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1  Introduction
Narrow-band signals generated by the mechanical reciprocating vibration and the rota-
tion of propellers play an essential role in the signal processing of underwater signals 
received by passive sonar. In lofargrams, composed of a multi-frame power spectrum, 
the narrow-band signal usually forms a bright line, called the line spectrum. In the fields 
of acoustic detection [1–3] and recognition [4] of underwater targets, the line spectra of 
signals are highly sought because they have high signal-to-noise ratios and carry charac-
teristic information of targets. Therefore, line-spectrum extraction in lofargrams is cru-
cial for target detection, tracking, and recognition.

The commonly used line-spectrum-extraction methods often make use of the fact that 
the spectral level of a line spectrum is higher than that of a continuous spectrum by 
10  dB or more. However, the line-spectrum power of some targets is relatively weak, 
and these methods perform poorly. In Ref. [5], a line-spectrum-extraction method based 
on ensemble empirical mode decomposition (EEMD) was proposed, which decomposes 
the signals and selects the proper low intrinsic mode function (IMF) to realize spectral 
reconstruction.
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The criteria for selecting the number of IMF components are not given in this paper. 
The screening of each IMF component plays an essential role in whether the signal can 
be fully expressed. In Ref. [6], a method based on instantaneous phase-difference vari-
ance weighting was proposed. The fluctuation of the phase difference between sound 
pressure and velocity is different from that between noise signals, which improves the 
output signal-to-noise ratio and is beneficial for line-spectrum extraction. In Ref. [7], 
the cochlear advantage was used for frequency division and sharp filtering, and a line-
spectrum-extraction method based on the Gammatone auditory filter bank was pro-
vided. However, the author only provided the simulation results of a single line spectrum 
and did not analyze the situation of multiple line spectra. In Ref. [8], a space–time joint 
detection method by space–time domain processing was proposed in which spatiotem-
poral filtering can be performed on unknown line-spectrum signals in the minimum 
mean-square-error sense. In Refs. [10–13], the signal-to-noise ratio of the line spec-
trum was improved by constructing various adaptive line enhancers, which facilitate the 
extraction of line spectra. The results of these methods are not satisfactory when the 
signal-to-noise ratio is low. Other methods for extracting spectral lines include the dis-
crete-Fourier-transformation (DFT) spectral-line-detection method, parametric mod-
eling method, class of adaptive spectral line enhancer method [10–13], and higher-order 
spectral methods. Di Martino et  al. [14] proposed a spectral-line-extraction method 
based on path optimization. The algorithm achieved the goal of extracting a spectral line 
by constructing a line-spectrum characteristic function such that the value of the char-
acteristic function was a minimum for the path leading to the spectral line. The algo-
rithm can only extract a single line spectrum, and multiple line spectra can be extracted 
by adding a frequency-domain sliding window. In the route-searching process for the 
algorithm based on path optimization, a multi-step decision method is adopted in which 
a local optimum replaces a global optimal solution, so the final solution might not be the 
global optimum. In addition, the performance of the algorithm is unsatisfactory in rela-
tively low-signal-to-noise-ratio conditions.

Attention is paid herein to the ant-colony algorithm to find an optimal global algorithm 
and improve the performance in low-signal-to-noise-ratio conditions. The ant-colony 
algorithm is an optimization method originally designed by Dorigo et  al. [15], inspired 
by the foraging behavior of an ant colony in nature. It is widely used in cloud computing, 
data mining, robot path planning, and other fields [16–22]. It is a relatively mature global 
optimization algorithm with the benefits of positive feedback, parallel computing, and 
good robustness. In Ref. [16], α and β were dynamically adaptively adjusted by establish-
ing an interlock between α and β in the route-searching process of an ant colony, which 
overcomes the demerits of low convergence speed. In Ref. [18], a method based on particle 
swarm optimization and an ant-colony algorithm was proposed, which uses the particle-
swarm-optimization method to optimize the parameters of the ant colony. This method 
can improve the comprehensive performance of the ant-colony algorithm and realize the 
rapid path planning of a robot. In Ref. [19], obstacle repulsion weights and a new heuristic 
factor to path-selection probability were introduced, which improve the ability of obstacle 
avoidance and increase the strength of the diversity. In Ref. [22], an improved ant-colony 
optimization algorithm was proposed to reduce the partial cross-paths and number of lost 
ants in the process of the general ant-colony algorithm in a blind search. The algorithm can 
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accelerate the optimization process, has strong searchability, and nearly double the conver-
gence speed.

