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1  Introduction
Discriminating targets from background noise and interference is a fundamental task 
of all radar systems. Targets need to be differentiated with high probability of detection 
( PD ) and simultaneously the detection methodology should offer a low false alarm rate 
( PFA ). The radar detection problem is complicated by possible factors such as multiple 
closely spaced targets, the presence of clutter and clutter edges in vicinity of targets. 
Target detection has been studied heavily over the years, and a large number of tech-
niques have been suggested. One particular class of algorithms, who also sufficiently 
satisfy the constant false alarm rate (CFAR) property, include CA (cell averaging), GO 
(greatest of ) and SO (smallest of ) CFAR sliding window methods with several proposed 
variants [1–8]. Importantly, these detectors aim to provide an adaptive mean to calcu-
late the detection threshold as fixed thresholds are inadequate in case of complex and 
dynamic surroundings. In the literature, a wide variety of alternative detection methods 
have also been proposed for specific environmental conditions where the detectors are 
tailored with respect to assorted target and clutter distributions and applicable second-
ary data are made use of [9–13]. These methods often rely on estimation of distribu-
tion parameters, the covariance matrices and are dependent upon accurate estimation of 
these figures.
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The use of machine learning has gained much attention over the years, and these tech-
niques have also been discussed in radar contexts for target detection [14–26]. Particu-
larly, Wang et al. [21] investigated the use of deep convolutional networks to improve 
target detection, while [23] employed autoencoders for the same task. In [19, 20, 27], the 
authors proposed training of feedforwarding neural networks (NN) to emulate various 
CFAR detectors while concurrently aiming to reduce the number of false detections. The 
trained neural networks were demonstrated to be effective in reproducing the detection 
algorithms and in reducing the false alarm rate with some loss in probability of detec-
tion. Nevertheless, the proposed approaches also left open several questions, such as 
what features do the networks require to distinguish between true and false detections, 
are there circumstances where they do not operate well, how many layers should a net-
work have and what would be the maximum potential for such a trained neural net-
work? Several disadvantages with the previous techniques have also been observed. For 
instance, the neural networks were required to learn and implement the CFAR detec-
tion process as well as discriminating between true and false detections resulting in an 
interweave training procedure with lesser degree of specialization. Another drawback 
was that the strategy was found to be incapable of further generalization with regard to 
sophisticated type of detectors who, for example, require sorting of entries. Finally, pro-
cessing every sliding window sample through a full neural network is a computational 
expensive procedure, compared to a standard CFAR test, and other strategies that can 
be developed would therefore be of great practical interest.

This paper builds upon the previous works and presents a cohesive generic methodology 
on how to train and perform a detection process in combination with feedforwarding neu-
ral networks. The initial detection process is herein proposed carried out conventionally by 
making use of an amended, rudimentary, sliding window CFAR detector, and only positive 
detections are to be processed by the neural network. The neural network thus acts as a 
specialized binary classifier between true and false detections. The leading detection strat-
egy is proposed based on a modified version of censored mean SO-CFAR with the objective 
to force the detector to provide a high probability of detection. In the suggested SO-CFAR 
construction, a number of the largest elements in the sliding window are censored which 
makes it viable to detect in tangled conditions such as multiple closely spaced targets as 
well as enclosed targets in clutter edges. The downside of this is an exceedingly high false 
alarm rate which is where the neural network steps in and aims to curtail it to acceptable 
levels. In order to achieve a high probability of correct target detection, we show that simply 
using the CFAR sliding window samples is not sufficient rather the target spread in Doppler 
contains important discriminatory information and contributes positively if integrated by 
the neural network. By linking together different strategies in an appropriate training ses-
sion, it is shown that a high level of PD can be achieved with a satisfactory low PFA for the 
type of scenarios the network has been trained on. On the other hand, if only elementary 
CFAR window data, also excluding guard cells, are allotted to train a neural network then 
in a noise-only situation, the networks can converge toward a traditional CFAR detection 
strategy. To this end, simulations performed over a convoluted scene with multiple closely 
spaced fluctuating targets and with and without K-distributed clutter are performed and 
evaluated under various parameters and sliding window structures. The contributions of 
this paper permit a radar sensor to adapt the detection process to its surroundings based 
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on learned collected or simulated data, and it is shown how established detection methods 
may be coupled with machine learning concepts.

2 � Radar and signal model
This section briefly reviews a generic structure for a pulsed radar system upon which a slid-
ing window detector can be modeled. The radar is assumed to emit a burst of M waveforms 
in a coherent processing interval (CPI). The targets are assumed to be slowly fluctuating 
with a distribution, such as Swerling 1, where the values vary randomly across different 
dwells but with a given mean signal-to-noise ratio (SNR) and signal-to-clutter ratio (SCR). 
For each CPI, the radar processing unit performs a tapered Fourier transform over each 
range bin to construct a range-Doppler map represented by an M × R complex matrix 
D(t,ω) . t = 1, 2, . . . ,R is the discrete fast-time parameter with respect to different time 
delays (range cells) while ω = 1, . . . ,M represents the Doppler cells.

