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1  Introduction
In recent decades, with the accelerated melting of the two-level glaciers and the 
increasing sea level, the environmental damage caused by global warming has become 
a global issue of general concern to the international community today, and curbing 
the further warming of the global climate has become a problem for mankind. The 
common challenges faced by society in this century. The factors that cause climate 
change are both natural and man-made. However, the large amount of greenhouse 
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gases such as CO2 emitted into the atmosphere by human beings in the process of 
social and economic development is the main cause of global warming. The Inter-
governmental Panel on Climate Change (IPCC) in its global climate change assess-
ment report released in 2013 believes that global warming is unquestionable, and that 
climate warming is even more severe than previously expected, with more than 95%. 
The certainty that climate change is caused by human activities. Global warming has 
produced a series of abnormal climate problems, which have put tremendous pres-
sure on ecological security, food security, water resources security, etc., which has 
made the ecological environment on which we depend for survival increasingly dete-
riorating, and has seriously threatened the sustainable development of human society 
ability. According to the IPCC’s Special Report on Emission Scenarios (SRES), global 
sea levels will rise by an average of 22–34 cm from 1990 to the 1980s. Some island 
countries in the Pacific will be submerged by then, and coastal metropolises such as 
New York and Shanghai are also facing the threat of being swallowed up by the sea.

My country is the largest developing country in the world. With the rapid devel-
opment of industry and the large-scale use of coal-based fossil energy, my country 
has also become a major carbon emitter. According to statistics, in the early 1990s, 
my country’s total fossil energy consumption became the second largest consumer 
after the USA. By 2010, my country surpassed the USA to become the world’s largest 
energy consumer. According to data from the Oslo International Center for Climate 
and Environmental Research (CICERO), China’s cumulative carbon dioxide emissions 
will reach 146.4 billion tons in 2016, surpassing the 146.2 billion tons in the USA, 
making it the first place. Therefore, my country plays a pivotal role in solving global 
climate problems and implementing emission reduction measures. The continuous 
development of social economy has driven the rapid development of the transpor-
tation industry, and at the same time, it has also increased the environmental pol-
lution caused by energy consumption in transportation and industrial production. 
Therefore, it is difficult to reconcile the industrial development based on traditional 
technology and energy conservation and emission reduction contradiction. Only by 
comprehensively analyzing the characteristics of changes in carbon emissions in vari-
ous industries in our country can we reduce my country’s carbon emissions from the 
source and thereby alleviate the pressure on my country’s carbon emissions.

In recent years, the problem of multiple objective optimization has gradually 
attracted the attention of researchers and has become a hot and difficult problem. 
Among them, how to make full use of effective information in existing knowledge to 
predict the dominance of individuals Relationship is the key issue. To address this 
difficulty, researchers have merged the ideas of data mining into evolutionary algo-
rithms and merged them into the ideas of data mining. The process of finding the 
best solution in the field of decision making is in fact the process of data mining. 
Data mining refers to the use of computer methods, including technical and statisti-
cal knowledge, to obtain knowledge and information with potential use value from a 
large amount of noisy and ambiguous data information. Today, data mining technol-
ogy has been widely used in the fields of artificial intelligence and experience, and is 
receiving more and more attention from researchers. However, the application of data 
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mining to evolutionary arithmetic to solve the flaws of evolutionary algorithms is still 
in its infancy [1]. In the early stages, it has great potential.

Zhou et al. used numerical analysis to analyze the driving factors of carbon emissions 
from energy consumption in industry and transportation, and discussed the measures 
taken by my country to reduce carbon emissions from energy consumption, but his 
research did not extend to other industries [2]. Dieye uses the LEAP model to predict the 
steel, building materials, chemical, non-ferrous, power, coal, and high-growth industries 
in Henan Province under five scenarios: the benchmark scenario, the industrial structure 
optimization scenario, the energy efficiency improvement scenario, the energy structure 
adjustment scenario, and the comprehensive scenario. Carbon emissions, the results 
show that the comprehensive scenario is the optimal development model for industrial 
carbon emissions peaking in Henan Province, and industrial carbon emissions will peak 
in 2025, with a peak of 517 million tons. However, he did not do further research on 
how to apply the province’s industrial carbon emission model to the whole country [3]. 
Reynard D et al. studied the carbon dioxide emissions of China, the USA, Germany, and 
Switzerland through the time series GM model and on the basis of environmental eco-
logical economics. Combined with the historical data of global carbon dioxide emissions 
in 2000, they obtained economic growth, population size; the process of urbanization 
promotes the increase of carbon dioxide emissions, so he added the influencing factor 
of urbanization rate in the STIRPAT prediction model to predict future carbon dioxide 
emissions. However, his research is quite limited. It does not distinguish the difference 
between developing countries and developed countries, and there is no set of general 
rules and experience summaries [4].

