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1  Introduction
Multiple-input multiple-output (MIMO) technology was introduced into the radar 
field by Lincoln Laboratory in the USA in 2003 [1], and the concept of MIMO radar 
was proposed. Compared with traditional radars, MIMO radar has greater advantages 
in azimuth resolution, array freedom, multi-target parameter estimation, and anti-
jamming capabilities and has been studied and paid attention by many scholars. Direc-
tion of arrival [2–6] (DOA) estimation, as an important research content in array signal 
processing, has been widely used in sonar, radar, medical, and wireless communication 
fields [7–9]. In recent years, the DOA estimation problem of MIMO radar has been 
widely concerned and has become a research hotspot.

MIMO radar generally uses a uniform linear array as the transmitter and receiver array 
and combines it with the classic high-resolution DOA estimation method to estimate 
the direction of arrival [10–16]. Classical high-resolution DOA estimation methods 
such as the multiple signal classification (MUSIC) method [17, 18] or estimating signal 
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parameter via the rotational invariance techniques (ESPRIT) method [19, 20]. However, 
because uniform linear array is used as the transmitter and receiver array, the spacing 
of its array elements is generally half a wavelength, and the array aperture is greatly 
restricted, which affects the performance of MIMO radar angle resolution and multi-
target parameter estimation. Therefore, sparse arrays [21–25] such as nested arrays, 
coprime arrays [26, 27], and minimum redundant arrays, are proposed. Compared with 
uniform array, Sparse array can use the special arrangement of the array to obtain a larger 
number of virtual array elements with the same actual number of array elements and 
has higher angular resolution and parameter resolution. Vaidyanathan et  al. [28] pro-
posed the structural model of coprime array, two uniform subarrays form coprime array. 
The number of the subarray elements is M and N, and the distance between the array 
elements is Nd and Md (d is half the wavelength), and M, N are mutually prime num-
bers. Zhou et al. [29] proposed a coprime array DOA estimation method based on the 
joint MUSIC algorithm. This method decomposes the coprime array into two uniform 
subarrays and performs MUSIC estimation separately and then combines the estima-
tion results of the two subarrays to obtain the final DOA estimation, thereby eliminating 
the phase ambiguity problem. But this method decomposes the coprime array into two 
subarrays lose part of the received data, thereby reducing the DOA estimation perfor-
mance. Pal et  al. [30] proposed a DOA estimation method based on a coprime array. 
This method expands the coprime array to obtain a virtual array and introduces spatial 
smoothing technology to solve the problem that the virtual array is not linear uniform 
array. But this method will lose the discontinuous information of the array elements, 
thereby affecting the degree of freedom of DOA estimation. Li et al. [31, 32], respectively, 
proposed the ESPRIT algorithm and the unitary ESPRIT algorithm for the MIMO radar 
coprime array to jointly estimate the direction of departure (DOD) and the direction of 
arrival (DOA). This method divides the coprime array into two uniform sparse subar-
rays as transmitter and receiver arrays. The coprime array formed by them increases the 
aperture of the array, thereby improving the performance of DOA estimation. However, 
the degree of freedom of the above method is limited by the number of elements of the 
subarray, and additional calculations are required to eliminate the ambiguity problem. 
Zhou et al. [33] proposed the DOA estimation method based on the expanded coprime 
array MIMO radar MUSIC algorithm. This method uses the expanded coprime array 
as the transmitter and receiver arrays of the MIMO radar to increase the array aper-
ture and uses the MUSIC algorithm to estimate the DOA, which effectively improves the 
DOA estimates performance. But this method involves the eigenvalue decomposition of 
a high-dimensional matrix, which requires a lot of computation.