To perform a detection, each individual cell of the range-Doppler map is evalu-
ated one by one. The detector takes the square law range samples of the map D , 
D̂(t,ω) = |D(t,ω)|2 ∀ t,ω , and a sliding window of size 2N + 2G + 1 is moved 
across, t̂ = 1+ N + G, . . . ,R− N − G and ω̂ = 1, . . . ,N  excluding the edges. 
The 2N + 2G + 1 samples in range specified by the window are extracted in 
x(u) = D̂(t̂ − N − G : t̂ + N + G, ω̂), u = 1, 2, . . . , 2N + 2G + 1 and the cell in the mid-
dle of the window, x(N + G + 1) , cell under test (CUT), is compared against a scaled aver-
age, γ , to determine whether conditions for declaring a detection are satisfied. G number of 
gap cells immediately to the right and left of CUT are discarded when computing the aver-
age to avoid target leakage and neutralize the impact of sidelobes. A detection is declared if

where K is a specified threshold.
The background average, γ , plays a central role in the detection process and may be com-

puted through a variety of methods. In (Cell Averaging) CA-CFAR, the average is com-
posed of all available 2N cells,

which corresponds to a maximum likelihood estimate under homogeneous assumptions 
[5, 28] but can also be attempted applied under other conditions. As other alternatives, 
GO (Greatest Of) GO-CFAR and (Smallest Of) SO-CFAR can be implemented where 
two averages are computed based on N reference values each from the left and right side 
of the CUT,

In GO-CFAR, a conservative approach is taken as the maximum value among the two 
is selected as the comparable value,
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resulting in typically a slightly lower PD alongside reduced false alarm rate. In SO-CFAR, 
instead, the smallest value is chosen,

which improves detection in case of clutter edge or in the presence of an additional tar-
get on one side of the sliding reference window [29]. This results in a good detectional 
performance; however, as the interference level is always underestimated, a high PFA is 
to be expected in non-homogeneous conditions. There exist a large number of other 
methods including censored mean level (CML-CFAR) detectors [30, 31] where the larg-
est samples in the reference windows are excluded before the background mean is com-
puted. Removing the greater values improves detection in the presence of dense targets 
but otherwise comes at the expense of PFA due to an undervalued γ estimate. In previous 
papers [19, 20], it was demonstrated that a neural network could be trained to mimic the 
classical CFAR detectors with reduced number of incorrect detections, but the PD could 
not be increased. Building upon this capability one can move forward to a new type of 
detection process where the detector is altered to provide a very high level of PD along-
side a much enlarged PFA . This can be viewed as the first step in a two part cascaded 
classification process, where in the first stage, the designated detector synthesizes a very 
coarse decision. In the second step only positive detections are evaluated by a trained 
neural network to determine whether the bin qualifies for a detection or not. The proce-
dure implemented by the secondary network classifier is not contingent upon a particu-
lar detector but the first detection upper-bounds the PD performance of the system and 
the network is only taught to identify false detections with respect to a given detector. In 
this text, we limit ourselves to the modified version of the classical SO-CFAR detector 
as it can be used to demonstrate the applicability on both noise-only and clutter based 
scenarios. This detector may readily be replaced by other type of detectors; preferably, as 
long as the detector can be tuned to yield a larger or fewer number of correct and incor-
rect detections.

3 � Methods
The methodology of the two step detection and classification process is described next.

3.1 � Step 1: CMSO‑CFAR detector

As the initial first step detector, we utilize a modified version of the censored mean level 
detector combined with SO-CFAR, denoted herein as CMSO-CFAR. In this detector, the 
N elements to the right and left side of the sliding window x(u) are sorted in two blocks in 
increasingly order

and

(4)γ = max (γ1, γ2),

(5)γ = min (γ1, γ2),

(6)x̂1(u) = sort(x(1) . . . x(N ))

(7)x̂2(u) = sort(x(N + 2G + 2) . . . x(2N + 2G + 1)).
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From each block only the first P, 1 ≤ P ≤ N  , lowest value samples are taken into con-
sideration in estimating the two mean averages,

The smallest of these two averages is selected γ = min (γ1, γ2) as the estimate to be 
applied by (1). The performance of this detector will be contingent on the choice of P. 
A selection of P = N  leads to the standard case of SO-CFAR while at the other extreme 
P = 1 implies an unrefined estimate of the background noise or clutter. A small choice of 
P, nevertheless, is befitting for detection of multiple closely spaced targets and detection 
in non-homogeneous settings. The reference level γ can be rather forgiving in CMSO-
CFAR but operates as a regulator of when it is justifiable to train and evaluate a cell by 
the neural network. A complementary objective of the detector is to make certain that 
not the complete range-Doppler map requires inspection by a neural network which 
would lead to a more computational expensive operation.

3.2 � Step 2: Neural network classifier

In the second step, all positive outcomes from the initial detector are processed by a 
neural network. If the detector returns a positive value, only then selected range-Dop-
pler data, from the neighborhood of CUT, are supplied to the network. Consequently, 
the output from the neural network determines whether a target detection at CUT is 
declared or not.

The aforementioned CMSO-CFAR test is formulated to operate in the range dimen-
sion only; however, for the neural network several other choices can be made on what 
type of data it should be dispensed from the range-Doppler map. We consider three dif-
ferent options, namely O1, O2 and O3 where the data fed into the network are specified 
by r and follows:

•	 O1: r = (x(1) . . . x(N ), x(N + G + 1), x(N + 2G + 1) . . . x(2N + 2G + 2)) , 
2N + 1 values corresponding to the sliding window reference cells and the value in 
CUT​

•	 O2: r = (x(1) . . . x(2N + 2G + 1)) , 2N + 2G + 1 values corresponding to the slid-
ing window reference cells, including guard cells, and the value in CUT​

•	 O3: r = (x(1) . . . x(2N + 2G + 1) D̂(t, 1 . . . M)) , 2N + 2G + 1+M values cor-
responding to the sliding window reference cells, including guard cells, the value in 
CUT and the M values from the Doppler profile for the particular range-bin.

