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1  Introduction
Multi-target tracking using multi-static tracking systems has a long history [1–5]. Clas-
sical multi-target tracking methods, such as the joint probabilistic data association filter 
[6], the multiple hypothesis tracking algorithm [7, 8] and the track-before-detect para-
digm [9–11], have been widely studied. Recently, the multi-static Doppler radar system 
has attracted a lot of attention in the field of passive surveillance [12, 13]. The transmit-
ters are typically the commercial frequency modulation (FM) radio transmitters, digi-
tal audio/video broadcasters (DAB/DVB), or global system for mobile communications 
(GSM) base stations [14]. The radar receivers can typically measure the multi-static 
range, direction-of-arrival (DOA) and Doppler shift. The Doppler-shift measurement is 
widely considered in the multi-static radar systems and the main reasons are twofold. On 
the one hand, the Doppler measuring sensors are low cost and do not require a hardware 
array. On the other hand, Doppler-shift measurements are typically accurate. Although 
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the Doppler measurement has been used in localization and tracking for a long history, 
existing studies mainly analyze the observability of the target [15, 16] and consider the 
optimal positioning of multi-static systems [17, 18]. The problem of sensor management 
for multi-target tracking in multi-static Doppler radar system has not been fully studied, 
and this paper presents a novel receiver selection solution.

Mahler’s finite set statistics (FISST) [19, 20] is an elegant Bayesian formulation based 
on the random finite set (RFS) theory, providing a unified approach to addressing the 
stochastic nature of the multi-target sensor management problem. Based on the FISST, 
the probability hypothesis density (PHD) filter [21], the cardinalized PHD (CPHD) filter 
[22], and the multi-Bernoulli filter [23] have been developed and attracted a lot of atten-
tion. The PHD, CPHD, and multi-Bernoulli filters are approximations of the complicated 
Bayes multi-target filter. The PHD and CPHD filters propagate moments and cardinality 
distributions, while the multi-Bernoulli filter propagates the parameters of a multi-Ber-
noulli distribution. These filters assume that the targets are indistinguishable and hence 
cannot output target trajectories. By using the labeled RFS formulation [24, 25], the 
generalized labeled multi-Bernoulli (GLMB) filter [26] and the labeled multi-Bernoulli 
(LMB) filter [27] have be proposed to address target trajectories. Multi-target densities 
within the iteration of the GLMB filter are weighted sums of multi-target exponentials. 
The LMB filter can be regarded as an efficient approximation of the GLMB filter and an 
improved approximation of the multi-Bernoulli filter. With the advantages of the GLMB 
filter and the multi-Bernoulli filter, the LMB filter not only has straightforward parti-
cle implementations and state estimation, but also outputs target tracks and gives better 
performance.