The above literature does not involve DOA estimation methods for non-circular sig-
nals. However, there are a large number of non-circular signals in the actual environ-
ment [34–36], such as minimum shift keying (MSK) signals, binary phase shift keying 
(BPSK) signals, and amplitude modulation (AM) signals. The unique non-circular char-
acteristics of non-circular signals can further expand the virtual array, increase the array 
aperture, effectively double the dimension of the receiver array, and improve the perfor-
mance of target parameter estimation and the resolution of multiple sources. Therefore, 
based on the array model of literature [33], this article proposes a non-circular signal 
dimensionality reduction DOA estimation method based on the expanded coprime 
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array MIMO radar (NRC-MIMO MUSIC). This method uses the expanded coprime 
array MIMO radar model to obtain a larger virtual array when the actual number of 
array elements is the same. This method firstly uses the characteristics of non-circu-
lar signals to reconstruct the receiver array in the MUSIC algorithm. Then the recon-
structed two-dimensional DOA estimation problem is transformed into an optimization 
problem, and the optimization problem is reconstructed using constraints, and then the 
Lagrange multiplier method is used to construct the cost function, and the one-dimen-
sional spectral peak search function is obtained. Aiming at the problem of poor accuracy 
of the method in the environment of low signal-to-noise ratio (SNR) and small number 
of snapshots, the power series of noise eigenvalues is used to modify the noise subspace 
to further improve the accuracy of the algorithm. The method proposed in this article 
uses a coprime array as the transceiver array of the MIMO radar, which greatly increases 
the array aperture of the virtual array, eliminates the phase ambiguity problem caused 
by the array element spacing larger than half the wavelength, and significantly improves 
the DOA estimation performance. Finally, simulation experiments verify the effective-
ness of the algorithm. Compared with the classic MUSIC algorithm and the traditional 
coprime array MUSIC algorithm, the method in this article has better performance in 
DOA estimation accuracy, successful resolution, and low signal-to-noise ratio (SNR) 
environments.

Notations: Lower-case (upper-case) bold characters are used to represent vectors 
(matrices). The superscripts (·)T, (·)*, (·)H denote the transpose, conjugate, and conjugate 
transpose of operation, respectively. E{·} is exploited to represent the expectation of ⊗ 
refers Kronecker product, ◦ refers the Khatri–Rao product. diag{·} denotes the diagonal 
matrix whose diagonal elements are the elements ·.

2 � Preliminaries
The geometric structure of the expanded coprime array MIMO radar is shown in Fig. 1. 
Both the transmitter array and the receiver array are composed of two uniform sparse 
subarrays, the two subarrays are expanded side by side, and the last element of subarray 
1 is used as the first element of subarray 2. The sparse uniform subarray 1 and subar-
ray 2 together form the expanded coprime array. Subarray 1 contains M array elements, 
and the distance between each adjacent array element is Nd (where N is the number 
of array elements and d is half the wavelength). The other subarray 2 contains N array 
elements, and the distance between each adjacent array element is Md (where M is the 
number of array elements and d is half the wavelength). The two numbers M and N are 

Subarray 1 Subarray 2

Receive array 

Transmit array MdNd

Fig. 1  Coprime MIMO radar array geometry
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mutually prime, and the distance between adjacent elements of subarray 1 and subarray 
2 is greater than half of the wavelength. The formed coprime array contains M + N − 1 
elements, as shown in Fig. 1. The coprime array takes the first element as the reference 
point, and the position of the element can be expressed as:

where d = λ/2, λ is the wavelength.
Assume that there are K narrowband far-field uncorrelated signals that are incident on 

the coprime array at angles [θ1, θ2, …, θk], and then the direction vectors of the Kth tar-
get of the transmitter array and the receiver array are:

where at1(θk), at2(θk) are the direction vectors of the transmitter array subarray 1 and 
subarray 2, respectively. ar1(θk), ar2(θk) are the direction vectors of the receiver array 
subarray 1 and subarray 2, respectively. The expressions of the direction vectors of the 
transmitter subarray and the receiver subarray are, respectively:

Therefore, the array flow matrix of the transmitter array and the receiver array are At 
and Ar, respectively. It can be expressed as:

From the formula (6) and (7), the flow pattern A of the entire virtual array can be 
obtained as:

where Ar ◦ At is the Khatri–Rao operator, a(θk)=ar(θK )⊗ at(θK ) , ⊗ represents the Kro-
necker product. The received signal of the coprime array can be expressed as [15]:

where s(t) is the source signal vector (non-circular signal vector in this article), n(t) is the 
noise vector, and A is the array flow matrix.