The innovations of this paper are: (1) the interval multi-objective optimization method 
is used to simplify the method of screening data samples, making the algorithm work 
easier. (2) Data collection is from 2000 to 2015, which is also the fifteen years of rapid 
development of my country’s industrialization and modernization, which is symbolic. 
Based on this, it is more convincing to make carbon peak prediction research. (3) The 
introduction of the decoupling index model of industrial carbon emissions makes the 
content of the article more substantial and specific.

2 � Method of carbon emission factor decomposition and carbon peak 
prediction based on multi‑objective decision and information fusion 
processing

2.1 � Total industrial carbon emissions and carbon emissions intensity

Industrial carbon emissions mainly come from the consumption of fossil energy [5]. 
Commonly used carbon emission accounting methods include actual measurement 
method [6], material balance algorithm and coefficient method [7]. The actual measure-
ment method is to calculate the total carbon emissions by measuring the flow rate [8], 
velocity and concentration of the exhaust gas through the instruments and facilities rec-
ognized by the relevant departments. The material balance algorithm is based on the 
law of conservation of material [9], which quantitatively analyzes the amount of material 
used in the energy consumption process or the production process to calculate carbon 
emissions [10]. It is divided into a material balance algorithm based on the production 
department and a material balance algorithm based on carbon source energy [11]. The 
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coefficient method is divided into the coefficient method based on the production field 
and the coefficient method based on fossil energy [12]. The coefficient method based on 
the production field refers to the calculation of the total carbon emissions by calculating 
the average value of the carbon emissions produced by the production unit product or 
the unit energy consumption under the general technical and economic management 
conditions [13]. The coefficient method based on fossil energy obtains the carbon emis-
sion coefficient of various energy sources according to different countries or regions 
[14], different energy structures and technological levels, and the sum of the products 
of standard coal consumption and oxidation rate converted to various energy sources 
is the carbon emission Total amount [15]. Due to specific issues, it is difficult to obtain 
the energy consumption data of the counties and districts at the municipal level, and it 
is impossible to directly calculate the industrial carbon emissions of the counties and 
districts based on the coefficient method based on fossil energy [16]. Studies have shown 
that industrial added value is positively correlated with industrial carbon emissions [17]. 
Therefore, in this paper, according to the proportion of the industrial added value of 
each county in the city’s industrial added value, the total industrial carbon emissions are 
proportionally allocated to obtain the industrial carbon emissions of each county [18].

2.2 � Low‑carbon economic theory

Since the 1990s, scholars have gradually paid attention to the issue of carbon dioxide 
emissions [19], trying to explore the relationship between economic development and 
carbon dioxide emissions by consulting relevant literature and empirical research [20]. 
With the deepening of research, scholars at home and abroad generally believe that eco-
nomic growth plays a positive role in driving carbon dioxide emissions [21], and rapid 
economic growth has brought about continuous increases in carbon dioxide emissions 
[22]. Therefore, researchers must pay attention to the issue of carbon emission reduction 
while developing the economy and the theory of low-carbon economy came into being 
[23].

The concept of "low-carbon economy" first appeared in the energy white paper "The 
Future of Our Energy: Creating a Low-Carbon Economy" published in the United King-
dom [24]. The book states that economic development should focus on ecological and 
environmental protection, instead of using a large amount of energy consumption and 
carbon dioxide emissions. In exchange for economic growth [25], it is necessary to 
change the economic growth mode based on fossil fuels such as coal and use more clean 
energy such as solar energy, wind energy, and tidal energy. This economic growth model 
of "low energy consumption, low pollution, low emissions" and "high efficiency, high effi-
ciency, and high efficiency" three lows and three highs has attracted global attention and 
attention.

Low-carbon economy is based on a variety of means such as technological progress, 
industrial transformation, institutional innovation, and new energy development to 
form a series of economic forms such as low-carbon industry, low-carbon life, low-
carbon energy, low-carbon technology, and low-carbon development. Change the 
mode of economic development to obtain more economic output with less energy use 
and lower carbon dioxide emissions. The development of a low-carbon economy does 
not mean not developing or developing at the expense of the economy, but to achieve 
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a harmonious unity of economy, society, and ecology through a change in the concept 
of development [26].

