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1  Introduction
In wireless sensor networks where a large number of battery-powered sensor nodes 
are spatially distributed, the nodes transmit their measurements with limited commu-
nication bandwidth to achieve certain application objectives such as target localiza-
tion and monitoring of physical field intensities (e.g., temperature, sound, humidity and 
pollution). Since each node can observe an unknown parameter or a field intensity at a 
particular location, determination of sensor locations makes a critical impact on perfor-
mance criteria (e.g., target localization [1] and field reconstruction [2]). Especially when 
a subset of linear sensing measurements collected by the sensor networks is selected to 
accomplish a certain objective, the optimal sensing locations can be obtained by solving 
linear inverse problems [3–7]. Notably, the sensor selection problem is basically combi-
natorial in nature and optimization of sensing locations is computationally expensive. To 
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tackle this problem, heuristic approaches based on cross-entropy optimization [4] and 
convex relaxation [3] were presented but they show no guaranteed performance and still 
suffer from a prohibitive computational cost especially for large sensor networks.

However, since greedy methods are computationally feasible and shown to achieve 
a near-optimality by maximizing the metric which is a monotonically increasing and 
submodular set function [8], much effort has been made to practically solve the sen-
sor selection problem in recent years by developing greedy algorithms with near-optimal 
performance [5–7, 9]. Instead of directly minimizing the reconstruction mean squared 
error (MSE) for the parameters to be estimated, a submodular cost function called the 
frame potential was devised to guarantee near-optimality with regards to the MSE and a 
greedy removal algorithm was proposed to select optimal sensor locations [5]. In addi-
tion, the log-determinant of the inverse error covariance matrix proved to be a mono-
tone submodular function was employed as a cost function to present a near-optimal 
greedy method [6]. A computationally efficient greedy algorithm for sensor placement 
was presented to determine the least number of sensor nodes and their sensing locations 
with the maximum projection onto the minimum eigenspace of the dual observation 
matrix [7]. Recently, when high-dimensional multisensor data over multiple domains are 
generated, greedy sampling techniques were developed to obtain a near-optimal subset 
of measurements based on the submodular optimization methods [9].

The sensor selection can also be conducted by using the solutions to the graph sam-
pling problem which is one of the essential tasks in the field of the graph signal process-
ing (GSP). In graph sampling, the optimal subset of nodes in the graph is searched to 
recover the original signals from the signal samples on the nodes in the sampling set. As 
in the sensor selection, finding an optimal sampling set is computationally prohibitive 
and hence, greedy methods have been adopted in many practical applications to ensure 
good performance at a low computational cost [10, 11]: to evaluate the MSE for graph 
sampling techniques, universal performance bounds were developed and despite the fact 
that the MSE is generally not a supermodular function, greedy algorithms that minimize 
the MSE were shown to achieve a near-optimality with introduction of the concept of 
the approximate supermodularity [10]. Recently, a greedy sampling method based on the 
QR factorization was proposed to accomplish a good reconstruction performance with 
a competitive complexity and to attain its near-optimality based on the approximate 
supermodularity [11].

In this paper, we present a greedy sensor selection algorithm that chooses one sensor 
node at a time so as to minimize the MSE for the parameters to be estimated from the noisy 
linear sensor measurements on the nodes selected. We extend the previous work in [11] 
to solve the sensor selection problem in which the parameters are assumed to be normal 
distributed. Whereas the greedy sampling technique in [11] was derived to minimize only 
the reconstruction error caused by the noise term which is approximately equal to the MSE 
at high signal-to-noise ratio (SNR), we take into account the statistics of the parameters in 
computing the MSE. We then seek to iteratively select the sensor nodes so as to minimize 
the MSE which is reduced to a simple metric by using the QR decomposition. As in the 
graph sampling where sampling sets can be constructed by selecting a subset of rows from 
the eigenvector matrix of variation operators (e.g., graph Laplacian) [12, 13], we aim to 
greedily choose one node at each iteration by selecting one row of the known observation 
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matrix since the MSE can be expressed by a function of rows of the observation matrix, 
given the statistics of the parameter and the measurement noise. We employ the derivation 
process in [11] to propose a simple selection criterion by which the next node is efficiently 
selected so as to minimize the MSE computed at that iteration. We discuss that the pro-
posed algorithm can achieves a near optimality with respect to the MSE by the approxi-
mate supermodularity. We make a complexity analysis of the proposed algorithm to offer a 
reasonable complexity as compared with the different greedy methods. We finally perform 
extensive experiments to demonstrate that the proposed selection method produces a com-
petitive performance in terms of the estimation accuracy and the computational cost when 
compared with various selection methods.