To provide a balance in the tracking accuracy and communication constraints of the 
multi-sensor system, intelligent sensor management is required to report high quality 
target-related measurements. Due to energy and bandwidth constraints, a subset of sen-
sors is selected from all sensors to collect high quality measurements. Multi-target sen-
sor management is essentially an optimal nonlinear stochastic control problem, aiming 
at making the right management decision at the right time. Within the RFS framework, 
sensor management is generally formulated as a partially observed Markov decision pro-
cess (POMDP). The elements of a POMDP include a set of admissible sensor manage-
ment commands, the current (uncertain) information state, and the objective function 
function associated with each command. Several objective functions have been pro-
posed within the POMDP, which are mainly driven by information theoretic measures 
and specific tasks. A measure of information gain is the divergence between the pre-
dicted and updated multi-target densities. Although the Kullback–Leibler divergence 
[28] and Rényi [29] divergence have been widely used, they cannot be computed analyti-
cally. In [30, 31], the authors derived closed form Cauchy–Schwarz divergences for Pois-
son and GLMB models. The Cauchy–Schwarz divergence has been applied in observer 
trajectory optimization [31], drone path-planning [32], and multi-sensor control [33]. 
The objective functions driven by tasks include, but not be limited to, the posterior 
expected number of targets [34–36], the cardinality variance [37], and the statistical 
mean of the optimal sub-pattern assignment (OSPA) error [38]. Our recent work [39] 
considers the legacy tracks and the measurement-updated tracks separately, to make full 
use of the information involved in the updated multi-target density.
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In this paper, we consider the receiver selection problem for multi-target tracking using 
the multi-static Doppler radar system. Multiple targets move in the surveillance area and 
the number of targets and their states vary over time. With the movement of the multi-
target, receivers in the multi-static Doppler radar system are adaptively selected. However, 
since transmit and receive antennas are placed at different locations, measurements col-
lected by multi-static systems are typically subjected to noise corruption, missed detec-
tions, and false alarms. Worse, a single Doppler measurement cannot provide complete 
information on the target state, known as single-sensor unobservability. Accurate estima-
tion of the number of targets and their tracks from Doppler measurements is difficult, and 
the difficulty is further compounded by receiver selection. We model the multi-target state 
as a LMB RFS and use the LMB filter for tracking. For receiver selection, the cardinality var-
iance derived from the LMB distribution is used as a selection criterion under the POMDP 
framework. The reasons for using the cardinality variance are twofold. First, the cardinality 
variance has a closed-form expression and its calculation is very simple. Second, the car-
dinality variance is a measure of the accuracy of the number of targets, which is closely 
related to the tracking accuracy. To increase the diversity of the selected sensors and over-
come the low observability of the Doppler measurement, the receivers selected at the previ-
ous time steps are taken into account for receiver selection at the current time step. We set 
up a window for the receivers selected from previous time steps to the current time step 
and confirm that the sensors in the window are different. Simulation experiments study the 
tracking performance of the proposed method using different window lengths and validate 
the effectiveness of the proposed method.

The paper is organized as follows. In Sect.  2, the necessary background on the multi-
static Doppler radar system, the labeled RFS, and the LMB recursion is briefly introduced. 
Then, motivations and details of the window-added receiver selection are given in Sect. 3. 
In Sect. 4, results and discussion are given. Finally, Sect. 5 concludes the paper.

2 � Background
2.1 � Multi‑static Doppler radar system

We assume a multi-static Doppler radar system composed of one transmitter and several 
receivers, as illustrated in Fig. 1. The multi-static Doppler radar system is assumed to be 
cooperative so that all information of the transmitter and receivers are available.

In the multi-static Doppler system, a transmitter located at t = [tx, ty]
T illuminates the 

target xk with position pk = [px,k , px,k ]
T and velocity ṗk = [ṗx,k , ṗx,k ]

T . If the signal is 
scattered by the target, receiver j with position r(j) = [r

(j)
x , r

(j)
y ]T will receive it and report a 

Doppler measurement as

where c is the speed of light, fc is the carrier frequency, and ε(j)k  is the zero mean white 
Gaussian measurement noise with standard deviation σε . The Doppler shift can be 
positive or negative. The interval of the Doppler measurements is given as an interval 
[−f0,+fo] , where fo is the maximal possible value of the Doppler measurement. The 
distribution of false detections (clutter) is time invariant and independent of the target 

(1)z
(j)
k = −ṗTk

[
pk − r(j)∥∥pk − r(j)

∥∥ +
pk − t

�pk − t�

]
fc

c
+ ε

(j)
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state. It is assumed that the false detections are distributed uniformly over the measure-
ment space, and the number of false detections is Poisson distributed with the constant 
mean value �(j) for receiver j.

2.2 � Bayes multi‑target filter

The Bayes multi-target filter [19, 20] is an extension of the Bayes single-target filter using 
the RFS to describe the multi-target state. An RFS is a finite-set-valued random vari-
able that the points are random and unordered and that the number of points is random. 
Assuming that the target states take values from a state space X , the multi-target state space 
is the space of all finite subsets of X and denoted as F(X) . To distinguish between different 
targets, a mark ℓ ∈ L is augmented to the state of each target in the labeled RFS model. In 
this way, the multi-target state is considered as a finite set on X× L . For convention, sin-
gle target states are denoted by small letters (e.g., x, x ) and multi-target states are denoted 
by capital letters (e.g., X, X ). To distinguish labeled states and their distributions from the 
unlabeled, the labeled ones are denoted by bold face letters (e.g., x , X , π).