From a policy perspective, although my country’s current carbon intensity policy 
helps curb the growth of carbon emissions; it is far from enough to achieve the peak 
of carbon dioxide emissions. He Jiankun, deputy director of the National Commit-
tee of Experts on Climate Change, believes that in 2030, the target carbon intensity 
of a relative decline in GDP can be measured by the decline in China’s carbon diox-
ide emissions. This is also determined by the characteristics of my country’s current 
industrialization and urbanization, and now we are in during the period of sustained 
rapid economic growth, energy demand and carbon dioxide emissions will continue 
to grow for a long period of time. A relative decline in GDP is a necessary condition 
to ensure sustained and stable economic development, but carbon emission reduction 
policies need to be further strengthened. So as to vigorously promote the extensive 
promotion of energy conservation and emission reduction [27].

2.3 � Overview of interval multi‑objective optimization problems

The constrained optimization problem is expressed as Eq. (1):

Among them, all the solutions that meet the constraints in the target space are 
called feasible solutions.

Formula (1) describes the general form of multi-objective optimization problems, 
and in engineering problems, optimization problems are all with ambiguity and 
uncertainty. In order to solve these problems, we have proposed some research meth-
ods. This method is called non-Deterministic mathematical methods.

The constrained interval multi-objective optimization problem is shown in the fol-
lowing Eqs. (2), (3), (4), (5):

X is the q-dimensional decision space:

x is the q-dimensional decision vector:

Define x:

Define u:

(1)

Q : min
x

F(x) = (fm(x)), m = 1, 2, . . . , z

s.t.gj(x) ≥ aj , j = 1, 2, . . . , n

hk(x) = bk , k = 1, 2, . . . , n∗

x = (x1, . . . , xq) ∈ X ⊂ R

(2)Q : min
x

F(x,u) = (fm(x,u)), m = 1, 2, . . . , z

(3)s.t.gj(x,u) ≥ aj = [aj , aj], j = 1, 2, . . . , n

(4)hk(x,u) ≥ bk = [bk , bk ], k = 1, 2, . . . , n∗

(5)x = (x1, . . . , xq) ∈ X ⊂ Rq
, xi = [xi, xi], i = 1, 2, . . . , q
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Among them, several important data can be functionalized to obtain formulas (7), 
(8), (9):

On this basis, Taylor expands to u:

Processing in the formula:

We use the same approach to the constraint function:

where:

The Taylor series expansion is used to effectively reduce the amount of calculation. 
In summary, the interval multi-objective optimization problem formula (1) is organ-
ized into the standard form of the constrained multi-objective interval optimization 
problem. The algorithm simplification is completed, and the experiment is ready to 
begin.

(6)u = (u1, . . . ,up) ⊂ Rp
,u1 = [u1,u1], l = 1, 2, . . . , p

(7)fz(x) = min
u

fz(x,u), fz(x) = max
u

fz(x,u)

(8)gj(x) = min
u

gj(x,u), gj(x) = max
u

gj(x,u)

(9)hk(x) = min
u

hk(x,u), hk(x) = max
u

hk(x,u)

(10)min
x

F(x,u) = ((f1(x), f1(x)), . . . , (f2(x), f2(x)))

(11)

fi(x) = fi(x,u
c)−

p∑

i=1

|
∂fi(x,u

c)

∂ul
|url

fi(x) = fi(x,u
c)+

p∑

i=1

|
∂fi(x,u

c)

∂ul
|url

(12)
gj(x,u) = [gj(x), gj(x)]

hk(x,u) = [hk(x), hk(x)]

(13)

pj(x) = pj(x,u
c)−

p∑

i=1

|
∂pj(x,u

c)

∂ul
|url

pj(x) = pj(x,u
c)+

p∑

i=1

|
∂pj(x,u

c)

∂ul
|url

jk(x) = jk(x,u
c)−

p∑

i=1

|
∂ jk(x,u

c)

∂ul
|url

jk(x) = jk(x,u
c)+

p∑

i=1

|
∂ jk(x,u

c)

∂ul
|url
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3 � Methods/experimental section
3.1 � Data sources and model construction

The data used in this article comes from China Statistical Yearbook and China Energy 
Statistical Yearbook. The standard coal conversion coefficient of various energy 
sources adopts China GB/T 2589—2008 General Principles of Comprehensive Energy 
Consumption Calculation. The standard coal conversion coefficient here is calculated 
based on the average low calorific value of the energy. When the conversion coeffi-
cient of certain energy is when the interval is selected, the middle value of the inter-
val is used as the conversion coefficient of the energy. The CO2 emission coefficient 
adopts the IPCC standard, and it is assumed in the calculation that the carbon in the 
fuel is completely oxidized and burned. The standard coal conversion coefficients and 
carbon emission coefficients of various energy sources are shown in the following 
table.