Figure 1 provides an illustration of range-Doppler sliding window data interconnected 
with a fully connected neural network. With the first option (O1), the network is only fed 
the identical information as utilized by a standard SO-CFAR test, while with the second 
option (O2) the guard cell data are also incorporated. Guard cells can potentially con-
tain useful information for target identification due to potential range walk and range 
sidelobes originating from the pulse spreading function. Similarly, targets tend to spread 
out in Doppler, subject to the applied tapering window, and the statistical information 
on target impacting neighboring cells can be taken into account by a neural network. 
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With the third option (O3), the neural network will be fed all M samples from the Dop-
pler profile in addition to the 2N + 2G + 1 values from the CFAR range window. The 
auxiliary data of O2 and O3 have always been available for detectional purposes, but it 
is not analytically discernible how this can be utilized to improve the target detection 
process; this is nevertheless a task ideally suited for neural networks that can internally 
construct intricate models. In all cases, the input samples to the neural network are nor-
malized by min–max normalization, r̂ = r−min(r)

max(r)−min(r) . The output from the last layer of 
a neural network, κ = fNN(r̂) , returns a detection estimate. fNN(r̂) represents the neural 
network modeled as a function with an input of the normalized data r̂ . A threshold test 
is applied on κ and if exceeded a detection is declared.

For supervised training of the proposed network, we assume that a collection of L 
independent range-Doppler maps D1(t,ω), . . . ,DL(t,ω) have been acquired wherein the 
targets and their positions in range and Doppler are known precisely (i.e., ground truth). 
A database is thereupon constructed based on realizations of CMSO-CFAR tests and 
window samples who lead to positive detections. A number of samples are collected for 
when the detection process returns a correct decision and when the detector returns 
a false positive. The training objective of the neural network is to distinguish between 
these two cases and to return either 0 or 1:

where κ̂ is the aimed output from the neural network. This training process forces the 
network to evolve a statistical mechanism to separate between the two type of detec-
tions. We remark that the condition for a correct decision must also include neighboring 
cells if a target spreads out in range and/or Doppler due to sidelobes and if the initial 
detector returns a positive outcome. The objective behind the neural network training is 
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Fig. 1  Schematic description of the detection process and data linked with a neural network
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not necessarily to retain the same PD as for CMSO-CFAR but to exploit it to maximize 
the detection capability with a satisfactory low false alarm rate.

For a generic type of network training, the training database should contain a wide 
variety of samples in order to learn to recognize different situations. This is particularly 
important if the network is trained on data including gap cells and/or Doppler profiles 
as the network can become highly specialized with respect to these inherent features. To 
attain better control over this, the various samples within the training database may be 
split into multiple categories when the initial detector returns a positive result. Possible 
categories for positive and correct CMSO-CFAR can be: target in noise-only environ-
ment, target in clutter region, target with the presence of another target in the refer-
ence cells, target with clutter edge on the right or left side of the reference cells and so 
forth. Similarly, different categories can be established for incorrect decisions, such as 
false positive in noise-only environment and false positive due to presence of clutter. A 
fair balance between these groups is important if the network is expected to perform 
equally well on all situations. In a simulated environment, a good counterbalance can be 
achieved by making certain that the various situations all occur with equal likelihood. 
A neural network training based on the above criteria is in principle an optimization 
process with the objective to minimize the overall error of the network which can be 
decomposed as,

where AN and BN refer to the number of samples for correct or false positive detections 
with the sliding window samples denoted by x̂A,k , k = 1, . . . ,AN and x̂B,k , k = 1, . . . ,BN 
for the two categories.

3.3 � Choice of neural network

The number of input parameters to the network will be limited between 2N + 1 entries 
(O1) up to 2N + 2G + 1+M values in case of O3. As the amount of input data is rather 
limited, we recommend to use standard fully connected feedforwarding networks for the 
machine learning parts as these networks are able to approximate any arbitrary operator 
[32]. The output from a node of the network is therefore connected to every other node 
in the next layer. The network will consist of an input layer, an output layer with a linear 
transfer function and one or two hidden layers with hyperbolic tangent sigmoid activa-
tion functions. The output layer is to contain a single node as a binary detection estimate 
is desired. The number of hidden layers and nodes may be varied and will be discussed 
in the next section though very large networks are not desirable as they can potentially 
lead to overtrained networks. Contrarily, very small networks may not be able to distin-
guish well between true targets and false detections.1

min fNN|x̂ =

AN
∑

k=1

(

|fNN(x̂A,k)| − 1
)2

+

BN
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(
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)

|2

1  All of the trained neural networks described here are available for download from: http://​dx.​doi.​org/​10.​6084/​m9.​figsh​
are.​14252​663.

http://dx.doi.org/10.6084/m9.figshare.14252663
http://dx.doi.org/10.6084/m9.figshare.14252663
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4 � Results and discussion
Neural network training is a highly data-driven approach, and the results may depend 
on the type of input data and the constructed scenario. This section exemplifies how 
the presented framework can be put to use under both noise-only and clutter oriented 
scenarios. Parts of a pulsed radar system are simulated in slow-time to train neural net-
works under the proposed methodology, and the performance is evaluated against tradi-
tional SO-CFAR and GO-CFAR detectors alongside CMSO-CFAR. The radar is assumed 
to transmit and receive M = 16 pulses over R = 300 range bins. In total, 11 indepen-
dently fluctuating targets are modeled being placed at various range bins. The targets’ 
reflectivity is assumed to follow a standard Swerling 1 model where the mean is varied 
randomly during training to mirror different power levels. The clutter shape parameter 
is randomly selected uniformly for each dwell to be in the range between v = 0.05 (spiky) 
and v = 10 (Rayleigh distributed) [33]. The clutter values are then arbitrary generated 
modeled through a K-distribution function [18] to cover the first half of range bins and 
are additionally formed with a propagation factor to provide a dip in the clutter region. 
A random process additionally up or down scales the clutter to implement a greater var-
iation in signal-to-clutter ratio from dwell-to-dwell. Noise is modeled as white Gaussian 
noise and to simulate noise-only scenarios, the clutter modeling aspects are discarded. 
For construction of the range-Doppler map, the Hamming window is put to use.