(1)Ls =
{

Mnd|0 ≤ n ≤ N − 1
}

U
{

Nmd|0 ≤ m ≤ M − 1
}

(2)at(θk) =
[

aTt1(θk),a
T
t2(θk)

]T

(3)ar(θk) =
[

aTr1(θk),a
T
r2(θk)

]T

(4)at1(θk) = ar1(θk) =

[

1, e−j
2πNd sin(θk)

� , . . . , e−j
2π(M−1)Nd sin(θk)

�

]T

(5)at2(θk) = ar2(θk) =

[

1, e−j
2πMd sin(θk)

� , . . . , e−j
2π(N−1)Md sin(θk)

�

]T

(6)At(θ) =
[

at(θ1),at(θ2), . . . ,at(θK )
]

(7)Ar(θ) =
[

ar(θ1),ar(θ2), . . . ,ar(θK )
]

(8)
A = Ar ◦ At =

[

a(θ1),a(θ2), . . . ,a(θK )
]

= [ar(θ1)⊗ at(θ1),ar(θ2)⊗ at(θ2), . . . ,ar(θK )⊗ at(θK )]

(9)x(t) = As(t)+ n(t)
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For the non-circular signal s(t), according to its definition, the non-circular signal is 
relative to the circular signal. If the signal has the characteristics of rotation invariance, 
the signal s(t) is called the circular signal. That is, when E{s(t)} = 0, E{s(t)sH(t)} �= 0 
and E{s(t)sT(t)} = 0 are established at the same time, s(t) is the circular signal. Con-
versely, if the signal does not have the characteristics of rotation invariance, then the 
signal s(t) is called a non-circular signal. That is, when E{s(t)} = 0, E{s(t)sH(t)} �= 0 and 
E{s(t)sT(t)} = 0 are established at the same time, s(t) is the non-circular signal. The 
non-circular signal s(t) can be expressed as [34, 35]:

where ψ = diag{e
−jφ1
1 , e−jφ2 , . . . , e−jφK } , φK is the Kth non-circular phase of the non-cir-

cular signal, s0(t) ∈ R
K×1.

3 � Methods
3.1 � Expanded coprime array MIMO radar non‑circular signal dimensionality reduction 

DOA estimation method

From the formula (9) and (10), the received signal of the coprime array can be expressed 
as:

Using the non-circular characteristic of the signal s(t), the array flow matrix can be 
reconstructed, and the received signal can be reconstructed as:

where n0(t) =
[

n(t)
n∗(t)

]

 , B =

[

AΨ
A∗Ψ ∗

]

=[b(θ1,φ1), b(θ2,φ2), . . . , b(θK ,φK )]
T , where

Then the covariance matrix R = E[y(t)yH(t)] of the received signal can be obtained 
from L snapshots. That is

Perform eigen decomposition on the covariance matrix A, we can get

where Ds is K × K diagonal matrix, whose diagonal elements are composed of K larger 
eigenvalues of the covariance matrix. Es is the signal subspace, which is the space formed 
by the eigenvectors corresponding to the K larger eigenvalues of the covariance matrix. 
Dn is composed of 2(M + N − 1)2 − K smaller eigenvalues with smaller diagonal elements. 
En is the noise subspace, which is the space formed by the eigenvectors corresponding to 

(10)s(t) = ψs0(t)

(11)x(t) = Aψs0(t)+ n(t)

(12)
y(t) =

[

x(t)
x∗(t)

]

=

[

Aψ
A∗ψ∗

]

s0(t)+

[

n(t)
n∗(t)

]

= Bs0(t)+ n0(t)

(13)b(θK ,φK )=

[

a(θk)e
−jφk

a∗(θk)e
jφk

]

(14)R̂ =
1

L

L
∑

l=1

y(tl)y
H(tl)

(15)R̂=EsDsE
H
s + EnDnE

H
n
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the 2(M + N − 1)2 − K smaller eigenvalues of the covariance matrix R̂ . According to the 
orthogonality between the noise subspace and the direction vector, the following spatial 
spectrum function is constructed as [17]:

After reconstructing the receiving matrix from non-circular signals, the spatial 
spectrum function is a two-dimensional spectral peak search, which is highly com-
plex, and the following dimensionality reduction processing is performed. Firstly, 
reconstruct the formula (16), then:

where

Define function V(θ,φ):

substituting formula (17) into the formula (21), we can get:

where let q(φ) = e0(φ)e
jφ , Q(θ)=P(θ)HEnE

H
n P(θ) . Then V(θ,φ) can be expressed as:

where the formula (22) is about the problem of quadratic optimization, to find its opti-
mal solution (θ,φ). Firstly, increase the constraint of eHq(φ) = 1 to eliminate the solution 
of q(φ) = 0, so as to obtain the optimal solution (θ,φ) of V(θ,φ). Use constraints to recon-
struct the secondary optimization problem and seek the optimal solution, that is:

The method of solving the optimal solution using the Lagrange multiplier method, 
construct the cost function L(θ,φ), that is:

(16)P(θ ,φ) =
1

bH(θ ,φ)EnE
H
n b(θ ,φ)