Table  1 shows the conversion of coal products into standard coal and the carbon 
dioxide emission coefficient.

Table 2 shows the standard coal conversion factor and carbon dioxide emission fac-
tor of oil products.

This article takes the total consumption of raw coal, coke, clean coal, briquette and 
coke oven gas as the consumption of coal, and the total consumption of crude oil, 
gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas and refinery dry gas As the 
consumption of oil, the consumption of natural gas is regarded as the consumption 
of natural gas. This article divides the end consumption of energy into three parts, 
namely the primary, secondary and tertiary industries. Among them, the primary 
industry includes agriculture, forestry, animal husbandry, fishery, and water conserv-
ancy, the secondary industry includes industry and construction, and the tertiary 

Table 1  Standard coal conversion factor and CO2 emission factor of various energy sources

Total coal Table coal factor Unit Emission factor Unit

Raw coal 0.7143 Kgce/Kg 2.69 KgCO2/Kg

Coke 1.4286 Kgce/Kg 3.14 KgCO2/Kg

Washed coal 0.9000 Kgce/Kg 2.69 KgCO2/Kg

Briquette 0.9714 Kgce/Kg 2.69 KgCO2/Kg

Coke oven gas 0.5929 Kgce/M3 0.93 KgCO2/M3

Table 2  Standard coal conversion factor and carbon dioxide emission factor for oil products

Total oil products Table coal factor Unit Emission factor Unit

Raw oil 1.1286 Kgce/Kg 3.07 KgCO2/Kg

Gasoline 1.4714 Kgce/Kg 3.02 KgCO2/Kg

Kerosene 1.4714 Kgce/Kg 3.10 KgCO2/Kg

Diesel oil 1.4571 Kgce/Kg 3.17 KgCO2/Kg

Fuel oil 1.4286 Kgce/Kg 3.24 KgCO2/Kg

Liquefied petroleum gas 1.7143 Kgce/Kg 3.17 KgCO2/Kg

Refinery dry gas 1.5714 Kgce/Kg 2.65 KgCO2/Kg
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industry includes transportation, storage and postal services, wholesale, retail and 
accommodation, and catering.

3.2 � Change trend of carbon emissions

From 2000 to 2013, China’s energy carbon emissions maintained rapid growth at an 
average annual rate of 8.6%. As of 2013, China’s energy carbon emissions reached 103, 
5176 million tons. However, energy carbon emissions have declined in 2014 and 2015. 
This decline can be attributed to the decline in coal consumption caused by the gov-
ernment’s reduction of coal production capacity. The increase in oil and natural gas 
consumption cannot compensate for the reduction in coal consumption. Vacancy. How-
ever, China’s energy consumption is still rising. After reaching the lowest growth rate 
in 2015, the energy consumption growth rate in 2016 began to rise again. It is expected 
that the energy consumption growth rate in 2017 will be higher than that in 2016. The 
reduction of energy carbon emissions can be regarded as a short-term situation caused 
by the impact of the government’s coal de-capacity policy. China’s energy carbon emis-
sion peak has not arrived. As the effect of the de-capacity policy gradually weakens and 
the consumption of oil and natural gas continues to grow, China’s energy carbon emis-
sions will regain the momentum of growth. In terms of the contribution of the three 
energy sources to energy carbon emissions, the contribution of coal consumption to car-
bon emissions is the highest, with an average contribution of 80% over the past 16 years, 
followed by the contribution of oil consumption to carbon emissions, and the average 
contribution over the past 16 years. At 17%, the contribution of natural gas consump-
tion to carbon emissions is the lowest, with an average contribution of 3% in 16 years; 
in terms of the changing trend of the contribution of the three energy sources to energy 
carbon emissions, the contribution of coal consumption to carbon emissions shows an 
increase first and then a decrease The contribution of petroleum consumption carbon 
emissions shows a trend of first decreasing and then increasing, while the contribution 
of natural gas consumption carbon emissions presents a consistent growth trend. On the 
whole, the current coal carbon emissions basically determine energy carbon emissions, 
but this the degree of determination is gradually decreasing, and the influence of future 
oil and natural gas consumption on the development trend of energy carbon emissions 
will gradually increase. China’s energy carbon emissions from 2000 to 2015 are shown in 
Fig. 1 below.