This paper is organized as follows. The sensor selection problem is formulated in Sect. 2 
in which the MSE is expressed in terms of the observation matrix and the statistics of the 
parameters and the measurement noise. In Sect.  3, the QR factorization is employed to 
express the MSE which is further manipulated by useful matrix formulae to derive a sim-
ple selection criterion. The complexity analysis of the proposed algorithm is provided in 
Sect. 4.1. Extensive experiments are conducted in Sect. 4.2 and conclusions in Sect. 5.

2 � Problem formulation
In wireless sensor networks where N nodes are spatially deployed in a sensor field, we con-
sider the problem of estimating the parameter vector θ ∈ R

p from n (< N ) measurements 
collected by the n selected nodes in the set S. The noise-corrupted measurement vector 
y = [y1 · · · yN ]

⊤ is assumed to be given by a linear observation model:

where H is an N × p known full column-rank observation matrix consisting of N row 
vectors h⊤i = [hi1 · · · hip], i ∈ V = {1, . . . ,N } and the parameter θ and the additive 
noise w are assumed to be independent of each other and drawn from the Gaussian dis-
tribution N (0,�θ ) and N (0, σ 2I) , respectively. Then, the parameter θ is assumed to be 
estimated by using the optimal Bayesian linear estimator given by [14]:

where (2) corresponds to the maximum a posteriori (MAP) estimator or minimum 
mean squared error (MMSE) estimator. The estimation error covariance matrix �(S) is 
derived as follows [6, 10]:

where HS is the matrix with rows of the observation matrix H indexed by S.

(1)y = Hθ + w

(2)θ̂ = �
−1
θ +

1

σ 2
i∈S

hih
⊤
i

−1
1

σ 2
i∈S

hiyi

(3)

�(S) = E[(θ − θ̂ )(θ − θ̂ )⊤]

=

(

�
−1
θ +

1

σ 2

∑

i∈S

hih
⊤
i

)−1

=

(

�
−1
θ +

1

σ 2
H⊤

S HS

)−1
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In this work, we assume that the parameter θ is a random vector with known prior 
distribution. Instead, we can also consider the problem of estimating the parameter 
which is deterministic but unknown. For this case, the parameter is estimated by the 
maximum likelihood (ML) estimator. The ML estimator and the estimation error 
covariance matrix can be obtained as follows [14]:

Note that the ML estimation becomes equal to the Bayesian estimation in the limit of 
�θ = σ 2

θ Ip, σ
2
θ → ∞.

Now, we formulate the problem of finding the best set S∗ of sensors that minimizes 
the MSE in (3):

It should be noticed from (3) and (6) that given the statistics of the parameter and the 
noise, the MSE is determined by the matrix HS . In other words, the optimal locations 
of sensor nodes can be found by selecting the most informative rows of the observation 
matrix H . Obviously, in a noise-free situation ( w = 0 in (1)), the parameter vector can be 
perfectly recovered by simply picking up any of p independent rows of H . In this work, 
we aim to find the optimal set of p sensor nodes that minimizes the MSE in noisy cases.

To solve the problem in (6), we consider a greedy approach in which one sensor 
node at each iteration is selected so as to minimize the intermediate MSE: that is, 
at the ith iteration, the intermediate MSE is given by MSE(Si) = tr[�(Si)] , where Si 
consists of i sensors selected until the ith iteration. We continue to choose the next 
node at the ( i + 1)th iteration from the set of the remaining sensors denoted by 
SCi ≡ (V − Si) until |Si| reaches p:

where HSi+1 consists of (i + 1) row vectors selected from H and is expressed by

where (h(i))⊤ denotes the row vector selected at the ith iteration. The selection pro-
cedure described by (7) and (8) is conducted repeatedly until |S| = p sensor nodes are 
selected.

