal, transverse and sagittal planes

6 27 FuzzyEn of the angle, force and moment of the ankle, hip and knee joints in the frontal, trans-
verse and sagittal planes

7 27 TKE of the angle, force and moment of the ankle, hip and knee joints in the frontal, transverse 
and sagittal planes

8 243 Total number of features

9 38 Statistically significant features (shown in Table 3)

10 16 Optimal feature set containing: F1, F2, F10, F19, F24, F29, F30, F61, F67, F96, F149, F176, F191, 
F207, F217, F227 (shown in Table 3)
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and 3 that there exist significant differences in 38 features, which are highlighted with 
red color and ‘*’ marker.

In order to obtain more efficient features, Hill climbing feature selection method 
[62] is utilized to find the optimal feature subset from the 38 statistically significant 
features, which can relieve the computational burden of performing the complete 
search for different feature combinations. It performs step-by-step search by con-
sidering one feature after the other. The set of features that gives better accuracy is 
considered to be the optimal feature set. In the present study, the optimal feature set 
contains the follwoing features: F1, F2, F10, F19, F24, F29, F30, F61, F67, F96, F149, 
F176, F191, F207, F217, F227, which is also summarized in Table 2.

2.6  Classification models

To carry out a comparative study, five popular machine learning methods, i.e., the sup-
port vector machine (SVM), K-nearest neighbor (KNN), naive Bayes (NB) classifier, 
decision tree, and ensemble learning based Adaboost (ELA) classifier were evaluated 
because they are usually utilized to solve the classification problem in nonlinear feature 
space and are suitable for a small size dataset, which is the case in the present study. For 
detailed introductions of these models, please refer to references [63–68].

2.6.1  Support vector machine (SVM)

SVM is a prevalent machine learning and pattern classification technique which trans-
forms data points into a high-dimensional feature space and identifies an optimum 
hyperplane separating the classes present in the data [63]. In the present study we 
adopted the popular radial basis function (RBF) kernel.

2.6.2  K‑nearest neighbor (KNN)

KNN is an effective nonparametric classifier which performs the classification by 
searching for the test data’s k nearest training samples in the feature space [64]. It utilizes 
Euclidean or Manhattan distance as a distance metric for the similarity measurement.

2.6.3  Naive Bayes (NB) classifier

NB classifier is a probabilistic method relying on the assumption that every pair of fea-
tures involved are independent of each other whose weights are of equal importance 
[65]. The main advantages of NB are the conditional independence assumption, which 
leads to a quick classification and the probabilistic hypotheses (results obtained as prob-
abilities of belonging of each class).

2.6.4  Decision tree (DT)

In DT, features are used as input to construct a tree structure in which several rules are 
extracted to recognize the class of the test data [66].

2.6.5  Ensemble learning based Adaboost (ELA) classifier

Ensemble learning techniques combine the outputs of several base classification tech-
niques to form an integrated output and enhance classification accuracy. Compared to 
other machine learning methods that try to learn one hypothesis from the training data, 
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ensemble learning relies on constructing a set of hypotheses and combines them for 
use [67]. For the popular Boosting ensemble method, we adopted the addative boosting 
(Adaboost) algorithm [68] in this study.

3  Experimental results
We evaluate the classification performance of ACLD knees against ACLI knees using 
dynamical features on different classification models. Several experiments are carried 
out to verify the effectiveness of the proposed method. Each participant walked five tri-
als under normal and fast walking speeds, respectively. Ten and fourteen trials under 
normal and fast speeds, respectively, were abandoned because of the malfunction of the 
motion capture system during the experimental procedure. Hence training size for the 
ACL-D and ACL-I knees under normal speed is 43× 5− 10 = 205 . The total training 
size is 205+ 205 = 410 . Training size for the ACL-D and ACL-I knees under fast speed 
is 43× 5− 14 = 201 . The total training size is 201+ 201 = 402 . The number of gait 
patterns/trials for the training and classification of ACLI and ACLD knees in different 
walking conditions is shown in Table 4, which is used to testify the robustness of our 
proposed method to the variation of walking speed.

Experiments are conducted to assess the effectiveness of the proposed features on dif-
ferent classifiers. For the purpose of evaluation, six performance parameters are utilized, 
including the Sensitivity (SEN), the Specificity (SPF), the Accuracy (ACC), the Positive 
Predictive Value (PPV), the Negative Predictive Value (NPV) and the Matthews Correla-
tion Coefficient (MCC). These measurements are defined as follows [69]:

(16)SEN =

TP

TP+ FN
× 100(%)

(17)SPF =

TN

TN + FP
× 100(%)

(18)ACC =

TP+ TN

TP+ TN + FN + FP
× 100(%)

(19)PPV =

TP

TP+ FP
× 100(%)

(20)NPV =

TN

TN + FN
× 100(%)

Table 4 Experiments for gait patterns classification between ACLI and ACL-D knees under different 
walking conditions

Walking condition Cross-validation type Pattern number 
for ACLI knee

Pattern number 
for ACLD knee

Total 
pattern 
number

Normal speed 2-fold, 10-fold and leave-one-out 205 205 410

Fast speed 2-fold, 10-fold and leave-one-out 201 201 402
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where TP is the number of true positives, FN is the number of false negatives, TN is the 
number of true negatives and FP is the number of false positives. The sensitivity and 
specificity correspond to the probabilities that PD patients and healthy controls, respec-
tively, are correctly classified. To be accurate, a classifier must have a high classification 
accuracy, a high sensitivity, as well as a high specificity [70]. For a larger value of MCC, 
the classifier performance will be better [69, 71].