We refer to Fig. 2 for an example range-Doppler map where all 11 targets stand out 
and are designated from A to K. In the figure, the clutter component is included and can 
be seen on the left side. Targets A, B, C, H, I, J can be considered to be in a clutter domi-
nated region, and their velocity is randomly selected to be within −45 m/s to 45 m/s. 
For other targets, the velocity range is set between − 65 and 65 m/s. Targets A, C and H 
are within the vicinity of the clutter edge, and their range placement is randomly deter-
mined to be between 0 and 9 bins to the left or right of range bins, respectively, 60 or 
160 at the start and end of the second clutter region. Positive detection samples will thus 
experience cases of clutter edge with different distance from CUT from both sides. Tar-
gets D, E, F and I, J are closely spaced with identical velocities, but the distance amidst 
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is randomly set between 3 and 10 range cells. With a probability of 0.5, these closely 
spaced targets have equal power levels, while otherwise they all fluctuate randomly. 
Closely spaced targets are thus modeled with both matching and dissimilar reflecting 
values. We further remark that targets A, H, B, J and G, K are placed on the same range 
bin. This is important to make certain that when a network is trained incorporating the 
Doppler profile (O3), the network does not erroneously make the assumption that only 
a single target can be encountered on a given range-bin. The simulated scenario is set 
up, so the different type of targets in noise-only and clutter regions, targets in clutter 
edges or single or closely spaced targets are accounted approximately once in a propor-
tionally manner. The few exceptions are related to targets who occur twice in the same 
range-bin, such as targets G and K who are both single targets in noise-only region. All 
targets are moreover modeled to have a single sidelobe in range of − 23 dB on adjacent 
bins and with a probability of 0.5 range walk is simulated with a target spreading across 
two range-cells. If the target is designated to spread out in range then the neighboring 
cell instead determines an independent Swerling 1 value from the same distribution. 
Simulating target spread does not alter the performance of a standard CFAR detector 
with guard cells; however, a neural network can then not simply recognize a target by an 
expected fixed sidelobe level in bordering cells. The noise floor during simulations is also 
not kept fixed, rather ranges between − 80 and − 115 dB following a uniform distribu-
tion between CPIs. The variation in the above setup, particularly from dwell-to-dwell, 
captures a broad types of both simple and challenging detectional conditions which 
should be suitable for training and evaluating a generic type of detector.

After formation of a range-Doppler map, a detection process is performed with the 
CFAR parameters being set as G = 3 guard cells and N = 9 averaging cells on each side 
and a thresholding factor of 14dB. Two values of P = 3 and P = 6 were selected for 
CMSO for two independent realizations of training and evaluations. To construct the 
training database, true and false positive detections were taken as encountered sequen-
tially by CMSO-CFAR and new random range-Doppler maps were generated for as 
long as required. A total of AN = 100,000 positive detections were collected, while the 
number of false positive collected detections was set to BN = 1,000,000 , resulting in 1.1 
million entries for the training set. The ratio between incorrect and correct detections 
symbolizes the much larger number of false detections which arise with the application 
of CMSO-CFAR. For clutter scenarios, the number of false detections was grouped in 
two, half of the false detections occurring in the clutter region and the other half in the 
noise-only region. The target SNRs over all dwells ranged from − 40 to 70 dB, while the 
SCR varied between − 60 and 60 dB when clutter was included.

For neural network training, all three data options were considered with two different 
sizes; a small 50x1 network with one hidden layer of 50 nodes or a bigger 50x2 network 
with two hidden layers. The selection of 50 nodes in a layer was made as it roughly cor-
responds with the O3 input being set at 41 entries. For a fair comparison, the same net-
work sizes were also kept for O2 and O1 selections. Even bigger and deeper networks 
were also investigated, however, the performance was found to be generally very com-
parable to the 50x2 networks. Training was carried out using the scale conjugate gradi-
ent algorithm over both noise-only and clutter plus noise scenarios. The full data were 
put to use for training, without any division into different sets for training or validation, 
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over a total of 1 million epochs. To inspect how training actually transfers over to detec-
tional performance on untrained data, a larger set of 6500 range-Doppler maps was con-
structed adopting the formerly described principles but with a set mean power value 
for the targets. Each map was evaluated in full through different detection methods and 
the trained neural networks to build up statistics. This process was repeated with vary-
ing average target power levels to obtain PD and PFA curves with respect to mean target 
SNR or SCR. PD was calculated as the number of correctly detected targets relative to 
the total number of simulated targets while PFA as the number of incorrectly detected 
targets in relation to total number of tests (26.2 millions per SNR/SCR). The network 
threshold was fixed at κ > 0.8 which represents an outcome with high degree of cer-
tainty. Other values of κ can be chosen to shift the curves up or downward [27].

4.1 � Noise‑only scenario

If a sensor operates mainly in an homogeneous environment, then the described clutter 
modeling aspects can be eliminated to detect single and dense targets in noise. Training 
on only noise provides opportunity to understand the behavior of neural networks and 
the classification process in a simpler context. Later, the performance can be compared 
against a network trained on both noise and clutter. The network convergence error rates 
after a completed training process are given in Table 1 for the noise-only case. Training 
over O2 dataset gives several times improvement over O1, while a further enhancement 
is attainable by using O3. The error rates for P = 6 are lower than for P = 3 pointing 
toward the fact that a low selection of P can result in a very large number of incorrect 
detections who are more difficult to classify. Two layer networks generally yield lower 
error rates though the improvement could stem from either the ability to detect more 
targets correctly or identify more false detections.