3.3 � Determination of influencing factors

The STIRPAT model is further expanded according to the industrial status quo of the 
selected sample city A. The three indicators of population size, wealth, and technical 
level in the model are expanded into population indicators, wealth indicators, techni-
cal indicators, and structural indicators. Based on these four indicators, the influenc-
ing factors of city A’s industrial carbon emissions are determined. Among them, (1) 
the population index is the total population. Due to the growth of urban population, 
the demand for energy is increasing, and energy consumption leads to the continu-
ous increase of carbon emissions. Therefore, it is of practical significance to select 
the total population as the influencing factor of industrial carbon emissions in City 
A. (2) Wealth indicators choose labor productivity and industrialization rate. Rapid 
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economic development has led to an increase in energy demand. As a heavy indus-
try base, industrial processes consume a lot of energy, which makes industrial car-
bon emissions increase sharply. Therefore, labor productivity and industrialization 
rate are selected. The factors are typical and representative; (3) technical indicators 
select industrial energy intensity and technical level. Industrial energy intensity refers 
to the energy consumed per unit of industrial added value. Industrial energy intensity 
is mainly affected by technology, especially equipment, equipment, and technological 
level. Therefore, the improvement and improvement of technical level have an impact 
on energy consumption per unit of industrial added value. Reduction plays a certain 
role, and then has an impact on industrial carbon emissions; the number of industrial 
and mining enterprise patent authorizations is a sign of the level of industrial technol-
ogy, and also has a relationship with industrial carbon emissions, so the model uses 
the number of industrial and mining enterprise patent authorizations to represent 
the technical level; (4) structural indicators include industrial structure factors and 
energy structure factors. Three factors including industrial light and heavy structure, 
enterprise scale, and industrial energy structure are selected, respectively. Industrial 
light and heavy structure and enterprise scale can reflect the industrial characteristics 
of City A, and changes in the proportion of different types of energy consumption 
also have an important impact on industrial carbon emissions. The state and local 
governments encourage the use of clean energy, such as hydropower, solar energy, 
photovoltaics, etc., and use as little fossil energy as possible, such as coal, oil and 
other non-clean energy sources with large carbon emissions. At present, the indus-
trial energy consumption structure of City A is still dominated by oil and coal. Com-
pared with coal, the carbon emission coefficient of the two is much greater than that 
of oil. Therefore, this paper selects the proportion of coal consumption in primary 
energy consumption to reflect the impact of energy structure on industrial carbon 

Fig. 1  China’s energy carbon emissions from 2000 to 2015
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the impact of emissions. In order to more accurately reflect the relationship between 
various factors and industrial carbon emissions, the industrial added value was used 
to replace the total industrial output value of Lanzhou in the calculation process.

For uncertain optimization problems, one way of thinking is to first transform 
uncertain optimization problems into deterministic optimization problems through 
mathematical methods. Then solve it, but this method will lose some information in 
the process of solving; another way of thinking is to directly solve the uncertain opti-
mization problem. This paper adopts the second method to directly solve the large 
number of uncertain factors in the analysis of industrial carbon emission factors 
using cloud computing to obtain the accuracy of the problem analysis.

In summary, this article decomposes the industrial carbon emission factors of City 
A into 8 items: total population, labor productivity, industrialization rate, industrial 
energy intensity, industrial energy structure, industrial light and heavy structure, 
enterprise scale, and technical level. The specific settings are shown in Table 3 shown.

3.4 � Abbreviations

In order to be more detailed and complete in the selection of factors the technologi-
cal level in the STIRPAT model is innovatively decomposed into two parts: Technical 
indicators and structural indicators taking into account the impact of technologi-
cal progress industrial structure and energy structure factors on industrial carbon 
emissions

Where Y is the year, IC is the industrial carbon emissions, TP is the total popula-
tion, LP is the labor productivity, IR is the industrialization rate, IEI is the industrial 
energy intensity, IES is the industrial energy structure, ILHS is the industrial light and 
heavy structure, and ES is the scale of the enterprise. TL stands for technical level. 
The values of various factors from 2002 to 2016 are shown in Table 4.

Figure 2 is made after statistics of some data as shown in the figure.