Binary classification problems classified using five classificaton models: SVM, KNN, 
NB, Decision Tree and ELA. Two-fold, ten-fold and leave-one-out cross-validation 
techniques are used and performance outcome such as SEN, SPF, ACC, PPV, NPV 
and MCC, is calculated to obtain reliable and stable evaluation on the performance 
of the proposed method. Instead of using all the 243 features (as listed in Table  3) 
for classification, the 38 statistically significant features that demonstrate the signifi-
cant difference between ACLD and ACLI knees are employed. In addition, in order to 
improve the performance of the five classifiers by reducing the computation burden, 
the optimal feature set containing 16 features (shown in Table 2) was derived using 
features selection method [62]. The classification performance outcome for the five 
classifier models under normal and fast walking speeds is illustrated in Tables  5, 6, 
7, 8, 9 and 10. Among the five classifier models, the SVM classifier achieves the best 
classification performance in all the 2-fold, 10-fold and leave-one-out cross-valida-
tion styles. It also possesses the best robustness to the variation of walking speed. On 
the contrary, the NB classifier did not work well under both walking speeds and its 
classification performance is inferior to the other four classifiers.

(21)MCC =

TP× TN − FN × FP
√

(TP+ FN)(TP+ FP)(TN + FN)(TN + FP)

Table 5 Performance indexes for the optimal subset and for each classification algorithm using 
2-fold style under normal walking speed

Bold values to highlight the relevant numbers

Algorithm Feature set SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC

SVM Opitmal feature set shown in Table 2 96.00 86.67 91.22 87.27 95.79 0.829
KNN Opitmal feature set shown in Table 2 81.00 75.24 78.05 75.70 80.61 0.563

NB classifier Opitmal feature set shown in Table 2 48.48 66.04 57.56 57.14 57.85 0.148

Decision tree Opitmal feature set shown in Table 2 73.33 82.00 77.56 81.05 74.55 0.555

ELA classifier Opitmal feature set shown in Table 2 70.43 77.78 73.66 80.20 67.31 0.479

Table 6 Performance indexes for the optimal subset and for each classification algorithm using 
10-fold style under normal walking speed

Bold values to highlight the relevant numbers

Algorithm Feature set SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC

SVM Opitmal feature set shown in Table 2 100 90.48 95.12 90.91 100 0.907
KNN Opitmal feature set shown in Table 2 91.30 77.78 85.37 84.00 87.50 0.703

NB classifier Opitmal feature set shown in Table 2 50.00 73.68 60.98 68.75 56.00 0.242

Decision tree Opitmal feature set shown in Table 2 75.00 88.24 80.49 90.00 71.43 0.623

ELA classifier Opitmal feature set shown in Table 2 90.00 66.67 78.05 72.00 87.50 0.581
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4  Discussion
Experimental results of this study illustrate that it is with high efficiency and accuracy 
to detect the gait disparity between chronic ACLD and contralateral ACLI knees and 
to differentiate between them by means of the established pattern recognition system. 
The impact of feature extraction and selection on five different classification models 
has also been demonstrated.

Table 7 Performance indexes for the optimal subset and for each classification algorithm using 
leave-one-out style under normal walking speed

Bold values to highlight the relevant numbers

Algorithm Feature set SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC

SVM Opitmal feature set shown in Table 2 95.12 97.56 96.34 97.50 95.24 0.927
KNN Opitmal feature set shown in Table 2 84.39 91.22 87.80 90.58 85.39 0.758

NB classifier Opitmal feature set shown in Table 2 48.78 73.66 61.22 64.94 58.98 0.232

Decision tree Opitmal feature set shown in Table 2 82.93 84.39 83.66 84.16 83.17 0.673

ELA classifier Opitmal feature set shown in Table 2 77.56 80.98 79.27 80.30 78.30 0.586

Table 8 Performance indexes for the optimal subset and for each classification algorithm using 
2-fold style under fast walking speed

Bold values to highlight the relevant numbers

Algorithm Feature set SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC

SVM Opitmal feature set shown in Table 2 82.18 94.00 88.06 93.26 83.93 0.767
KNN Opitmal feature set shown in Table 2 76.40 70.54 73.13 67.33 79.00 0.466

NB classifier Opitmal feature set shown in Table 2 61.39 40.00 50.75 50.82 50.63 0.014

Decision tree Opitmal feature set shown in Table 2 68.81 76.09 72.14 77.32 67.31 0.448