Subsequently training, results from the evaluation process executed over the untrained 
dataset of range-Doppler maps are given in Figs. 3 and 4 where the top plot depicts the 
PD curves, while the PFA curves are on the lower plot. The x-axis follows the average 
SNR in dB with fluctuating Swerling 1 targets. The best PD performance stems from 
CMSO-CFAR (dashed magenta) which also yields the highest PFA . At the other extreme, 
GO-CFAR (magenta with diamonds) gives the lowest false alarm rate at the expense of 
lowest detectional capability. This is related to this detector’s inability to identify closely 
spaced targets. The standard SO-CFAR (solid black) performs in-between these two 
extreme detectors. Results of classification of CMSO-CFAR detections from the neural 
network trained only on references cells (O1) for 50x1 (blue starred) show a very close 

Table 1  Neural network training errors, noise-only training

Data option and network size P = 3 P = 6

O1, 50x1 0.012815 0.010665

O2, 50x1 0.004880 0.003529

O3, 50x1 0.001576 0.001104

O1, 50x2 0.009597 0.006641

O2, 50x2 0.002912 0.001334

O3, 50x2 0.000273 0.000031
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convergence toward standard SO-CFAR for both PD and PFA . Although this solution 
does not lead to the detection of more than two closely spaced targets, it still becomes 
the best fit for the dataset and demonstrates the networks ability to coincide toward a 
classical solution if no alternatives can be found.

The other networks in Fig.  3 which utilize the guard cells information (O2, red) 
or guard cells combined with Doppler profile (O3, black starred) provide a clear PD 
advantage over standard SO-CFAR, and at high SNR the curves can be seen converg-
ing toward CMSO-CFAR. The false alarm rate is well below CMSO- or SO-CFAR 
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Fig. 3  PD and PFA , Noise-only scenario, 50x1 network, P = 3
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though remains above GO-CFAR. This validates the basic claim that there is useful 
information present in guard cells and the Doppler cells. The false alarm rate for the 
case of O3 50x1 trained neural network stands out as it does not follow the CFAR 
property rather behaves in an adaptive manner. At low SNR, the PFA performance is 
more similar to GO-CFAR but attains a higher floor level at bigger SNRs. Otherwise, 
comparing the smaller 50x1 networks with the deeper 50x2 networks (Fig.  4), one 
notices that the PD is always better with the bigger networks though the false alarm 
rates are higher. The PD for the O1 50x2 network is marginally better than SO-CFAR 
but progresses with data options of O2 and O3. For 50x2 cases, the PFA fluctuates 
around that of SO-CFAR. Although these networks evaluate positive detections com-
ing from a CMSO-CFAR detector, all of these are clearly approximating a SO-CFAR 
type of detectional approach and revising it based on available extra information. 
With O3, it is possible to attain CMSO-CFAR detectional level for high SNR targets, 
but the choice of O2 is also quite beneficial as an overall improvement on the tradi-
tional SO-CFAR detector. Recognizing and detecting a target correctly, compared to 
labeling it as a false detection, is evidently a more demanding task and must be based 
on potential information only available in the CUT, the few guard cells and/or the 
Doppler cells adjacent to the CUT.

The selection of P = 3 is useful for obtaining a high probability of detection, but 
the false alarm rates, except for the single case of 50x1 O3, remain relative large com-
pared to GO-CFAR. To further curtail the PFA a greater value of P can be practiced 
which will reduce the PD but still be able to handle many complex situations. For the 
training and evaluation process with P = 6 the results are depicted in Figs. 5 and 6.

As one would predict, advancing from P = 3 to P = 6 reduces the detection capa-
bility of CMSO-CFAR; however, the reduction is quite small at medium to high 
SNR values. At low SNR, the fixed detection capability, which can be attributed to 
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randomness, is now eliminated. To some extent, the results mirror the previous cases 
of P = 3 but with a decreased false alarm rate, particularly for the smaller networks 
of 50x1 (Fig.  5) which are now closer to the GO-CFAR level. In case of O1, the PD 
and PFA are both lower than SO-CFAR but with same curve characteristic for PD ; this 
solution is thus similar to a traditional SO-CFAR detector where a different trade-off 
is being made between PD and PFA . The use of O2 (red curve) gives a comparable PD 
as of SO-CFAR with a low false alarm error closer to GO-CFAR. The application of 
O3 (black starred) gives an even reduced PFA < 1× 10−8 though the detection capa-
bility at medium SNR values is also hampered. Using Doppler information, the net-
work manages to identify false detections very well and the training weighting is such 
that a reduction in PFA is preferred over PD . For the bigger networks of 50x2 (Fig. 6), 
the false alarm rates are not as low but are distributed around 1× 10−6 , doing better 
than both CMSO or SO-CFAR, with the O3 method having a slight advantage. That a 
neural network trained only on noise and utilizing the same limited information (O1) 
as of a traditional CFAR detector can offer roughly identical PD performance as SO-
CFAR but with a lower false alarm rate is an important finding here and is discussed 
further in Sect. 4.3.