Most of the ant-colony algorithms are used for path planning, and no methods for line-
spectrum extraction exist. Because a path is different from a line spectrum, a specific trans-
formation is required. In a lofargram, the line spectrum is usually a bright line that can be 
transformed into a path by several methods. Based on the above considerations, a spectral-
line-extraction algorithm based on the optimal path and ant-colony algorithms is proposed 
to improve the line-spectrum-extraction ability.

2 � Methods
2.1 � Classical ant‑colony‑algorithm framework

The principle of the ant-colony algorithm originates from simulating the foraging behavior 
of ants. Foraging ants may secrete a pheromone along the search route. The more ants that 
travel a route, the higher the pheromone concentration becomes. The pheromone serves as 
a positive attraction for arriving additional ants; the higher the pheromone concentration, 
the greater the probability for the arriving ant to choose a particular route. At the same 
time, the pheromone will also evaporate, which allows the ants search for other routes, 
improves the global search capability, and avoids falling into a local optimum.

To fully describe the ant-colony algorithm, several elements must be defined:
m is the number of ant colonies; i and j represent the nodes that the ant passes through; 

τij(t) represents the pheromone concentration between nodes i and j at time t, which 
reflects the importance of moving from node i to node j ; α represents the significance of 
the pheromone; ηij(t) is the expected heuristic function, which represents the inverse of 
the distance from node i to node j at time t; β is the expectation factor; pkij(t) is the state-
transition probability formula, representing the possibility of ants moving from node i to 
node j in the kth iteration; ρ is the pheromone evaporation rate, which avoids the infinite 
accumulation of pheromones that is usually set to be less than 1. Taboo records the nodes 
each ant passes through to prevent the ant from passing through the node again. When the 
ant passes through all of the specified nodes, it completes an iteration.

The state-transition probability formula of the ant-colony algorithm is then

where allow represents the next node for the ant to go to next. Hence,

where dij is the distance from node i to node j.
After the completion of each cycle by the ant, the path pheromone is updated to
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





[τij(t)]
α
[ηij(t)]

β

�

s∈allow

[τis(t)]
α [ηis(t)]

β , s ∈ allow

0 , s /∈ allow

,

(2)ηij(t) =
1

dij

(3)τij(t + 1) = (1− ρ)τij(t)+�τij(t)



Page 4 of 18Cheng et al. EURASIP Journal on Advances in Signal Processing        (2021) 2021:113 

where τij(t + 1) is the updated intensity of the pheromone from node i to node j, and 
�τij(t) is the pheromone increment from node i to node j. Three models are used to 
compute �τij(t) , i.e., the ant-density, ant-quantity, and ant-cycle models, as shown in 
Eqs. (5), (6), and (7), respectively,

Here, Q is the intensity coefficient of the pheromone increase, and Lk is the path length 
traversed by the ant after the cycle ends. In the ant-density and ant-quantity models, 
updates are based on local information, while updates are based on global information 
in the ant-cycle model. Experimental results have also shown that the best performance 
is obtained from the update method of the ant-cycle model.

2.2 � Spectral‑line‑extraction algorithm based on ant‑colony algorithm

When extracting the signal of a spectral line, the lofargram of the signal is often obtained 
first. According to the description in Sect.  2, the spectral lines in a lofargram may be 
regarded as the various paths to apply the ant-colony algorithm to extract spectral lines.

2.2.1 � Issues when applying ant‑colony algorithm to line‑spectrum extraction

First, the grid method is applied to divide the lofargram into small squares. The ants are 
then randomly placed in the small squares to begin a search over the entire lofargram. 
The following issues are considered when applying the ant-colony algorithm.

1.	 In the classical ant-colony algorithm, the search is conducted with the ants randomly 
selecting any of the eight surrounding directions, as shown in Fig. 1. In the figure, a 
five-pointed star represents an ant. In the lofargram, the line spectrum is usually a 
relatively straight, bright line, which means each spectral line has a unique frequency 
at any given time; that is, an ant can only forage along the directions of increasing or 
decreasing time and cannot forage laterally. If the ants forage laterally, the calculation 
overhead of the algorithm will increase, and there may be more than one frequency 
point at a time that is unreasonable.

2.	 In the classical ant-colony algorithm, the starting point and destination of the ants 
are generally fixed. However, in the lofargram, they are unknown.
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3.	 In the classical ant-colony algorithm, updates of the heuristic function and phero-
mone are determined by the distance of the ant from the destination. However, the 
destination is unknown in the lofargram, so this distance cannot be used as a stand-
ard for updates.