(4)θ̂ =

(

1

σ 2

∑

i∈S

hih
⊤
i

)−1
1

σ 2

∑

i∈S

hiyi

(5)�(S) =

(

1

σ 2
H⊤

S HS

)−1

(6)S∗ = arg min
S,|S|=n

MSE(S) = arg min
S,|S|=n

tr[�(S)]

(7)

j∗ = arg min
Si+1=Si+{j},j∈SCi

tr[�(Si+1)]

= arg min
Si+1=Si+{j},j∈SCi

tr

[

(

�
−1
θ +

1

σ 2
H⊤

Si+1
HSi+1

)−1
]

(8)Si+1 = Si + {j∗}

(9)H⊤
Si+1

=
[

h(1) · · · h(i+1)
]
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In the following section, we prove a theorem that provides a simple selection crite-
rion by which the next sensor node minimizing the metric in (7) is iteratively selected. 
We first manipulate the matrix H⊤

Si+1
 based on the QR factorization which is obtained in 

this work by using the Householder transformation due to its low complexity and robust 
sensitivity to rounding error as compared to the Gram-Schmidt orthogonalization [15].

3 � Method: greedy sensor selection algorithm
Using the QR factorization, we have H⊤

Si+1
= QR̄(i+1) where Q is the p× p matrix and 

R̄(i+1) the p× (i + 1) matrix. Assuming �θ = σ 2
θ Ip where Ip is the p× p identity matrix, 

we then manipulate the cost function in (7) to derive a simpler form. Specifically,

where (10) follows from the notion that Q⊤ = Q−1 and the cyclic property of the trace 
operation. Noting that R̄(i+1) can be written by

where 0a×b indicates the a× b zero matrix, we have

Thus, we simplify the MSE as follows:

where (14) follows since the second term in (13) is irrelevant in finding the (i + 1) th sen-
sor node at (i + 1) th iteration.

We present a theorem in which a simple criterion is provided to select the minimizing 
row (equivalently, the corresponding sensor node) from H at each iteration. We employ 
the derivation process in [11] to prove the theorem.

(10)

MSE(Si+1) = tr

[

(

�
−1
θ +

1

σ 2
H⊤

Si+1
HSi+1

)−1
]

= tr

[

(

1

σ 2
θ

Ip +
1

σ 2
QR̄(i+1)(R̄(i+1))⊤Q⊤

)−1
]

= tr

[

(

1

σ 2
θ

Ip +
1

σ 2
R̄(i+1)(R̄(i+1))⊤

)−1
]

(11)R̄(i+1) =

[

Ri+1

0(p−i−1)×(i+1)

]

,

(12)

�

1

σ 2
R̄(i+1)(R̄(i+1))⊤ +

1

σ 2
θ

Ip

�−1

= σ 2





�

R(i+1)(Ri+1)⊤ + σ 2

σ 2
θ

Ii+1

�−1
0⊤(p−i−1)×(i+1)

0(p−i−1)×(i+1)
σ 2
θ

σ 2 Ip−i−1





(13)MSE(Si+1) ∝tr

[

(

R(i+1)(Ri+1)⊤ +
σ 2

σ 2
θ

Ii+1

)−1
]

+ tr

(

σ 2
θ

σ 2
Ip−i−1

)

(14)∝tr

[

(

R(i+1)(Ri+1)⊤ +
σ 2

σ 2
θ

Ii+1

)−1
]
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Theorem  Let the ( i + 1)th column vector ri+1 of Ri+1 be given by r⊤i+1 = [b⊤ d] where 
the ( i × 1 ) column vector b and the ( i + 1)th entry d are computed from the QR factoriza-
tion. Then, the sensor node at the (i + 1) th iteration that minimizes the MSE formulated 
in (14) is selected from the remaining (N − i) nodes as follows:

where (h(i+1))⊤ is one of the rows of HSCi
 selected at the (i + 1) th iteration and 

k = b⊤
(

Ri(Ri)⊤ + σ 2

σ 2
θ

Ii

)−1
b.

1 � Proof
We further manipulate the cost function in (14) to produce

For simplified notations, we denote Ri(Ri)⊤ + σ 2

σ 2
θ

Ii and σ
2

σ 2
θ

 by Pi and α2 , respectively. 