Reviewing the results on noise-only setup, we observe that for the proposed train-
ing strategy, even small sized networks are very capable of identifying and reducing 
the number of false detections even though the starting premise may be a very coarse 
CMSO-CFAR detector. The detectional performance is nevertheless strongly depend-
ent upon how much data the network is fed. Deeper networks manage to reduce the 
number of incorrect detections though they tend to place greater emphasis on the 
detectional aspects and, regardless the data option, end up offering a very similar 
false alarm rate. This explains the results of [19, 20] as the improvements demon-
strated there can now be linked to the application of the O2 method. If no adjoining 
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cell information is provided, then the trained network may converge to a standard 
solution (as shown for P = 3 ), while a lower false alarm can still be achieved if the 
initial detector is more restrained (as demonstrated for P = 6).

The assertion for training of a neural network commences from a fixed detection 
threshold. This is in contrast to a traditional setup, where a desired PFA is first deter-
mined and then one aims to maximize the PD . By varying the threshold level K and 
training multiple networks, keeping other parameters fixed, receiver operating charac-
teristic (ROC) curves can still be generated where PD and PFA numbers can be compared 
against each other. Figure 7 provides example of such curves over the defined scenario 
for medium average SNR with P = 6 and both 50x1 and 50x2 networks, complementing 
Figs. 5 and 6.

As the curves demonstrate, the O3 data option provides the leading PD/PFA ratios in 
both cases. The deeper network (right) can deliver higher quotients, noticeably at lower 
PFA levels whereas the 50x1 network (left) starts off at a smaller PFA as it is more fruitful 
in reducing false detection when there are many of these. O2 is also able to yield out-
comes better than both GO or SO-CFAR though there are certain intervals where the 
effectiveness of the 50x2 network can be similar to the CMSO-CFAR detector; a trait the 
smaller network does not exhibit. The O1 selection is most applicable at medium to high 
PFA levels, i.e., when the number of false detections from the initial detector is small, 
the network can distinguish between the two classes with an advantage and follows or 
exceeds the performance of traditional detectors. The choice between 50x1 or 50x2 then 
depends primarily upon the aimed PFA . The presence of multiple closely spaced targets 
makes it difficult to obtain a high PD as observed in previous figures; however, the curves 
demonstrate how different amount of data can be utilized by a neural network for lever-
age, while the initial detector may remain oblivious to it.
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4.2 � Clutter scenario

The preceding section established some important reference points for neural network 
target detection in noise-only surroundings. In a more convoluted environment with the 
presence of sea or ground clutter, target detection becomes more difficult; however, the 
use of CMSO-CFAR is a viable option as it can offer a high detection capability though 
with an inflated false alarm rate. We do note that false detections arising from clutter 
are likely to exhibit certain properties and have a statistical structure which a neural 
network may be able to recognize with more ease than false detections stemming from 
noise. The convergence error rates after the training session, for the combined case of 
noise and clutter setup, as of Fig. 2, are provided in Table 2. The error level decreases as 
the network engages with more data and as P and the size of the network is increased; 
nonetheless, the networks do not adapt to the data as well as for the noise-only case 
(Table 1).

From the table, one may conclude that a bigger network and more input data are 
most appropriate options for a neural network training, but to determine the impact 
on PD and PFA simulations need to be carried out on an untrained data set as outlined 
previously but now with incorporated clutter. The results from subsequent evaluation 
for the case of P = 3 and 50x1 network are given in Fig. 8, while Fig. 9 demonstrates 

Table 2  Neural network training errors, clutter and noise

Data option and network size P = 3 P = 6

O1, 50x1 0.020144 0.017909

O2, 50x1 0.008889 0.007103

O3, 50x1 0.006807 0.003588

O1, 50x2 0.015442 0.012543

O2, 50x2 0.006807 0.004495

O3, 50x2 0.004720 0.000991
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the use of larger 50x2 networks. The lower x-axis provides the average SNR of the tar-
gets in noise-only region, while the average SCR for the targets in the clutter region 
is given in the upper x-axis, the resulting signal to noise plus clutter ratio being in the 
interval from − 21 to 40 dB.

Introducing clutter in the first half of the range-Doppler map lowers the detection 
capability a little; however, the major impact is on the false alarm rates for CMSO-
CFAR and SO-CFAR which are now much higher. The trained 50x1 networks (Fig. 8) 
reduce the false alarm rates substantially though this also comes with a large reduc-
tion in the PD s. Only at high SNR/SCR the detection rates for O2 and O3 exceed 
standard SO-CFAR; otherwise, the PD remains below SO-CFAR. Even though the 
starting point is a CMSO-CFAR detector, the O1 method is particularly only inter-
esting as a GO-CFAR replacement since it does better than GO-CFAR with respect 
to detection, while the PFA remains similar to GO-CFAR. The deeper 50x2 networks 
(Fig.  9) are much more successful in PD efficiency which is well above that of SO-
CFAR depending on whether O2 or O3 method is used while the false alarm rates 
are all comparable to GO-CFAR. The case of O1 is an exception as the detection 
capability is just beneath SO-CFAR though the PFA is significantly lower. As the false 
alarm rates for O1 and O2 are similar across 50x1 and 50x2, one can conclude that 
the smaller networks lack necessary resources to positively discriminate between the 
various type of targets in complicated environments.

The choice of P = 3 is a challenging situation, and the results from P = 6 are given 
in Figs.  10 and 11. The smaller 50x1 networks are, as in the previous case, able to 
reduce the false alarm rates greatly but with a marked decrease in the detection capa-
bility which is only on par with GO-CFAR at low to medium SNRs. At high SNR/
SCR levels, the performance approaches that of SO-CFAR with either O2 or O3. The 
deeper 50x2 networks of Fig. 11 yield better outcomes, and although the reduction in 
the average PFA is lower, it is still significantly curtailed from the original CMSO- or 
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SO-CFAR and float around that of GO-CFAR. The detection rates are all between SO-
CFAR and CMSO-CFAR where the highest detection capability arises from O3 with 
a couple of dB reduction if O2 is employed. Both of these methods exhibit the same 
curve gradient as of CMSO-CFAR. The O1 method also performs better with 50x2 
compared to 50x1 although the PD remains suboptimal against standard SO-CFAR.