Table 3  Setting of factors affecting industrial carbon emissions in city A

Variable Definition Unit

Industrial carbon emissions CO2 emissions from industrial energy consumption Ten thousand tons

Population Total people Ten thousand people

Labor productivity Industrial added value/number of employees Yuan/per people

Industrialization rate Industrial value Added/gross product %

Industrial energy intensity Industrial energy consumption/industrial added 
value

Tons of standard 
coal/ten thousand 
yuan

Industrial energy structure Industrial coal consumption/industrial primary 
energy consumption

%

Industrial light and heavy structure Heavy industry added value/industrial added value %

Enterprise size Value added of industrial enterprises above desig-
nated size/industrial added value

%

Technique level Number of patents granted by industrial and mining 
enterprises

Item
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4 � Results and discussion section
4.1 � History check

This paper uses coal consumption carbon emissions, petroleum consumption carbon 
emissions, natural gas consumption carbon emissions, cement production carbon emis-
sions and total carbon emissions as test variables, and compares historical statistical 
data and simulated data from 2002 to 2016. The calculation error verifies the validity of 
China’s peak carbon emission system model. The simulation verification results are as 
follows.

Table 5 shows the error statistics between the simulated and real carbon emissions of 
coal consumption.

Table 4  Original data of the influencing factors of industrial carbon emissions in city A from 2002 to 
2016

Y IC TP LP IR IEI IES ILHS ES TL

2002 3054.04 300.95 45,695.44 33.14 10.82 30.54 80.00 90.03 104

2003 3342.33 300.95 51,085.09 33.02 10.56 28.70 80.00 90.47 99

2004 4057.96 304.36 59,468.09 33.52 10.86 28.41 80.00 90.47 50

2005 4595.00 308.11 75,892.82 34.87 10.36 32.04 81.79 91.75 75

2006 4648.19 311.74 87,190.33 36.16 9.03 28.90 78.66 91.99 189

2007 5198.72 313.64 98,232.27 36.56 8.70 27.70 81.88 92.55 125

2008 5132.90 319.28 130,816.41 37.63 7.17 30.27 81.77 93.00 156

2009 5396.55 322.28 133,043.13 35.77 7.26 30.87 79.90 93.04 115

2010 5527.97 323.59 154,019.61 36.27 6.15 32.53 78.90 93.39 212

2011 5761.18 323.54 203,740.36 36.52 5.15 33.19 78.50 93.61 330

2012 5809.36 323.30 221,687.03 35.95 4.57 35.41 71.82 95.69 550

2013 6102.89 321.52 240,771.64 33.60 4.43 35.98 72.34 96.60 739

2014 5817.97 321.43 232,682.07 29.70 4.26 38.60 72.53 95.07 679

2015 5398.90 321.90 205,863.79 25.53 4.45 34.92 69.23 96.25 764

2016 4379.41 324.23 182,673.37 23.27 3.71 33.12 68.73 95.29 826

-200

-100

0

100

200

300

400

500

600

700

800

900

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

V
al

ue

Year

Part of the Original Data on the Impact of Industrial 
Carbon Emissions in City A from 2002 to 2016

IR IEI IES ILHS ES TL

Fig. 2  Part of the original data on the impact of industrial carbon emissions in city A from 2002 to 2016
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Table 6 shows the error statistics between the simulated and real carbon emissions of 
petroleum consumption.

Table 7 shows the error statistics between the simulated value and the true value of 
total carbon emissions:

It can be seen from the above three tables that the China peak carbon emission sys-
tem dynamics model established on the Vensim software platform has a high prediction 
accuracy, and the average error between the simulated value and the true value of the 
total carbon emissions from 2000 to 2015 It is 1.90%, and the maximum error between 

Table 5  Error statistics between simulated and true coal consumption carbon emissions

Year Simulation value (ten thousand 
tons)

Real value (ten thousand tons) Error (%)

2000 270,010.21 279,330.20 − 3.34

2001 285,180.75 286,133.53 − 0.33

2002 315,904.53 301,485.81 4.78

2003 360,402.90 357,522.19 0.81

2004 420,104.09 410,925.21 2.23

2005 464,456.00 459,013.58 1.19

2006 478,884.15 504,972.89 − 5.17

2007 528,155.38 539,976.21 − 2.19

2008 556,364.31 556,507.43 − 0.03

2009 570,110.56 585,683.73 − 2.66

2010 626,273.19 618,158.86 1.31

2011 693,441.84 678,965.23 2.13

2012 716,682.64 698,162.80 2.65

2013 875,968.30 840,269.01 4.25

2014 880,080.80 814,903.22 8.00

2015 785,253.48 785,999.46 − 0.09

Table 6  Error statistics between simulated and real carbon emissions of petroleum consumption