(17)b(θ ,φ) =

[

a(θ)e−jφ

a∗(θ)ejφ

]

=

[

a(θ) 0M1×1

0M1×1 a∗(θ)

]

×

[

e−jφ

ejφ

]

= P(θ)e0(φ)

(18)a(θ)=ar(θ)⊗ at(θ)

(19)P(θ) =

[

a(θ) 0M1×1

0M1×1 a∗(θ)

]

(20)e0(φ)=

[

e−jφ

ejφ

]

(21)V (θ ,φ) =
1

P(θ ,φ)
=bH(θ ,φ)EnE

H
n b(θ ,φ)

(22)
V (θ ,φ) = e0(φ)

HP(θ)HEnE
H
n P(θ)e0(φ)

= e−jφe0(φ)
HP(θ)HEnE

H
n P(θ)e0(φ)e

jφ

(23)V (θ ,φ) = q(φ)HQ(θ)q(φ)

(24)min q(φ)HQ(θ)q(φ) s.t. eHq(φ) = 1
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where λ is constant. The partial derivative of formula (25) can be obtained as follows:

where let the formula (26) be equal to 0, then we can get:

Because of the constraint of eHq(φ) = 1, combined with formula (27), we can get:

Combining formulas (24) and (28) we can obtain:

Because Q(θ)=P(θ)HEnE
H
n P(θ) , then the one-dimensional spectral peak search func-

tion can be obtained:

In the process of searching for the above-mentioned spectral peaks, the number of 
snapshots is limited due to the actual situation, which affects the accuracy of the noise 
subspace En, and reduces the DOA estimation performance of the algorithm. For this 
reason, use the power series of the noise feature to modify the corresponding noise sub-
space En, and the power series of the noise feature:

where using formula (31), the above Q(θ) can be re-expressed as:

where substituting formula (32) into the formula (30), the corrected one-dimensional 
peak search function can be obtained:

In summary, the implementation steps of the non-circular signal dimensionality 
reduction DOA estimation method based on the expanded coprime array MIMO radar 
proposed in this article are shown in Table 1.

(25)L(θ ,φ) = q(φ)HQ(θ)q(φ)− �

(

eHq(φ)− 1
)

(26)
∂L(θ ,φ)

∂q(φ)
= 2Q(θ)q(φ)+ �e

(27)q(φ)=−
�

2
eQ−1(θ)

(28)q(φ) =
Q−1(θ)e

eHQ−1(θ)e

(29)θ̂ = argmin
1

eHQ−1(θ)e
= argmax eHQ−1(θ)e

(30)f (θ) = eHQ−1(θ)e = eH
(

P(θ)HEnE
H
n P(θ)

)−1
e

(31)Cn =
[

�
n
K+1eK+1, �

n
K+2eK+2, . . . , �

n
(M+N−1)2

e(M+N−1)2

]

(32)Q(θ) =

(M+N−1)2
∑

i=K+1

�
2n
i

(

∣

∣

∣
P(θ)Hei

∣

∣

∣

2
)

(33)f (θ) = eHQ−1(θ)e = eH





(M+N−1)2
�

i=K+1

�
2n
i

�

�

�

�
P(θ)Hei

�

�

�

2
�





−1

e
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3.2 � No phase ambiguity proof

Since the element spacing of the sparse array is greater than half a wavelength, there 
is a problem of angular ambiguity. But the method in this article adopts the expanded 
coprime array, which can effectively suppress the phase ambiguity problem. The proof 
is as follows:

Suppose there is phase ambiguity, that is, there is an ambiguity angle θm, which 
satisfies:

where θ̂k is the estimated value of the direction of arrival, and θm is the value of the ambi-
guity angle. From formula (34), we can get:

Substituting formulas (2) and (3) into formula (35), we can get:

Expand the formula (36), we can get:

where dl is the element spacing. From the formula (37), we can get:

where k1 ∈ (−N ,N ) , k2 ∈ (−M,M) . In the coprime array, M and N are integers that are 
mutually prime numbers. According to theorem 1 of the literature [29], it can be known 
that there is no M and N in formula (36), that is, there is no blur angle θm that holds true 
in Eq. (34). That is, it proves that there is no phase ambiguity problem.