The provided figures have established some capabilities of trained neural networks for 
binary classification. The PFA as shown in all the figures is essentially constant satisfying 
the CFAR property at both low- and high-SNR regimes. The only exception being the 
case of O3 training and the smaller 50x1 network for P = 3 where the small choice of P 
leads to very coarse estimation of the noise level.
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Fig. 10  PD and PFA , Clutter and noise scenario, 50x1 network, P = 6
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To consolidate Figs.  11, 12 displays two ROC curves for P = 6 and 50x2 networks 
trained for different thresholds for two different SNR and SCR settings. Not all combi-
nations of PD/PFA are achievable as trained networks will always try to lower the initial 
false alarm rate. The best gain is recovered from the combined CMSO-CFAR and neural 
network detector with O3 data strategy while O2 also surpasses the traditional detec-
tors. The O2 method for the low SCR plot on the left side exhibits an adaptive behav-
ior where it converges toward standard GO-CFAR as the PFA increases. Identical to the 
noise-only case of Fig.  7, O1 can result in improved outcomes but only at higher PFA 
values which shows the importance of the sidelobe information present in guard cells 
and Doppler.

4.3 � Characteristic evaluation

The curves in the depicted plots demonstrate the average performance of the trained 
networks for the defined scenario at various SNR/SCR levels. To further investigate how 
these networks would perform for specific target conditions, more detailed evaluations 
were carried out for P = 6 . Four different simulated setups were considered. Table  3 
provides the numerical outcomes for the first two situations with only a single (S) target 
(target C in Fig. 2) in noise-only environment or only three multiple (M) close targets 
(D, E and F) in noise-only environment. In Table 4, the results are given for the cases 
with detection in mixed noise and clutter environment with either only a single (S) tar-
get in clutter edge (target C) or only dual multiple (M) targets in clutter region (targets 
I and J). The tables in all cases provide the mean detectional and false alarm rates over 
varying SNR as described for the training stage, evaluated across 300 untrained range-
Doppler maps with approximately 103 million CFAR tests. A 0 in the table refers to a 
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PFA < 9× 10−9, and the three bottom rows represent the fallout from traditional CFAR 
detection schemes.

The tables confirm the plots in establishing the progression in PD as one moves from 
feeding less data to more data, i.e., from O1 to O3. Comparing the networks trained on 
noise-only mode against those trained on noise and clutter (top six rows against six bot-
tom NN rows for both tables), those trained on noise-only yield foremost performance 
in clutter-free environments. When the networks trained on only noise are evaluated 
in clutter surroundings (top 6 rows of Table 4), the comparable PFA increases, up to the 

Table 3  Performance comparison, single target (S) and multiple close targets (M) in noise, P = 6

Detector (trained on) S: PD S: PFA M: PD M: PFA

NN (N) O1, 50x1 0.76 5.78× 10
−8 0.34 3.92× 10

−8

NN (N) O2, 50x1 0.80 5.78× 10
−8 0.51 1.96× 10

−8

NN (N) O3, 50x1 0.82 9.64× 10
−9 0.78 0

NN (N) O1, 50x2 0.76 7.52× 10
−7 0.64 4.61× 10

−7

NN (N) O2, 50x2 0.81 8.67× 10
−7 0.77 3.92× 10

−7

NN (N) O3, 50x2 0.82 3.95× 10
−7 0.80 1.07× 10

−7

NN (N+C) O1, 50x1 0.70 0 0.41 9.81× 10
−9

NN (N+C) O2, 50x1 0.79 0 0.63 0

NN (N+C) O3, 50x1 0.79 1.92× 10
−8 0.70 9.64× 10

−9

NN (N+C) O1, 50x2 0.72 2.89× 10
−8 0.60 2.35× 10

−7

NN (N+C) O2, 50x2 0.79 2.89× 10
−8 0.75 2.02× 10

−7

NN (N+C) O3, 50x2 0.82 5.01× 10
−7 0.79 5.11× 10

−7

CMSO-CFAR 0.82 2.43× 10
−3 0.82 2.38× 10

−3

SO-CFAR 0.77 1.19× 10
−5 0.62 1.10× 10

−5

GO-CFAR 0.74 3.85× 10
−8 0.09 1.96× 10

−8

Table 4  Performance comparison, single target in clutter edge (S) and multiple targets in clutter 
(M), P = 6