2.2.2 � Algorithm improvements

A spectral-line-extraction method based on the ant-colony and optimal path algo-
rithms is proposed, and the following improvements are made to address the prob-
lems described above:

Fig. 1  Available search directions for ants

Fig. 2  Available search directions for ants in lofargram
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1.	 The search area of the ants is limited; that is, each ant can only search in the direc-
tion of the time axis, and an ant cannot search horizontally. As shown in Fig. 2, the 
ordinate represents time, and the abscissa represents frequency.

2.	 Inspired by the characteristic function advanced by Di Martino et al. [14], a new cost 
function is proposed as a standard for determining the updates of the heuristic func-
tion and the pheromone:

where ξ represents the path of the spectral line; d (i) represents the frequency continu-
ity of the line spectrum, which reflects the frequency fluctuation of the line spectrum; 
G (i) represents the trajectory continuity of the line spectrum, which reflects whether 
the line spectrum is broken; A (i) represents the intensity of the line spectrum, namely 
the amplitude at each frequency point on the line-spectrum path; and eps represents 
the accuracy of the algorithm that prevents the occurrence of zeros in the denominator. 
Equation (8) shows that the greater the intensity of the line spectrum, the greater A (i), 
the better the frequency continuity, the smaller d (i), and the better the continuity of the 
path, the greater G (i). Alternatively, the smaller the cost function of the line spectrum, 
the smaller P_ cos(ξ) . In the processing of underwater acoustic signals, a spectral line is 
often a straight line with a certain energy. Therefore, the definition of the cost function 
in Eq. (8) is consistent with the characteristics of the line spectrum. The definitions of d 
(i), G (i), and A (i) are

In Eq. (9), f (Pi) represents the value of the frequency of spectral line Pi at point i. In 
Eq. (10), g (Pi) is a flag variable defined in Eq. (11). That is to say, when g (Pi) is less than 
the threshold count, a break is considered to have occurred at this point; otherwise, g (Pi) 
is set to 1. Usually, count is set to the mean value of background noise in the frequency 
domain.

The new heuristic function is then

which shows that the smaller P_ cos(ξ) , or rather, the closer the search path is to the 
spectral line, the greater the value of the heuristic function, which is consistent with the 
design principles of the heuristic function. With the progress of the ant search process, 
the value of P_ cos(ξ) is constantly changing, so the heuristic function is continuously 
updated.

(8)P_ cos (ξ) =
∑

i∈ξ

d(i)

A(i)+ G(i)+ eps
,

(9)d(i) =
∣

∣f (Pi)− f (Pi+1)
∣
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(10)G(i) =
∑

i∈ξ

g(Pi),

(11)g(Pi) =

{
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0, A(i) < count

(12)ηij =
1

P_ cos(ξ)
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3.	 A considerable amount of calculation is required if all the frequency states in the 
lofargram are simultaneously detected. A block-processing framework is introduced 
to reduce the computational complexity of line-spectrum extraction and improve cal-
culation speed. As shown in Fig. 3, the lofargram is divided into four parts, and there 
is a certain degree of overlap between adjacent blocks in the frequency dimension.

In Fig.  3, the abscissa represents frequency and the ordinate represents time. It is 
supposed that there are 17  N frequency points and K time points. The lofargram is 
divided into four parts in the frequency direction, i.e., 1 N–5 N, 4 N–9 N, 8 N–13 N, and 
12 N–17 N, and the length of the overlapping part is N. Five-line spectra in the lofar-
gram are represented by different colors. The function of the overlap is to prevent the 
loss of line-spectrum extraction. For example, the red line spectrum is incomplete in 
the first part (1 N–5 N in the frequency direction), which is difficult to extract success-
fully. However, the red line spectrum is complete and easily extracted in the second part 
(4 N–9 N in the frequency direction).

2.2.3 � Algorithm processing flow

Figure  4 shows the algorithm processing flow, where C represents the set number of 
iterations.

The algorithm processing steps are as follows.

1.	 A fast Fourier transformation is performed for the acquired signal to obtain the lofar-
gram spectrum and subject it to a grid process.

2.	 The taboo table is used to record the nodes visited by the ants. The taboo table is ini-
tialized to 1, and the node of the taboo table is set to 0 when the ant passes through 
the node.

3.	 M ants are placed randomly in the lofargram at the starting time, and the cost func-
tion P_ cos(ξ) for each ant to proceed to the next node is calculated according to (8).

Fig. 3  Segmentation of lofargram
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4.	 The heuristic factor ηij(t) is calculated from the cost function P_ cos(ξ) according to 
Eq. (12).