(34)a(θ̂k) = a(θm)

(35)ar

(

θ̂k

)

⊗ at

(

θ̂k

)

=ar(θm)⊗ at(θm)

(36)





ar1

�

θ̂k

�

ar2

�

θ̂k

�



⊗





at1

�

θ̂k

�

at2

�

θ̂k

�



=

�

ar1(θm)
ar2(θm)

�

⊗

�

at1(θm)
at2(θm)

�

(37)2πdl sin θ̂k

�
−

2πdl sin θm

�
= 2kπ

(38)
{

sin θ̂k − sin θm = 2k1/M

sin θ̂k − sin θm = 2k2/N

Table 1  The method steps of this article

Step1: Firstly construct the MIMO radar transceiver coprime array model;

Step2: Construct the received signal X(t) from the coprime array model;

Step3: By formula (10), the receiving matrix is expanded and reconstructed by using the characteristics of non-
circular signals to obtain formula (12);

Step4: Solve the covariance matrix R of the reconstructed received signal by formula (12), and perform eigen-
value decomposition on the covariance matrix to obtain the noise subspace En;

Step5: Construct a two-dimensional spectral peak search function (16), and then perform dimensionality reduc-
tion processing;

Step6: Reconstruct in formula (16) and transform it into a secondary optimization problem;

Step7: Construct a cost function. Use formulas (24) and (25) to find the optimal solution and get the correspond-
ing θ̂;

Step8: Formula (30) can be obtained by Q(θ), and Q(θ) can be corrected by formula (31);

Step9: Finally, the DOA estimated value is obtained from formula (33)
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3.3 � Complexity analysis

It can be seen from the above that the complexity of the NRC-MIMO MUSIC algo-
rithm proposed in this article mainly focuses on the calculation of covariance, the 
eigenvalue decomposition of the covariance matrix, and the peak search calculation 
of the DOA angle. Let q = M + N − 1, then the calculation of the algorithm in this 
article is complicated. The degree is O[4q4(L − K) + 16q6 + 8n2(q4 + q2)], and the com-
plexity of the two-dimensional MUSIC algorithm is O[4q4(L − K) + 16q6 + n2(4q4 + 2q
2)], n is the number of peak searches. For clarity, we list the computational complexity 
of these methods in Table 2 with L = 500, M = 3, N = 4, K = 2, and n = 5000. In order 
to be more intuitive, we compare the computational complexity of the two methods 
under different snapshots, as shown in Fig. 2. Therefore, we can see that the method 
proposed in this article is less complex.

Table 2  Computational complexity of different methods

Method Complexity Complex 
multiplication

2D CA MUSIC O[4q4(L − K) + 16q6 + 8n(q4 + q2)] 1.3 × 1011

NRC-MIMO MUSIC O[4q4(L − K) + 16q6 + n2(4q4 + 2q2)] 5.7 × 107

Fig. 2  The computational complexities of different methods versus snapshots
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4 � Results and discussion
In order to verify the effectiveness of the algorithm in this article, the NRC-MIMO 
MUSIC algorithm in this article is compared with the classic MUSIC algorithm and 
the traditional coprime array MUSIC algorithm. Define the root mean square error 
(RMSE) formula as follows:

where J represents the number of Monte Carlo experiments, θ̂k ,J represents the esti-
mated DOA value of θk in the Jth experiment, and θk is the true value of the angle.

The proposed algorithm is simulated on MATLAB R2018b software to verify its per-
formance. Set the transmitting array element and the receiving array element to M = 3 
and N = 4, respectively. The number of sources is 2, the target angle is 10° and 20°, the 
number of snapshots is 100, and the number of Monte Carlo experiments is 100. Fig-
ure  3 shows the estimation results of the proposed algorithm for all targets when the 
SNR = 10 dB. It can be seen that the algorithm in this article can accurately estimate the 
angle of multiple independent targets at the same time.

Figure 4 shows the DOA of the classic MUSIC algorithm, the traditional coprime array 
MUSIC algorithm, and the expanded coprime array MIMO radar non-circular signal 
dimensionality reduction MUSIC algorithm under the condition of 100 snapshots under 
different SNB estimated performance. It can be seen from Fig. 4 that with the gradual 
improvement in the signal-to-noise ratio of the three algorithms, the root mean square 
error RMSE is all getting smaller, and the DOA estimation performance is improved. In 
addition, it can be seen from the above figure that the algorithm proposed in this article 
is better than the other two algorithms, and the DOA estimation performance is better. 

(39)RMSE =
1

k

k
∑

1

√

√

√

√

1

100

100
∑

J=1

(

θ̂k ,J − θk

)2

Fig. 3  Algorithm estimation performance under SNR = 10 dB
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It can also be seen that the relatively prime array can significantly improve the DOA esti-
mation performance compared to the uniform linear array.