Detector (trained on) S: PD S: PFA M: PD M: PFA

NN (N) O1, 50x1 0.61 2.92× 10
−4 0.39 4.00× 10

−4

NN (N) O2, 50x1 0.78 1.89× 10
−4 0.65 1.95× 10

−4

NN (N) O3, 50x1 0.81 3.77× 10
−3 0.69 3.76× 10

−3

NN (N) O1, 50x2 0.72 1.17× 10
−3 0.62 1.47× 10

−3

NN (N) O2, 50x2 0.80 1.62× 10
−3 0.70 1.76× 10

−3

NN (N) O3, 50x2 0.82 9.04× 10
−3 0.73 9.20× 10

−3

NN (N+C) O1, 50x1 0.61 2.51× 10
−5 0.41 2.38× 10

−5

NN (N+C) O2, 50x1 0.76 8.59× 10
−6 0.62 8.40× 10

−6

NN (N+C) O3, 50x1 0.77 4.04× 10
−7 0.66 4.86× 10

−7

NN (N+C) O1, 50x2 0.66 3.45× 10
−5 0.58 3.31× 10

−5

NN (N+C) O2, 50x2 0.79 4.80× 10
−5 0.68 4.73× 10

−5

NN (N+C) O3, 50x2 0.81 1.98× 10
−5 0.71 1.99× 10

−5

CMSO-CFAR 0.82 1.89× 10
−2 0.74 1.90× 10

−2

SO-CFAR 0.77 8.00× 10
−3 0.66 3.85× 10

−3

GO-CFAR 0.60 7.63× 10
−5 0.14 7.03× 10

−5
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level of SO-CFAR. This is still better than that of CMSO-CFAR considering the fact that 
these networks have not been provided any clutter data for training. Networks trained 
on both noise and clutter (6 bottom NN rows in both tables) offer low PFA regardless 
scenario, however, also yield a reduced PD when executed on noise-only setups. The loss 
is then more significant in case of O1 compared to O3, for example, comparing row 4 
with row 10 a PD reduction can be seen of 4–6%, while for O3, row 6 against row 12, 
the disadvantage is of 0–2%. Networks trained on a combination of backgrounds thus 
exhibit a loss against more specialized networks, but this can to some extent be miti-
gated by a training process based on more input information. As established in the 
previous subsections, employing single layer 50x1 networks generally yield lower PFA 
compared to a 50x2 network, at the expense of PD . Nevertheless, by training on both 
noise and clutter and employing a 50x2 neural network with O2 or O3 data strategy (row 
11 and 12) one can obtain a PD which for all evaluated cases in the tables is higher than 
the one of SO-CFAR, while the false alarm rates are more comparable to GO-CFAR in 
clutter-based scenarios and just marginally higher in noise-only conditions.

The networks trained in a noise-only mode notably provide exceptional good noise 
limited detection (top 6 rows of Table 3). The PD performance is as good as SO-CFAR, 
while the PFA is at the levels of GO-CFAR. The exceptions to this are related to the 
smaller 50x1 O1 neural networks trained on noise-only (row 1) or noise and clutter (row 
7) in both tables. The single target PD is closer to GO-CFAR, and these two smaller net-
works clearly sacrifice the PD performance of multiple targets in order to yield an overall 
lower false alarm rate. This strategy, on average, works well for the considered scenario 
taking account of limited capacity of the neural network. The bigger 50x2 O1 networks 
(row 4 and row 10) balance out this much better and can detect dense targets with more 
ease.

The 50x2 O1 network (row 4 in Table 3) is not using any more information than stand-
ard SO-CFAR and decreases the PD by 1%, but with a marked lower PFA demonstrating 
that certain type of false detections can systematically be curtailed by only utilizing the 
reference cell information. To visually illustrate this, Fig.  13 shows two randomly col-
lected examples of sliding window data where traditional CMSO/SO-CFAR detectors 
generate a false positive while the network classifies both detections as false. In both 
cases, the ratio between the CUT and noise floor is marginally satisfied and the only rea-
son why SO-CFAR returns a positive detection is due to the presence of a few dips which 
aid in satisfying the detectional criteria. These types of situations can be analyzed and 
later taken into consideration by a neural network during the evaluation process.

5 � Conclusion
This paper proposed an implementation of artificial neural networks to identify false 
detections. It was suggested to utilize a modified version of SO-CFAR to increase 
the number of detections while also augmenting the false alarm rate. The objective 
of the on-following neural network is to only analyze positive detections and reduce 
the false alarm rate to an acceptable low level. Various strategies on how a neural 
network training can be accomplished were investigated in detail, and it was shown 
that a reduction of false alarm can typically be made with only moderate loss in the 
probability of detection with respect to traditional CFAR detectors. In this regard, 
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incorporating the guard cell or the Doppler profile information is very constructive 
for a neural network assuming that the target and environmental specifications can be 
taken into account. Different trade-offs can be achieved by adjusting different param-
eters where smaller fully connected feedforwarding connected networks are particu-
larly well suited for significant reduction of false alarm rates, while deeper networks 
tend to show a greater emphasis toward target detection.

Abbreviations
CA: Cell averaging; CFAR: Constant false alarm rate; CMSO: Censored mean smallest of; CPI:: Coherent processing interval; 
GO: Greatest of; NN: Neural networks; PD: Probability of detection; PFA: False alarm rate; ROC: receiver operating char-
acteristic; SCR: signal-to-clutter ratio; SNR: signal-to-noise ratio; SO: Smallest of.

Acknowledgements
None others.

Authors’ contributions
Author is solely responsible. The author read and approved the final manuscript.

Funding
The work is not funded by any private grant.

Availability of data and materials
Trained neural networks are available from http://​dx.​doi.​org/​10.​6084/​m9.​figsh​are.​14252​663.

Declarations

Ethics approval and consent to participate
No trials on humans.

Consent for publication
It does not contain any individual person’s data.

Competing interests
The author declares no competing interests.

Received: 23 March 2021   Accepted: 17 September 2021

1 3 5 7 9 11 13 15 17 19 21 23 25
-30

-25

-20

-15

-10

-5

0

dB

SO-CFAR: false detection, NN O1: no detection

1 3 5 7 9 11 13 15 17 19 21 23 25

Range bin

-30

-25

-20

-15

-10

-5

0

dB

SO-CFAR: false detection, NN O1: no detection

Fig. 13  Two sliding window examples with incorrect SO-CFAR detection but correct NN classification
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