At time k, it is assumed that there are Nk target states xk ,1, . . . , xk ,Nk
 taking val-

ues in the labeled state space X× L , and Mk measurements zk ,1, . . . , zk ,Mk
 taking val-

ues in an observation space Z . The set of targets is denoted as the multi-target state 
Xk = {xk ,1, . . . , xk ,Nk

} ∈ F(X× L) . The set of observations is treated as the multi-target 
observation Zk = {zk ,1, . . . , zk ,M(k)} ∈ F(Z) . Let πk(Xk |Z1:k) denote the multi-target fil-
tering density at time k and πk|k−1(Xk |Z1:k−1) denote the multi-target prediction density 
to time k. The multi-target Bayes filter propagates πk in time according to the following 
update and prediction

where f k|k−1(·|·) is the multi-target transition density, gk(·|·) is the multi-target likeli-
hood, and Z1:k = (Z1, . . . ,Zk) contains all the measurements accumulated up to time k. 

(2)πk(Xk |Z1:k) =
gk(Zk |Xk)πk|k−1(Xk |Z1:k−1)∫
gk(Zk |X)πk|k−1(X |Z1:k−1)δX

,

(3)πk|k−1(Xk |Z1:k−1) =

∫
f k|k−1(Xk |X)πk−1(X |Z1:k−1)δX ,

Receiver 1

Receiver 2
Receiver 3

Receiver 4

0 x

y

Transmitter

Target 

Fig. 1  Multi-static Doppler-only surveillance system in the x − y plane
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The integrals in Eqs. (2)–(3) are set integrals but not ordinary integrals. The set integral 
for a function f : F(X×L) → R is given by

2.3 � Labeled multi‑Bernoulli filter

The multi-Bernoulli filter was proposed in [23] as an approximation of the Bayes multi-
target filter by approximating the posterior as a multi-Bernoulli RFS. Compared to the 
multi-Bernoulli filter, the LMB filter does not exhibit a cardinality bias and can output 
target tracks. The LMB distribution is described by π = {(r(ℓ), p(ℓ)(·))}ℓ∈L in which r(ℓ) 
indicates the existence probability of a target with label ℓ ∈ L , and p(ℓ)(x) is the the spa-
tial distribution of the target’s state x ∈ X when it exists [27]. The LMB RFS density is 
given by

where L(X) denotes the set of all possible labels obtained from X , and

If the prior distribution is an LMB distribution denoted as {(r(ℓ), p(ℓ)(·))}ℓ∈L , the pre-
dicted LMB distribution under the Bayes filtering framework evolves the survival LMB 
components and the birth LMB components, as follows:

where

f (x|x′, ℓ) is the transition density for track ℓ , pS(·, ℓ) is the state dependent survival 
probability, ηS(ℓ) = �pS(·, ℓ), p(·, ℓ)� is the survival probability of track ℓ , and the stand-
ard inner product 

〈
f , g

〉
�

∫
f (x)g(x)dx.

Let the predicted LMB distribution denote as π+ = {(r
(ℓ)
+ , p

(ℓ)
+ (·))}ℓ∈L+

 , the posterior 
multi-target density is approximated as follows [27]:

where

(4)
∫

f (X)δX =

∞∑

i=0

1

i!

∑

(ℓ1,...,ℓi)∈Li

∫
f ({(x1, ℓ1), . . . , (xi, ℓi)})d(x1, . . . , xi).

(5)π(X) = �(X)w(L(X))[p]X ,

(6)w(L) =
∏

i∈L

(1− r(i))
∏

i∈L

1Lr
(ℓ)

(1− r(ℓ))
,

(7)[p]X =
∏

(x,ℓ)∈X

p(ℓ)(x).

(8)π+ = {(r
(ℓ)
+,S , p

(ℓ)
+,S(·))}ℓ∈L ∪ {(r

(ℓ)
B , p

(ℓ)
B (·))}ℓ∈B,

(9)r
(ℓ)
+,S = ηS(ℓ)r

(ℓ),

(10)p
(ℓ)
+,s(·) =

〈
pS(·, ℓ)f (x|·, ℓ), p(·, ℓ)

〉

ηS(ℓ)
,

(11)π(·|Z) = {(r(ℓ), p(ℓ)(·))}ℓ∈L+
,
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and g(z|x; ℓ) is the single target likelihood, κ(·) is the clutter intensity, �I+ is the space of 
mappings θ : I+ → {0, 1, . . . , |Z|} , and the inclusion function 1S(X) = 1, if X ⊆ S , other-
wise, 1S(X) = 0.