5.	 The state-transition function pkij(t) for each ant to proceed to the next node is calcu-
lated, and the direction of each ant is determined using the roulette rule.

6.	 The taboo table is updated, and the node passed by the ant is set to 0. The path taken 
by each ant in each generation is recorded.

7.	 When the ants traverse the time axis of the entire lofargram, it marks the end of one 
iteration, and the above process is repeated.

8.	 The n paths with the minimum cost function are recorded, and a second threshold 
determination is performed to remove the false line spectra. Finally, the desired spec-
tral line is obtained.

3 � Results and discussion
The algorithm’s feasibility is verified by simulation and sea-trial data, and the pro-
posed algorithm is compared with the optimal path algorithm.

Fig. 4  Flowchart of algorithm processing
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3.1 � Simulation experiment

Single-frequency signals of 30, 70, and 150 Hz and a sampling frequency of 400 Hz are 
used in the simulation. The frequency resolution is 1 Hz, and the total signal duration is 
50 s.

The parameters of the algorithm selected are as follows: α = 7 , β = 7,Rho = 0.1 , 
Q = 100 , m = 400 , and L = 100 . α is the significance of the pheromone, β is the expecta-
tion factor, Rho is the pheromone volatilization coefficient, Q is the pheromone intensity 
coefficient, m is the ant number, and L is the number of iterations. The starting point of 
the ant is randomly placed at the start time of the LOFAR spectrum, and the ant reaches 
the destination when it finds the end time of the LOFAR spectrum.

As shown in Figs. 5, 6, 7, 8, the signal-to-noise ratios of the three spectral lines are 
all − 14 dB. Figure 5 shows that the signal-to-noise ratios of the spectral lines are low 
and the energies weak. Figure 6 shows the spectral lines extracted using the optimal 

Fig. 5  Original lofargram at signal-to-noise ratio of − 14 dB

Fig. 6  Line-spectrum-extraction results of proposed algorithm at − 14 dB
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path algorithm. The three spectral lines are numbered and marked with red lines. 
They are successfully extracted, but the performance for line (3) at 150 Hz is unsatis-
factory, as the extracted line does not coincide well with the real line. For a more intu-
itive observation of the extracted spectral lines, the following error of the extracted 
spectral line with respect to the real spectral line is defined:

where ft(i) represents the extracted spectral line and ft(i) the real spectral line. Based on 
Eq. (13), the average error of the three spectral lines is 0.78. Figure 7 shows the results 
of the extracted spectral lines using the proposed algorithm. The lines are numbered 
and marked with red lines. The three spectral lines are successfully extracted, and the 
average error of the three spectral lines is 0.06, indicating that the performance is bet-
ter than that of the optimal path algorithm. Figure  8 shows the iteration curve of the 

(13)e =

N
∑

i=1

∣

∣ft(i)− f (i)
∣

∣/N

Fig. 7  Line-spectrum-extraction results of optimal path algorithm at − 14 dB

Fig. 8  Algorithm iteration curve at signal-to-noise ratio of − 14 dB
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algorithm, where the algorithm converges after approximately 44 iterations, which is 
rapid convergence.

The variable detection probability PD is defined in Eq.  (14) to compare the perfor-
mance of the two algorithms. Figure 9 shows the PD of different line spectra using the 
two methods at a signal-to-noise ratio of − 14 dB. It can be seen that the PD of different 
line spectra using the two methods are both high, and that of different line spectra using 
the proposed method is higher than that using the optimal path algorithm:

The signal-to-noise ratio of all three spectral lines is set to − 16 dB to verify the algo-
rithm’s performance at an even lower signal-to-noise ratio, as shown in Fig. 10. As seen 
in the figure, the spectral lines’ energy is weak, and parts are almost buried in the noise. 
Figure 11 shows the spectral lines extracted using the optimal path algorithm. They are 
numbered and marked with red lines. The three spectral lines are extracted, but the per-
formance is unsatisfactory. The average error is 4.35. Figure 12 shows the spectral lines 

(14)PD =
Number of frequency points correctly detected

Number of real line spectrum points
× 100%

Fig. 9  PD of different line spectra using two methods studied at − 14 dB

Fig. 10  Original lofargram at signal-to-noise ratio of − 16 dB
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extracted using the proposed algorithm. As the figure shows, the spectral lines are gen-
erally well extracted. The average error of the three spectral lines is 0.11, showing good 
algorithm performance. Figure 13 shows the iteration curve of the algorithm and that 
the algorithm quickly converges after approximately 45 iterations.