Then, we have

where (16) follows from the Sherman–Morrison–Woodbury formula [16]. The first term 
in (16) is computed by using the block matrix inversion [16]:

(15)h(i+1)∗ = arg min
h(i+1)

1+ k − σ 2/σ 2
θ �

(

Ri(Ri)⊤ + σ 2

σ 2
θ

Ii

)−1
b �2

d2 + (1+ k)σ 2/σ 2
θ

�

Ri+1(Ri+1)⊤ +
σ 2

σ 2
θ

Ii+1

�−1

=

��

Ri(Ri)⊤ 0i×1

0⊤i×1 0

�

+ ri+1r
⊤
i+1 +

σ 2

σ 2
θ

Ii+1

�−1

=









Ri(Ri)⊤ + σ 2

σ 2
θ

Ii bd

b⊤d d2 + σ 2

σ 2
θ



+

�

b
0

�

�

b⊤ 0
�





−1

(16)

(

Ri+1(Ri+1)⊤ +
σ 2

σ 2
θ

Ii+1

)−1

=

[

Pi bd

b⊤d d2 + α2

]−1

−

[

Pi bd

b⊤d d2 + α2

]−1[
b
0

]

[

b⊤ 0
]

[

Pi bd

b⊤d d2 + α2

]−1

1+
[

b⊤ 0
]

[

Pi bd

b⊤d d2 + α2

]−1[
b
0

]

(17)
�

Pi bd

b⊤d d2 + α2

�−1

=







�

Pi
�−1

+
d2

�

Pi
�−1

bb⊤
�

Pi
�−1

d2(1−k)+α2
−

d
�

Pi
�−1

b

d2(1−k)+α2

−
db⊤

�

Pi
�−1

d2(1−k)+α2
1

d2(1−k)+α2






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where k is used to denote b⊤
(

Ri(Ri)⊤ + σ 2

σ 2
θ

Ii

)−1
b for a simpler notation. Furthermore, 

the denominator and the nominator of the second term in (16) are computed as follows:

From (17)–(19), we finally have

Thus, the MSE is computed as follows:

Note that the first term in (21) is given at the ith iteration and irrelavant in finding the 
next sensor node at the (i + 1) th iteration that minimizes the MSE. �

Initially, we can compute (p1)−1 for each h(1) as follows:

Thus, the first sensor node is selected by finding the row vector h(1)∗ that minimizes the 
MSE given by (23). Starting with (p1)−1 with h(1)∗ , the algorithm continues by evaluating 
(22) at the next iteration until the p sensor nodes are selected. In what follows, the pro-
posed sensor selection algorithm is briefly explained.

(18)1+
[

b⊤ 0
]

[

Pi bd

b⊤d d2 + α2

]−1[
b
0

]

=
d2 + (1+ k)α2

d2(1− k)+ α2
.

(19)

�

Pi bd

b⊤d d2 + α2

�−1�
b
0

�

�

b⊤ 0
�

�

Pi bd

b⊤d d2 + α2

�−1

=





�

Pi
�−1

bb⊤
�

Pi
�−1 (d2+α2)2

(d2(1−k)+α2)2
−

�

Pi
�−1

b dk(d2+α2)

(d2(1−k)+α2)2

−b⊤
�

Pi
�−1 dk(d2+α2)

(d2(1−k)+α2)2
d2k2

(d2(1−k)+α2)2





(20)

�

Ri+1(Ri+1)⊤ +
σ 2

σ 2
θ

Ii+1

�−1

=







�

Pi
�−1

− α2

d2+(1+k)α2

�

Pi
�−1

bb⊤
�

Pi
�−1

−
d
�

Pi
�−1

b

d2+(1+k)α2

−
db⊤

�

Pi
�−1

d2+(1+k)α2
1+k

d2+(1+k)α2







(21)

MSE(Si+1) = tr

[

(

Pi
)−1

]

−
α2

d2 + (1+ k)α2
tr

[

(

Pi
)−1

bb⊤
(

Pi
)−1

]

+
1+ k

d2 + (1+ k)α2

(22)∝
1+ k − σ 2/σ 2

θ �
(

Pi
)−1

b �2

d2 + (1+ k)σ 2/σ 2
θ

(23)

(p1)−1 =

(

R1(R1)⊤ +
σ 2

σ 2
θ

)−1

=
1

� h(1) �2 + σ 2

σ 2
θ
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4 � Results and discussion
4.1 � Optimality and complexity of proposed algorithm