There are two implementations of the LMB recursion: one is using the sequential 
Monte Carlo (SMC) method and the other is using Gaussian mixtures (GM). The 
GM implementation is popular because it provides a closed form analytic solution 
to the recursions under linear Gaussian target dynamics and measurement models. 
Alternatively, SMC implementation has the natural ability of handling nonlinear tar-
get dynamics and measurement models. In this paper, the SMC implementation is 
adopted to handle the nonlinear dynamic and measurement models.

3 � Methods
On the basis of the signal model proposed in Sect.  2, this section proposes a novel 
receiver selection method for multi-target tracking in the multi-static Doppler radar 
system. The receiver selection problem is formulated as a POMDP model [40], in 
which the multi-target dynamics is a Markov process, but there is no direct access to 
current states. The POMDP model consists of the following main components:

•	 Xk : the labeled multi-target state at current time k;
•	 f k|k−1(Xk |Xk−1) : the multi-target state transition function;
•	 gk(Zk |Xk) : the multi-target likelihood;
•	 I : a finite set of receivers for selection;
•	 ϑ(Xk−1, Ik ,Xk) : the objective function associated with the command Ik ⊆ I.

At each time step, the optimal receiver I∗k  is selected by optimizing the statistical 
mean of the objective function:

(12)r(ℓ) =
∑

(I+,θ)∈F(L+)×�I+

w(I+,θ)(Z)1I+(ℓ),

(13)p(ℓ)(x) =
1

r(ℓ)

∑

(I+,θ)∈F(L+)×�I+

w(I+,θ)(Z)× 1I+(ℓ)p
(θ)(x, ℓ),

(14)w(I+,θ)(Z) ∝ w+(I+)[η
(θ)
Z (ℓ)]I+ ,

(15)p(θ)(x, ℓ|Z) =
p+(x, ℓ)ψZ(x, ℓ; θ)

η
(θ)
Z (ℓ)

,

(16)η
(θ)
Z (ℓ) = �p+(·, ℓ),ψZ(·, ℓ; θ)�,

(17)ψZ(x, ℓ; θ) =

{
pD(x,ℓ)g(zθ(ℓ)|x;ℓ)

κ(zθ(ℓ))
, if θ(ℓ) > 0,

1− pD(x, ℓ), if θ(ℓ) = 0,
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Several objective functions have been proposed for sensor management but there are 
few studies on receiver selection in the multi-static Doppler radar system [41, 42].

Different from other sensor management solutions, receiver selection in the multi-static 
Doppler radar system is more complicated. If the same receiver is selected for multiple 
consecutive time steps, the tracking performance of the system is poor and even fails. 
This is because the observability of the Doppler measurement is low that it is difficult for 
a single receiver to provide sufficient target information [41, 43, 44]. To overcome this 
problem, we develop a novel window-added approach that adaptively select an appropri-
ate receiver with the moving of targets. The window technique is used to overcome the 
single-sensor unobservability problem and obtain the multi-sensor diversity gain.

3.1 � Objective function

For the POMDP model, we use a task-driven objective function termed as the cardinal-
ity variance [37], because it has the analytical expression and shows good performances 
in many sensor management applications. Let the LMB posterior parameterized by 
π(·|Z) = {(r(ℓ), p(ℓ)(·))}ℓ∈L+

 , the cardinality variance associated with the selection com-
mand Ik ⊆ I is given by

Therefore, the objective function used in this paper is denoted as

At each time step, the optimal receiver I∗k  is selected by minimizing the statistical mean 
of the objective function

where Z(Ik )
k  denotes the set of measurements collected by the receiver Ik . To obtain the 

LMB posterior π(·|Z) = {(r(ℓ), p(ℓ)(·))}ℓ∈L+
 and compute the objective function, it is 

necessary to estimate all possible measurement sets and use them to update the pre-
dicted LMB distribution. This is computationally expensive. In order to reduce the com-
putation, a simple method named the predicted ideal measurement set (PIMS) [34] is 
used here to estimate the possible measurements. First, the number n̂ of target is esti-
mated using the predicted LMB RFS density. Then, n̂ labels corresponding to highest 
probabilities of existence are obtained from the predicted LMB RFS density. For each of 
these labels, the target state x̂(ℓ) is estimated. Under the ideal assumption of no measure-
ment noise, no clutter, and perfect detection, a predicted ideal measurement is gener-
ated for each target x̂(ℓ) . The pseudo-updated of the LMB RFS density is implemented 
using the PIMS, and then the objective function (20) is computed.