Figure  5 shows the classic MUSIC algorithm, the traditional coprime array MUSIC 
algorithm, and the expanded coprime array MIMO radar non-circular signal dimension-
ality reduction MUSIC algorithm under 100 effective computer simulation experiments, 
the target detection success rate varies with the SNR. Target detection success rate, that 
is, the ratio of the number of successful DOA estimates to the number of trials. When 
∣

∣

∣θ̂K − θK

∣

∣

∣ < 1 (where θ̂k is the estimated value of DOA and θk is the actual value), it is 

deemed to be a successful estimate of DOA. It can be seen from Fig. 5 that the success 
rate of the three algorithms increases as the SNR increases. When the SNR is equal to 

Fig. 4  Estimation performance changes under different SNR
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Fig. 5  The target detection success rate varies with SNR
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10 dB, the success rates of the three algorithms all reach 100%. But when the SNR is less 
than 10 dB, the success rate of this algorithm is better than the other two algorithms. In 
the case of low SNR, it still maintains a high success rate. This shows that the algorithm 
in this article is still applicable under the condition of low SNR. The algorithm in this 
paper uses MIMO radar, which greatly expands the array aperture and improves the 
degree of freedom of the array. The introduction of non-circular signals further expands 
the receiving array and improves the measurement accuracy of the algorithm. Finally, 
the noise subspace is further modified to further improve the DOA estimation accuracy. 
Therefore, the success rate of this algorithm is higher than the other two algorithms.

Table  3 shows the specific values of the RMSE of the classic MUSIC algorithm, the 
traditional coprime array MUSIC algorithm, and the expanded coprime array MIMO 
non-circular signal dimensionality reduction MUSIC algorithm under different SNR. It 
can be seen from Table 3 that as the SNR increases, the estimation performance of the 
three algorithms gradually improves. However, the algorithm proposed in this article is 
better than the other two algorithms under different SNR, and the estimation accuracy 
is higher. When the SNR is 15  dB, the estimation performance of the algorithm pro-
posed in this article can be equivalent to that of the classic MUSIC when the SNR is 
25 dB. When the SNR = 10 dB, the RMSE of the algorithm in this article is reduced by 
about 64% compared to the classic MUSIC algorithm, and about 39% compared with 
the traditional coprime array MUSIC algorithm. The RMSE of the traditional coprime 
array MUSIC algorithm is reduced by about 41% Compared with the classic MUSIC 
algorithm. Therefore, it can be seen that compared to the other two algorithms, the esti-
mation accuracy of the algorithm in this article is higher, and the coprime array can sig-
nificantly improve the DOA estimation accuracy of the algorithm compared with the 
uniform linear array.

Figure 6 shows the variation of the RMSE of the classic MUSIC algorithm, the tradi-
tional coprime array MUSIC algorithm, and the expanded coprime array MIMO radar 
non-circular signal dimensionality reduction MUSIC algorithm under different snap-
shots. It can be seen from Fig. 6 that as the number of snapshots increases, the RMSE 
of the three algorithms gradually decreases, and the estimation performance gradually 
improves. Among them, the classic MUSIC algorithm has the worst angle estimation 
performance, and the expanded coprime array MIMO radar non-circular signal dimen-
sionality reduction MUSIC algorithm has the best angle estimation performance and is 

Table 3  RMSE value under different SNR

SNR (dB) Classic MUSIC algorithm Coprime array MUSIC 
algorithm

NRC-MIMO 
MUSIC 
algorithm

0 0.2419 0.1611 0.0955

5 0.1358 0.0742 0.0478

10 0.0705 0.0410 0.0250

15 0.0405 0.0221 0.0145

20 0.0228 0.0133 0.0076

25 0.0135 0.0075 0.0044
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more stable. The algorithm in this article still has good estimation performance when 
the number of snapshots is low.

Figure 7 shows the classic MUSIC algorithm, the traditional coprime array MUSIC 
algorithm, and the expanded coprime array MIMO radar non-circular signal dimen-
sionality reduction MUSIC algorithm under 100 effective computer simulation exper-
iments, the target detection success rate varies with the snapshots. It can be seen 
from Fig. 7 that the success rate of the three algorithms increases as the number of 
snapshots increases. When the number of snapshots is equal to 300, the target detec-
tion success rate of the algorithm proposed in this article is almost 100%, and when 
the number of snapshots is large enough, the target detection success rate of all algo-
rithms can reach 100%. In the case of the same number of snapshots, the algorithm 
proposed in this article has a higher target detection success rate than the other two 
algorithms. In the case of a lower number of snapshots, the target detection success 
rate of the algorithm proposed in this article is significantly higher than that of the 
classic MUSIC algorithm and traditional coprime array MUSIC algorithm.