The concept of the approximate supermodularity ensures near-optimality of greedy 
methods that seek to minimize the MSE given in (14) [10]. Specifically, it is shown that 
the MSE(S) is monotone-decreasing and γ-supermodular and greedy searches minimiz-
ing the MSE by repeatedly conducting (7) and (8) can provide a bound on suboptimality 
of the greedy solution to the problem in (6) as follows:

where MSE(Si) and MSE(S∗) indicate the MSE at the ith iteration of the greedy search 

and the MSE achieved by the optimal solution S∗ to (6), respectively and γ ≥
1+2σ 2

θ /σ
2

(1+σ 2
θ /σ

2)4
 

(for the detailed information on the definition of the γ-supermodular set function and 
the bound in (24), see Theorem 2 and 3 in [10]). The performance bound in (24) explains 
good empirical results of greedy methods that have been encountered in many practical 
applications. Hence, it can be said that our greedy solution iteratively minimizing the 
MSE achieves a near-optimal performance.

The proposed algorithm consists of two main parts: first, given 
(

Pi
)−1

=
(

Ri(Ri)⊤ + σ 2

σ 2
θ

Ii

)−1
 at the (i + 1) th iteration, the minimizing row is deter-

mined by computing the selection criterion in (15) for each h(i+1) selected out of N − i 
remaining rows in HSCi

 . Thus, the operation count of the first work at the (i + 1) th itera-

tion is given by Ctr ≈ (N − i)(2pi + 2i2) flops. Second, after h(i+1)∗ is obtained, the 
inverse matrix 

(

Pi+1
)−1 is computed from (20) for the next iteration, requiring the oper-

ation count Cinv ≈ 3i2 + i flops. In addition, the the Householder matrix for the QR 
decomposition is performed for each h(i+1)∗ , producing the operation count 
CH ≈ 2pi2 − 4p2i + 2p3 . Noting that this process is repeated |S| − 1 times, the total 

(24)
MSE(Si)−MSE(S∗)

MSE(∅)−MSE(S∗)
≤ e

−
γ i
p
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operation count of the proposed algorithm is given by Ctotal = O(Np|S|2) which is the 
complexity of the same order as that of [11] except for the extra computation O(N |S|2) 
needed for our algorithm which is ignorable in computing the total operation count 
Ctotal.

For the performance comparison, we first consider the efficient sampling method 
(ESM) [13], which has been developed for sampling of graph signals. ESM selects the 
next row (or the next sensor node) by applying a column-wise Gaussian elimination on 
H , yielding a low weight selection process. We next compare the proposed algorithm 
with a greedy sensor selection (GSS) [6], which is shown to achieve a near-optimal per-
formance in a sense that the log-determinant of the inverse error covariance matrix 
�(S)−1 is maximized. We also compare with the QR factorization-based selection 
method (QRM) [11] which employs the QR factorization to derive a simple selection 
criterion. QRM seeks to minimize tr

[

(

H⊤
S HS

)+
]

=� H+
S �2F which corresponds to the 

MSE at the high SNR ( σθ ≫ σ ). The complexity and the metrics of the above mentioned 
algorithms are provided in Table 1. Obviously, the proposed algorithm offers a competi-
tive complexity as compared with GSS and QRM for |S| ≤ p while ESM runs faster than 
the others at the expense of poor performance caused by its suboptimal approach. We 
finally investigate the estimation performance of the various methods for the case of 
|S| = p in the experiments in Sect. 4.2

4.2 � Experimental results

In this section, we investigate the performance of the proposed sensor selection algo-
rithm in comparison with various selection methods for two different types of observa-
tion matrices H given below:

•	 Random matrices with Gaussian iid entries, hij ∼ N (0, 1)

•	 Random matrices with Bernoulli iid entries, hij which take binary values (0 or 1) with 
the probability 0.5.

We generate 500 different realizations of random matrices for each type of H ∈ R
N×p 

with N = 100 . For each realization of H , we apply one of the various sensor selection 
methods such as ESM, GSS, QRM and the proposed algorithm to construct the selection 
set S with the cardinality |S| = p . We then collect the selected measurements yi, i ∈ S 
from which the parameter vector θ is estimated by using the optimal linear estima-
tor given in (2). Note that the measurements are noise-corrupted by the measurement 
noise w , the variance of which is changed by varying the SNR (dB)= 10 log10 σ 2

θ /σ
2 . 