(18)I∗k = arg max
Ik⊆I

/min

{
E
Z
(Ik )

k

[ϑ(Xk−1, Ik ,Xk)]

}
.

(19)σ 2
|X | =

∑

ℓ∈L+

r(ℓ)(Ik)[1− r(ℓ)(Ik)].

(20)ϑ(Xk−1, Ik ,Xk) = σ 2
|X | =

∑

ℓ∈L+

r(ℓ)(Ik)[1− r(ℓ)(Ik)].

(21)I∗k = argmin
Ik⊆I

{
E
Z
(Ik )

k

[ϑ(Xk−1, Ik ,Xk)]

}
.
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3.2 � Window‑added receiver selection

In this paper, we propose to use a dynamic sliding window within the receiver selec-
tion procedure. The window keeps the indices of receivers selected from previous 
time steps to the current time step. The dynamic window moves automatically with 
time. We confirm that the indices of receivers in the window are different when the 
receiver selected at the current time is added, to improve the diversity of the selected 
receivers. Mathematically, the receiver selection is developed as follows:

where Wk = [Ik−L+1, . . . , Ik ] indicates the dynamic sliding window, and L is the fixed 
length of the window. Note that the expectation term in Eq. (21) does not appear, as the 
PIMS approach is used instead of all possible sets of measurements.

If the index of the receiver selected at the current time step k is the same with an 
existing index in the window. Then, this receiver is removed from the set I of receivers 
for selection and the receiver selection formulated as Eq.  (22) will be repeated until 
the indices of receivers within the window are unique. An example of the sliding win-
dow is illustrated in Fig. 2.

The step-by-step pseudocode for a single run k = L, L+ 1, . . . is given in Algorithm 1. 
It is assumed that the following parameters are always available to the tracking system:

•	 parameters of the multi-static system: transmitter position t = [tx, ty]
T , carrier fre-

quency fc , receiver position r(j) = [r
(j)
x , r

(j)
y ]T , detection probability p(j)D (·) , and clut-

ter intensity κ(·);
•	 LMB birth distribution: {(r(ℓ)B , p

(ℓ)
B (·))}ℓ∈B

•	 survival probability function: pS(x, ℓ);
•	 single-target transition density f (x|·, ℓ) and likelihood g(z|x, ℓ).

Note that a suitable window length is important for the proposed window-added 
receiver selection method. A suitable window length helps to collect more effective 
information about the targets being tracked and improve the tracking performance. If 
the window length is short, the diversity of the selected receivers is less improved. When 

(22)I∗k = arg min
Ik⊆I

{ϑ(Xk−1, Ik ,Wk ,Xk)}.
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the window length L = 1 , the proposed method degenerates into the ordinary cardinal-
ity variance based sensor selection method. In this case, it is likely that the same receiver 
is selected for multiple consecutive time steps and the tracking performance is poor. If 
the window length is overlong, the influence of high-quality receivers can be reduced 
and the tracking performance is less satisfactory. Therefore, the window length needs to 
be carefully chosen.

4 � Results and discussion
We present numerical results using a multi-static Doppler radar system borrowed 
from [42] where one transmitter and ten receivers placed in the x-y plane as shown 
in Fig.  3. The transmitter is placed at the origin of the x-y plane with transmitting 
frequency fc = 900 MHz. The sampling interval is fixed as Ts = 10 s. The standard 
deviation of measurement noise is σ (j)

ε = σε = 1 Hz which is the same for all receivers 
j = 1, 2, ..., 10 . The received measurements are distributed over [−200 Hz, 200 Hz] . The 
Poisson parameter of the false detections (clutter) is �(j) = 2 for receiver j. If the target 
is detected by receiver j, the receiver will report a Doppler measurement. For receiver 
j, the probability of detection is modeled as p

(j)
D (xk) = 1− φ(

∥∥pk − r(j)
∥∥;α,β) , 

where dk ,j =
∥∥pk − r(j)

∥∥ is the distance between the target and the receiver, and 
φ(d;α,β) =

∫ d
−∞

N (v;α,β)dv is the Gaussian cumulative distribution function with 
α = 12 km and β = (3 km)2.