Table 4 shows the specific values of the RMSE of the classic MUSIC algorithm, the 
traditional coprime array MUSIC algorithm, and the expanded coprime array MIMO 
non-circular signal dimensionality reduction MUSIC algorithm under different snap-
shots. It can be seen from Table  4 that, when the number of snapshots is low, the 
angle estimation accuracy of the classic MUSIC algorithm is the lowest, and the angle 
estimation accuracy of the algorithm proposed in this article is the highest. As the 
number of snapshots increases, the RMSE of the classic MUSIC algorithm, the tra-
ditional coprime array MUSIC algorithm, and the expanded coprime array MIMO 
non-circular signal dimensionality reduction MUSIC algorithm gradually decreases, 
and the accuracy of the algorithm is gradually improved. Among them, the angle 
estimation accuracy of the algorithm proposed in this article is the highest, and the 
angle estimation accuracy of the classic MUSIC algorithm is the lowest. In the case of 

Fig. 6  Estimated performance changes under different snapshots
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Fig. 7  The success rate of target detection varies with the number of snapshots

Table 4  RMSE values under different snapshots

Snapshots Classic MUSIC algorithm Coprime array MUSIC 
algorithm

NRC-MIMO 
MUSIC 
algorithm

100 0.1850 0.1079 0.0704

200 0.1303 0.0733 0.0487

300 0.1042 0.0649 0.0382

400 0.0934 0.0546 0.0338

500 0.0819 0.0477 0.0296

600 0.0713 0.0468 0.0246

700 0.0670 0.0407 0.0258

Fig. 8  Relationship between the estimation accuracy and the number of array elements
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100 snapshots, the RMSE of the proposed algorithm is about 62% lower than that of 
the classic MUSIC algorithm, and the RMSE of the traditional coprime array MUSIC 
algorithm is about 41% lower than that of the classic MUSIC algorithm. Therefore, in 
practical applications, the number of snapshots should be selected as high as possible 
when practically permitted, so as to improve the DOA estimation performance.

Figure 8 shows the variation of the RMSE of the classic MUSIC algorithm, the tradi-
tional coprime array MUSIC algorithm, and the expanded coprime array MIMO radar 
non-circular signal dimensionality reduction MUSIC algorithm under different numbers 
of array elements. Set the number of transmitting array elements to 4, and the number 
of receiving array elements to 3, 5, 7, 9, and 11. The number of sources is 2, the target 
angle is 10° and 20°, the number of snapshots is 100, and the number of Monte Carlo 
experiments is 100. The experiment parameters are simulated by MATLAB, and RMSE 
of the three algorithms decreases with the increase of the number of elements, and the 
accuracy of angle estimation is improved. Among them, the classic MUSIC algorithm 
has the lowest angle estimation accuracy, and the algorithm proposed in this article has 
the highest accuracy. In the case of a small number of transmitted array elements, the 
algorithm proposed in this article has higher estimation accuracy than the other two 
algorithms.

Table  5 shows the specific values of the RMSE of the classic MUSIC algorithm, the 
traditional coprime array MUSIC algorithm, and the expanded coprime array MIMO 
non-circular signal dimensionality reduction MUSIC algorithm under different numbers 
of array elements. It can be seen from Table 5 that when the number of array elements 
is small, the angle estimation accuracy of the classic MUSIC algorithm is the lowest, 
and the angle estimation accuracy of the expanded coprime array MIMO non-circular 
signal dimensionality reduction MUSIC algorithm is the highest. When the number of 
array elements is 3, the RMSE of the proposed algorithm is about 62% lower than that 
of the classic MUSIC, and the RMSE of the traditional coprime array MUSIC algorithm 
is about 54% lower than that of the classic MUSIC algorithm. As the number of array 
elements increases, the accuracy of each algorithm is gradually improved. The angle esti-
mation accuracy of the algorithm proposed in this article is the highest, and the angle 
estimation accuracy of the classic MUSIC algorithm is the lowest.