Year Simulation value (ten thousand 
tons)

Real value (ten thousand tons) Error (%)

2000 71,514.74 68,788.03 3.96

2001 68,438.89 69,146.78 − 1.02

2002 72,707.30 73,038.82 − 0.45

2003 84,136.86 80,742.96 4.20

2004 93,574.57 93,142.78 0.46

2005 99,923.84 97,474.20 2.51

2006 104,082.87 104,468.86 − 0.37

2007 113,507.85 110,256.49 2.95

2008 114,493.57 115,008.15 − 0.45

2009 120,627.63 123,530.02 − 2.35

2010 132,694.93 138,906.11 − 4.47

2011 137,871.48 142,441.70 − 3.21

2012 151,070.48 151,231.61 − 0.11

2013 156,171.08 157,624.53 − 0.92

2014 168,584.69 167,003.18 0.98

2015 178,871.28 175,236.65 2.07
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the simulated value and the real value of all variables does not exceed 8%, which can pass 
the validity test of the system dynamics model. Therefore, the system dynamics model 
has a high degree of fit with China’s carbon emission system, and can be used as a model 
for predicting the peak of China’s carbon emission and its occurrence time later.

4.2 � Parameter setting

The specific settings of the economic growth rate scenario parameters are shown in 
Table 8 below.

The specific settings of the scenario parameters of the rate of change of the population 
are shown in Table 9 below.

The specific settings of urbanization, industrial structure, and fixed asset investment 
scenario parameters are shown in Fig. 3 below.

Table 7  Error statistics between simulated and real carbon emissions

Year Simulation value (ten thousand 
tons)

Real value (ten thousand tons) Error (%)

2000 370,414.07 376,758.10 − 1.68

2001 385,110.10 387,057.64 − 0.50

2002 423,456.74 409,179.86 3.49

2003 485,565.39 479,299.32 1.31

2004 559,694.29 550,447.10 1.68

2005 616,555.48 608,396.22 1.34

2006 643,476.55 669,949.17 − 3.95

2007 709,960.90 718,736.23 − 1.22

2008 745,888.17 744,806.88 0.15

2009 776,688.74 792,899.81 − 2.04

2010 859,309.78 853,839.07 0.64

2011 944,009.53 931,814.62 1.31

2012 987,762.08 967,562.45 2.09

2013 1,161,451.46 1,129,526.82 2.83

2014 1,184,581.95 1,119,956.12 5.77

2015 1,099,435.84 1,095,476.56 0.36

Table 8  China 2016–2050 economic growth rate scenario parameters

2016–2020 
(%)

2021–2025 
(%)

2026–2030 
(%)

2031–2050 (%)

Low-speed development scenario 6 5.3 4.3 4–2

Baseline development scenario 6.5 5.9 5.1 5–3

High-speed development scenario 7 6.5 5.9 6–4

Table 9  China 2016–2050 population change rate scenario parameters

2016–2020 (%) 2021–2030 (%) 2031–2050 (%)

Low-speed development scenario 0.602 0.159 − 0.311

Baseline development scenario 0.652 0.209 − 0.261

High-speed development scenario 0.702 0.259 − 0.211
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4.3 � Algorithm parameter

For the first optimization problem and the second optimization problem, with the con-
tinuous increase of evolutionary algebra, the uniformity (E measure) and breadth (D 
measure) of Pareto’s frontier continue to improve. At the same time, the convergence of 
the algorithm (C measure) is also getting better; for the second optimization problem, 
the E measure of the algorithm gradually becomes better with the increase of evolution-
ary algebra. Therefore, for the algorithm in this paper, with the increase of evolution-
ary algebra, the frontier performance of the algorithm Pareto is Gradually get better. 
Table 10 shows the influence of evolutionary algebra on algorithm measurement under 
different optimization problems.