ELAclassifier Opitmal feature set shown in Table 2 71.58 72.64 72.14 70.10 74.04 0.442

Table 9 Performance indexes for the optimal subset and for each classification algorithm using 
10-fold style under fast walking speed

Bold values to highlight the relevant numbers

Algorithm Feature set SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC

SVM Opitmal feature set shown in Table 2 91.30 88.89 90.24 91.30 88.89 0.802
KNN Opitmal feature set shown in Table 2 73.08 85.71 77.50 90.48 63.16 0.562

NB classifier Opitmal feature set shown in Table 2 54.55 50.00 52.50 57.14 47.37 0.045

Decision tree Opitmal feature set shown in Table 2 73.79 77.55 75.62 77.55 73.79 0.513

ELA classifier Opitmal feature set shown in Table 2 72.22 81.82 77.50 76.47 78.26 0.544

Table 10 Performance indexes for the optimal subset and for each classification algorithm using 
leave-one-out style under fast walking speed

Bold values to highlight the relevant numbers

Algorithm Feature set SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC

SVM Opitmal feature set shown in Table 2 92.54 89.55 91.04 89.86 92.31 0.821
KNN Opitmal feature set shown in Table 2 74.63 85.57 80.10 83.80 77.13 0.606

NB classifier Opitmal feature set shown in Table 2 61.19 46.27 53.73 53.25 54.39 0.076

Decision tree Opitmal feature set shown in Table 2 82.59 79.10 80.85 79.81 81.96 0.617

ELA classifier Opitmal feature set shown in Table 2 79.60 80.60 80.10 80.40 79.80 0.602
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The present study not only revealed that ACLD leg demonstrates altered gait pat-
terns in comparison to contralateral ACLI leg, but also provided effective and objec-
tive feature extraction and classification methods to discriminate between the two 
groups. Comparison of the classification performance to other state-of-the-art meth-
ods between ACLD and ACLI knees is demonstrated in Fig.  3. Overall, our classi-
fication approach achieves greatest accuracy considering the size of the databases. 
Different from the methods in the above-mentioned literature, our method extracted 
several linear and nonlinear dynamical features to represent the disparity of gait pat-
terns between ACLD and ACLI legs for the discrimination task.

Currently, to the authors’ knowledge, RQA, fuzzy entropy and Teager-Kaiser energy 
have never been considered for the classification of gait patterns between ACLD and 
ACLI knees in previous literature. The gait signals were recorded for short durations of 
about 3 min, which was usually required in clinical practice. The present study dem-
onstrated improved accuracy because RQA, fuzzy entropy and Teager-Kaiser energy 
work well irrespective of data length. The other possible reason could be that RQA could 
depict the hidden relationship of gait signal (for example: periodic or chaotic nature) 
without assuming the signal to be stationary, linear and noiseless and thus extract the set 
of features.

The proposed pattern recognition system may serve not only as a measure of kine-
matic variability and discrimination between two groups of ACLD and ACLI knees, 
but also as a non-invasive, objective and assistant technical means to other diagnostic 
approaches such as X-rays, MRI, arthroscopy, etc.

5  Conclusion
This study investigated the performance of different gait features on five classification 
models for discriminating between ACLD and contralateral ACLI knees. The results of 
this study indicate that the pattern classification of lower extremity kinematic and kinetic 

Fig. 3 Comparing the results of accuracy (in leave-one-out style) in classifying gait patterns between ACLD 
and ACLI knees using different methods under normal walking speed
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data can offer an objective and non-invasive method to assess the gait disparity between 
ACLD and ACLI knees. These results demonstrate the potential of the proposed tech-
nique for detecting pathological gait patterns caused by ACL deficiency by analysing and 
measuring the gait difference using RQA, fuzzy entropy, Teager-Kaiser energy and sta-
tistical features on different classification models. Utilizing RQA on gait signals assist in 
understanding the nature of gait signals and quantify gait with disorders. It does not rely 
on assumptions like non-linearity and non-stationarity, and is suited for short length 
gait time series. Fuzzy entropy measures the variability of gait signals with short length. 
The main objectives of this study include understanding the dynamics of human gait, 
quantitatively analyzing the gait pattern of ACLD and ACLI knees and improving the 
accuracy of binary classification problems through different machine learning classifiers.

In terms of the limitations in the present study, there are two concerns: (1) the method 
was evaluated on a small size of database. In addition, the discriminative model con-
structed in this study enabled only limited clinical usefulness in discerning between the 
ACLD and contralateral healthy knees. Improvement in discrimination capabilities may 
perhaps be achieved by consideration of additional control groups. Future work will 
include a clinical validation of the proposed technique with a larger number of patients 
with ACL deficiency and age-matched healthy controls. (2) there are limited types of gait 
signals extracted from the participants, including knee joint angles and translations in 
6DOF. Various gait signals like knee joint angular velocity and acceleration, knee kinetic 
parameters (force, moment, etc) may also considered in future work to comprehensively 
reflect the characteristic of pathological and normal gait patterns between ACLD and 
ACLI knees.
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