Table 1  Comparison with various greedy selection methods

Method Optimality criteria Decomposition Operation count

ESM [13] � H
+
S �22 – O(Np|S|)

GSS [6] log det ( �(S)−1) – O(Np2|S|)

QRM [11] � H
+
S �2F QR O(Np|S|2)

Proposed method tr[�(S)] QR O(Np|S|2)
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We evaluate the performance of the different selection methods by computing the MSE 
given by E � θ − θ̂ �2 which is averaged over 500 different realizations of H.

4.2.1 � Performance evaluation with respect to parameter dimension

In this experiment, we construct the sets S with |S| = p by using the four selection meth-
ods for two types of H with p = 20, 25, . . . , 40 . We test them from the noisy measure-
ments generated at SNR=2dB by evaluating the MSEs achieved by the methods which 
are plotted in Figs.  1 and  2. Notably, the MSE becomes worse with increased dimen-
sion of the parameter vector because the set S consisting of more informative nodes is 
less likely to be selected with increased cardinality, given a fixed number of the nodes 
in the sensor networks. As expected, the proposed algorithm outperforms the other 

20 25 30 35 40
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Performance evaluation: Gaussian random matrix

Number of sensor node selected

Av
er

ag
e 

es
tim

at
io

n 
er

ro
r

 

 
ESM
QRM
GSS
Proposed method

Fig. 1  Estimation performance with respect to various parameter dimensions for Gaussian random matrix 
H : the proposed algorithm is compared with different selection methods by varying the dimension of the 
parameter, |S| = p
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Fig. 2  Estimation performance with respect to various parameter dimensions for Bernoulli random matrix 
H : the proposed algorithm is compared with different selection methods by varying the dimension of the 
parameter, |S| = p
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methods in terms of the MSE for most cases since ESM and GSS focus on optimizing 
the indirect metrics such as the worst case of the MSE (equivalently, the spectral matrix 
norm � H+

S �22 ) and the log-determinant of the inverse error covariance matrix, respec-
tively. It is also noticed that QRM shows good performance in a noisy situation while 
it is designed to minimize the MSE at the high SNR. The complexity of the selection 
methods is experimentally evaluated in terms of the execution time in second. Figure 3 
demonstrates the execution times of the methods for the Gaussian random matrix H 
with respect to the parameter dimension p = |S| = 20, . . . , 40 . On the average, GSS and 
QRM run 1.51 and 1.22 times faster than the proposed method for the case of |S| = p , 
respectively.

4.2.2 � Performance investigation with respect to noise level

We investigate the sensitivity of the different selection methods to the noise level σ 
which takes different values by varying the SNR from 0 dB to 10 dB. In Figs. 4 and 5 , 
we compare the MSEs achieved by the methods given |S| = p = 30 to demonstrate the 
superiority of the proposed algorithm to the other ones in the presence of the measure-
ment noise. It is noted that ESM and QRM work only on the observation matrix H with-
out taking into account the statistics about the parameter and noise. Nonetheless, QRM 
shows a good estimation performance at the moderate and high SNR.

5 � Conclusions
We studied an optimization problem in which a given number of sensor nodes are 
selected so as to minimize the estimation error computed by using the measurements 
on the selected nodes. We presented a greedy sensor selection method which itera-
tively selects one node minimizing the estimation error at each step. We employed 
the QR factorization and useful matrix formulae to derive a simple criterion by which 
the next minimizing node is selected without computation of large matrix inversion. 
We discussed that a near-optimality of the proposed method can be ensured from the 
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Fig. 3  Execution time in second with respect to various parameter dimensions for Gaussian random matrix 
H : the proposed algorithm is compared with different selection methods by varying the dimension of the 
parameter, |S| = p
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approximate supermodularity and also analyzed the complexity of the proposed algo-
rithm in comparison with the previous novel methods. We finally examined the esti-
mation performance of different selection methods through extensive experiments in 
various situations, demonstrating that the proposed algorithm offers an competitive 
estimation performance with a reasonable complexity as compared with the novel 
methods.
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Fig. 4  Performance investigation with respect to SNR for Gaussian random matrix H : the various sensor 
selection algorithms with |S| = p = 30 are evaluated by varying the SNR
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