Figure 14 shows the PD values of different line spectra using the two methods at a sig-
nal-to-noise ratio of − 16 dB. It can be seen that the performance of the optimal path 
algorithm is unsatisfactory at a relatively low signal-to-noise ratio. The PD of line (3) 
is only 8%, indicating that only 8% of the frequency points of line (3) are successfully 
extracted, which is a poor result. However, the PD of line (3) using the proposed algo-
rithm is relatively good, reaching 70%, indicating that most of the frequency points can 
be successfully extracted. The other two lines can also be extracted completely, which is 
a satisfactory result.

Figure 15 is a comparison of the detection probabilities of the two algorithms under 
different signal-to-noise ratios. The three lines’ detection probabilities are averaged 

Fig. 11  Line-spectrum-extraction results of optimal path algorithm at − 16 dB

Fig. 12  Line-spectrum-extraction results of proposed algorithm at − 16 dB
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for comparison convenience, as shown in Eq.  (15). The red line represents the aver-
age detection probability obtained using the optimal path algorithm, and the black 
line represents the average probability obtained using the algorithm proposed in 
this paper. The results under each signal-to-noise ratio are obtained after 200 Monte 

Fig. 13  Algorithm iteration curve at signal-to-noise ratio of − 16 dB

Fig. 14  PD of different line spectra using two methods studied at − 16 dB

Fig. 15  PD_average of the two algorithms under different signal-to-noise ratios
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Carlo simulation tests. It can be seen from the figure that the detection probability 
of the proposed algorithm is always higher than that of the optimal path algorithm. 
Moreover, when the signal-to-noise ratio of the optimal path algorithm is lower 
than − 17 dB, the detection probability is already less than 50%, while the algorithm 
proposed in this paper has a detection probability of higher than 80% when the sig-
nal-to-noise ratio is − 19 dB, and the performance is better:

In Eq. (15), PD(i) represents the three above-mentioned line spectra.

3.2 � Sea‑trial data verification

The effectiveness of the algorithm is then verified with the following two sets of sea-
trial data.

Figure  16 shows the first set of sea-trial data for a merchant ship. These data are 
acquired at a sampling frequency of 10,240  Hz. Considering the actual processing 
needs, only the frequency band below 600 Hz is processed. The frequency resolution 
is 1 Hz, and the data length is 100 s. It can be seen from the figure that the original 
lofargram has more spectral lines, and several of them have weak energy. Figure 17 
shows the line-spectrum-extraction results of the optimal path algorithm. As shown 
in the figure, most of the strong lines are extracted, but some weak lines are not, such 
as those at 381 and 400 Hz. Moreover, several false line spectra are shown, such as 
those at 91  Hz, and the performance is unsatisfactory. Figure  18 shows the results 
obtained after processing with the proposed algorithm. The figure shows that the 
spectral-line extraction is more complete and that the weak spectral lines, such as 
those at 140 and 150 Hz, are extracted more completely.

(15)PD_average =

3
∑

i=1

PD(i)/3

Fig. 16  Original lofargram of first set of data
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Fig. 17  Extraction results of optimal path algorithm for first set of sea-trial data

Fig. 18  Extraction results of proposed algorithm for first set of sea-trial data

Fig. 19  Original lofargram of second set of sea-trial data
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Figure 19 shows the second set of sea-trial data for another merchant ship, with more 
spectral lines with weaker energy. The data are processed under the same conditions 
as those described above. Figure  20 shows the line-spectrum-extraction results of the 
optimal path algorithm. The figure shows that most of the lines are extracted, but some 
weak lines are not, such as those at 403 and 448 Hz. In addition, several false line spectra 
are shown, such as those at 100 Hz. The results of the spectral lines extracted with the 
proposed algorithm are shown in Fig.  21. All the spectral lines are essentially entirely 
extracted, including the weak lines at 186 and 448 Hz.

4 � Conclusions
This research proposes a spectral-line-extraction algorithm based on the ant-colony and 
optimal path algorithms to address the difficulty of extracting spectral lines with a low 
signal-to-noise ratio. By designing a new ant search method and a heuristic function, the 
proposed algorithm combines the proposed cost functions and successfully applies the 
ant-colony algorithm to spectral line extraction. Simulation and sea-trial data show that 
the proposed algorithm possesses good spectral-line-extraction capability even at a low 
signal-to-noise ratio.

Fig. 20  Extraction results of optimal path algorithm of second set of sea-trial data

Fig. 21  Extraction results of proposed algorithm of second set of sea-trial data
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EEMD: Ensemble empirical mode decomposition; IMF: Intrinsic mode function.
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