Under the expanded coprime array MIMO radar signal model, set the number of 
snapshots to 100, the number of sources to 2, the target angle to 10° and 20°, the num-
ber of receiving array elements N remains unchanged, and the number of transmitting 
array elements M to 3, 5, 7. Carry out 100 Monte Carlo experiments, get the RMSE 

Table 5  RMSE values under different numbers of array elements

Number of array elements Classic MUSIC algorithm Coprime array MUSIC 
algorithm

NRC-MIMO 
MUSIC 
algorithm

3 0.1364 0.0617 0.0511

5 0.0708 0.0414 0.0266

7 0.050 0.0368 0.0169

9 0.040 0.0146 0.0122

11 0.031 0.0161 0.0090
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graph of angle measurement accuracy with SNR under different numbers of transmit-
ting array elements. It can be seen from Fig. 9 that in the case of different transmit-
ting array elements, the RMSE of the algorithm proposed in this paper decreases as 
SNR increases, and the angle measurement estimation accuracy becomes better. The 
larger the SNR, the smaller the influence of noise on the algorithm, and the higher 
the accuracy of DOA estimation. When the number of transmitter array elements is 
3, the root mean square error is large and the measurement accuracy is low. However, 
when the number of transmitter array elements is 7, the RMSE becomes smaller and 
the angle measurement estimation accuracy is improved. It can be seen that under the 
same circumstances, the more the number of launching array elements, the smaller 
the root mean square error, and the better the accuracy of the measurement angle.

Table 6 shows the specific values of the root mean square error (RMSE) of the algo-
rithm proposed in this paper with the change of the SNR under different numbers of 
transmitting array elements. It can be seen from Table 6 that, in the case of the same 
SNR, the angle estimation accuracy of the transmitting array element number 3 is 
the lowest, and the angle estimation accuracy of the transmitting array element num-
ber 7 is the highest. As the SNR increases, the RMSE becomes smaller and the algo-
rithm accuracy improves. When the SNR is 5 dB, the RMSE of the transmitting array 

Fig. 9  Performance comparison of NRC-MIMO MUSIC algorithm with different numbers of transmitting array 
elements

Table 6  RMSE values under different transmitting array elements M and SNR

SNR M = 3 M = 5 M = 7

5 0.1247 0.0681 0.0493

10 0.0598 0.0414 0.0247

15 0.0427 0.0205 0.0140

20 0.0247 0.0135 0.0105

25 0.0109 0.0066 0.0058
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element M = 5 is about 45% lower than the RMSE of M = 3. The RMSE of the trans-
mitting array element M = 7 is about 60% lower than the RMSE of M = 3. Therefore, 
the number of array elements has a great influence on the DOA estimation accuracy. 
The more the number of array elements, the higher the DOA estimation accuracy. 
However, the actual number of array elements is affected by the hardware. The more 
array elements, the larger the hardware volume. Therefore, the number of array ele-
ments is not infinite and needs to be selected according to the actual situation.

5 � Conclusion
This paper proposes a non-circular signal DOA estimation method based on coprime 
array MIMO radar, which solves the problems of low degree of freedom, small array 
aperture, and phase ambiguity of traditional coprime array DOA estimation methods. 
In this paper, the array model combines a coprime array with MIMO radar, which 
greatly improves the array aperture, increases the degree of freedom, and improves 
the accuracy of DOA estimation. Then, the non-circular signal is introduced, and 
the receiving matrix is effectively expanded by using the non-circular characteristic, 
and the parameter estimation performance and the estimation accuracy of multiple 
sources are improved. Then use the idea of dimensionality reduction to reduce the 
dimensionality of the two-dimensional MUSIC algorithm to reduce the complexity 
of the algorithm. The power series of noise eigenvalues is used to correct the noise 
subspace, which further improves the accuracy of the algorithm. In addition, coprime 
array is used as the receiving array, which eliminates the phase ambiguity problem 
caused by the distance between the array elements larger than half the wavelength. 
Finally, the effectiveness of the algorithm is verified by simulation experiments. Com-
pared with the classic MUSIC algorithm and the traditional MUSIC algorithm, the 
algorithm in this paper can better improve the DOA estimation accuracy and suc-
cessful resolution. And it still maintains superior performance under low SNR. In 
the future, the propagator method will be integrated into the method research of this 
paper to further reduce the complexity of the algorithm, so as to improve the real-
time performance of the algorithm in practical applications. The research method will 
be applied to vehicle radar. And continue to study the processing of multi-source sig-
nals and circular signals.
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