We use two different scenarios to validate the performance of the proposed 
approach. In both scenarios, receivers are selected adaptively with the moving of the 
target. The average tracking performances are obtained over 100 Monte Carlo (MC) 
runs. As for the quantification of the tracking error, the OSPA [45] and OSPA(2) [46, 
47] error distances are used. The OSPA metric [45] estimates errors in both localiza-
tion and cardinality by measuring the distance between two sets of states and is widely 
used in evaluating tracking performances in the RFS based tracking field. However, the 
OSPA metric does not take into account track labeling errors. Recently, the OSPA(2) 
metric [46, 47] has been developed as an adaptation of the OSPA metric to accommo-
date sets of tracks, carrying the interpretation of a per-track per-time error. Note that 
a window is used in computing OSPA(2) and this window is unrelated to the one used 
in this paper. The length of the window used in computing OSPA(2) is denoted as w.

4.1 � Single target simulation

This scenario considers tracking of a single target with nearly constant velocity (NCV) 
motion. The unlabeled state includes the target position and the target velocity, 

1 2 ... k-L+1 ... k-1 k

sliding window

k+1 k+2 ...

indices selected before indices not selected 

Fig. 2  An example of the sliding window
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denoted as xk = [px,k , ṗx,k , py,k , ṗy,k ]
T . With the NCV model, the transition density of 

the target state is fk|k−1(xk |xk−1, ℓ) = N (xk ; Fk−1xk−1,Qk−1) , where

where σw = 0.01 m/s2 is the standard deviation of the acceleration noise long 
the x or y axis. The target exists for discrete-time indices k = 1, 2, . . . , 30 and 
its trajectory is shown in Fig.  4. For the LMB recursion, the birth LMB distribu-
tion is parameterized by {(rB, pB)} , where rB = 0.02 and pB = N (x;mB,PB) with 
mB = [2000 m, 0 m/s,−1000 m, 0 m/s]T and PB = diag([50 m, 50 m/s, 50 m, 50 m/s]T)2.

The performance of the proposed method is validated using windows with different 
lengths, i.e., L = 1 , L = 2 , L = 3 , L = 4 , L = 5 , and L = 6 . Note that, using a window 
with length L = 1 indicates that the indices of receivers selected at the previous time 
steps are not considered for receiver selection at the current time step. In this case, 
the proposed method degenerates into the ordinary cardinality variance based sen-
sor selection method. The random selection is also used as a comparative method, in 
which each receiver has an equal probability to be selected.

The average OSPA distance (with parameters p = 1 and c = 10000 m) and OSPA(2) 
distance (with the same c, p, and window length w = 10 ) are given in Fig.  5a, b, 
respectively. In accordance with our intuition, it can be observed that both the OSPA 
and OSPA(2) distance errors of the proposed method decrease as the window length 
L increases from 1 to 4. When the window length L increases to 5 and 6, the track-
ing performance is decreased compared with that of L = 3 and L = 4 . This indicates 
that a suitable window length is important and needs to be chosen carefully. For this 

(23)Fk−1 =



1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


,Qk−1 = σ 2

w




T 4

4
T 3

2 0 0
T 3

2 T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2 T 2


,

Fig. 3  The locations of receivers (blue squares) and the transmitter (red star)
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scenario, it can be observed from the results that a suitable window length is L = 3 or 
L = 4.