Table 11 is the impact of algorithm performance.
To make a more detailed analysis of the results through the data, the D measure of 

the algorithm in this paper is better than the other two algorithms, but the difference is 
not much; for the multi-objective decision-making and information fusion processing 
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Fig. 3  China 2016–2050 urbanization, industrial structure, and specific setting of parameters for fixed asset 
investment scenarios

Table 10  The influence of evolutionary algebra G of different examples on algorithm performance

Optimization Evolutionary algebra E value D value C value

Q1 G = 20 0.2559 11.5577 0.3746

G = 50 0.0164 11.5675 0.3655

G = 100 0.1428 11.5760 0.3614

Q2 G = 20 0.2565 11.9861 0.2507

G = 50 0.2268 11.9469 0.2468

G = 100 0.1726 11.9528 0.2479

Q3 G = 20 0.3646 13.5155 0.3010

G = 50 0.3079 14.5201 0.2744

G = 100 0.2925 19.8167 0.2709
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optimization problem proposed in this paper, the E measure of the algorithm in this 
paper is better than the interval The particle swarm and interval NSGA-II algorithms 
get better performance indicators; the E measure of the algorithm in this paper is better 
than the other two algorithms. This shows that compared with the other two algorithms, 
the algorithm in this paper has an improvement in the E-measure for the optimization of 
multi-objective decision-making and information fusion processing.

4.4 � Decoupling index model of industrial carbon emissions

The term "decoupling" originated from the field of physics and used to explain that 
the relationship between two or more physical quantities that have a relationship no 
longer exists. Then the decoupling theory was first applied to the agricultural field by 
the OECD (Organization for Economic Cooperation and Development) and extended 
to the environmental field. In the environmental field, the OECD will use decoupling to 
measure the relationship between economic development and environmental pressure, 
and resource and energy consumption, in order to better study the relationship between 
economic development and environmental quality. Figure 4 shows the decoupling state 
of my country’s industrial carbon emissions and industrial economic growth from 2000 
to 2015.

The research on oil and coal emissions under this model is shown in Fig. 5.
It can be seen from the figure that the simulated and real values of my country’s petro-

leum carbon emissions have both been on the rise from 2000 to 2015, and the decline 
will be controlled in 2017. Both the simulated value and the real value of my country’s 
coal carbon emissions have been on the rise from 2000 to 2015, and the decline will be 
controlled in 2017. The carbon emissions of coal are far greater than those of petroleum.

5 � Conclusions
Research and analysis show that the research on carbon emission factor decomposition and 
carbon peak prediction based on multi-objective decision-making and information fusion 
processing proposed in this paper is more comprehensive, intuitive, three-dimensional and 
more comprehensive than previous studies on carbon emission factor decomposition and 
carbon peak prediction intelligent. From the perspective of multi-objective decision-mak-
ing, based on the related content of signal processing progress, this paper uses Taylor series 

Table 11  The influence of the number of individual cloud clusters pop in different calculation 
examples on the performance of the algorithm

Optimization Evolutionary algebra E value D value C value

Q1 Pop = 20 0.2459 11.5203 0.3963

Pop = 40 0.1797 11.5698 0.3647

Pop = 60 0.1438 11.5760 0.3614

Q2 Pop = 20 0.1726 11.9608 0.2364

Pop = 40 0.3422 11.9569 0.2588

Pop = 60 0.2534 11.9528 0.2479

Q3 Pop = 20 0.4900 19.2882 0.3038

Pop = 40 0.3808 19.5188 0.2724

Pop = 60 0.2925 19.8149 0.2709
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expansion method to summarize the interval multi-objective optimization problem and 
simplify the related algorithms. Taking city A as a sample, the research objects are taken 
from the carbon emissions from coal consumption, carbon emissions from petroleum con-
sumption, carbon emissions from natural gas consumption, carbon emissions from cement 
production, and total carbon emissions from city A as test variables. Comprehensive data 
analysis to 2016. The research results show that the system dynamics model of China’s peak 
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carbon emissions established on the Vensim software platform has high prediction accu-
racy. The average error between the simulated value and the true value of the total carbon 
emissions from 2000 to 2015 is 1.90%, and the maximum error between the simulated value 
and the real value of all variables does not exceed 8%, which can pass the validity test of 
the system dynamics model. The D measure of the algorithm in this paper is better than 
the other two algorithms, but the difference is not much; for the multi-objective decision-
making and information fusion processing optimization problem proposed in this paper, 
the E measure of the algorithm in this paper is better than the interval The particle swarm 
and interval NSGA-II algorithms get better performance indicators. The research on car-
bon emission factor decomposition and carbon peak prediction based on multi-objective 
decision-making and information fusion processing has been completed well. This article 
has some shortcomings in the following aspects: (1) the sample for this study is from the 
industrial city A, mainly using industrial data as the statistical model, and may not fully 
consider the impact of other industries on the decomposition of carbon emission factors. 
(2) The interval multi-objective optimization analysis algorithm introduced in this article is 
relatively complicated and not easy to promote. In the future research, programming tech-
nology can be used to turn the algorithm into a program that can be conveniently operated.
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