4.2 � Multi‑target simulation

In this scenario, a nearly constant turn (NCT) model is considered. The target 
state is denoted as xk = [x̃Tk ,ωk ]

T comprising the target position and velocity as 
x̃k = [px,k , ṗx,k , py,k , ṗy,k ]

T as well as the turn rate ωk . The NCT transition is modeled as 
follows:

where

(24)xk = f (xk−1)+ Gwk−1,

(25)f (xk−1) = F(ωk−1)xk−1,

(26)F(ωk−1) =




1
sinωk−1T

ωk−1
0 −

1−cosωk−1T
ωk−1

0

0 cosωk−1T 0 − sinωk−1T 0

0
1−cosωk−1T

ωk−1
1

sinωk−1T
ωk−1

0

0 sinωk−1T 0 cosωk−1T 0
0 0 0 0 1



,

(27)G =




T 2

2 0 0
T 0 0

0 T 2

2 0
0 T 0
0 0 T



,

Fig. 4  Single target trajectory and start/stop position is shown with with ◦/ △
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and wk−1 ∼ N (wk−1; 0,Qk−1) is a Gaussian process noise with covariance 
Qk−1 = diag(σ 2

x , σ
2
y , σ

2
ω) , where σx = σy = 1.0× 10−4m/s2 and σω = 1.0× 10−9rad/s2 

are standard deviations of x and y components of acceleration process noise and angular 
acceleration process noise, respectively.

Three targets moving with the NCT motion appear in the surveillance area and 
their trajectories are shown in Fig.  6, in which target 1 is born at k = 1 , target 2 is 
born at k = 10 , target 3 is born at k = 20 , and the angular velocities of these targets 
are ωk−1 = 1/4 × π/180 . Note that the angular velocity, the target position and the 
target velocity are unknown to the LMB filter. During the tracking process, the LMB 
filter will estimate these parameters. The birth LMB distribution is parameterized 
as fB(x) = {wB, p

(i)
B }3i=1 , where the common existence probabilities wB = 0.02 , and 

p
(i)
B (x) = N (x;m

(i)
B ,PB) with

(28)wk−1 := [wx,k−1,wy,k−1,wω,k−1]
T,

(a)

(b)
Fig. 5  Average OSPA and OSPA(2) errors in single target simulation
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The average OSPA distance (with parameters p = 1 and c = 1000 m) and OSPA(2) 
distance (with the same c, p, and window length ̟ = 10 ) are shown in Fig.  7a, b, 
respectively. The tracking accuracy is improved as the window length L increases 
from 1 to 5. For the window length L = 6 , the tracking performance is decreased 
compared with that of L = 3 , L = 4 and L = 5 . Therefore, the window length L = 6 
is overlong for this scenario. When the window length L = 1 , the performance of the 
proposed method is even worse than the random selection method. This is because 
the proposed method with the window length L = 1 tends to select the same receiver 
for several consecutive time steps. Since the observability of the target state from the 
Doppler measurement is low, less information about the target can be obtained if the 
same receiver is selected at several consecutive time steps. Thus, the “observability” of 
the targets is a crucial factor in determining the performance of sensor management.

5 � Conclusion
We have proposed a novel receiver selection solution for multi-target tracking using the 
multi-static Doppler radar system. To increase the diversity of the selected sensors and 
overcome the low observability of the Doppler measurement, the receivers selected at 
previous time steps are taken into account. We set up a window for receivers selected 
from previous time steps to the current time step and confirm that the receivers in the 

m
(1)
B = [ 1000 m, 0 m/s, 2000 m, 0 m/s, 0 rad/s ]T,

m
(2)
B = [ 1000 m, 0 m/s, 3000 m, 0 m/s, 0 rad/s ]T,

m
(3)
B = [ 1000 m, 0 m/s, 4000 m, 0 m/s, 0 rad/s ]T,

PB =
(
diag[ 10 m, 10 m/s, 10 m, 10 m/s, (π/90) rad/s ]

)2
.

Fig. 6  Multi-target trajectories and start/stop positions are shown with with ◦/ △
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window are different. Numerical results for two different tracking scenarios are pre-
sented. The results verify the validity of the window-added strategy. A larger window 
indicates that the collected Doppler measurements provide more information about 
the target state. When the window length L = 1 , the proposed method degenerates into 
ordinary cardinality variance based sensor selection and performs worse than the ran-
dom selection method. Our future work will consider receiver selection and tracking 
while estimating unknown clutter statistics. What’s more, developing a mathematical 
criterion to find the suitable window length is also a future work direction.
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Fig. 7  Average OSPA and OSPA(2) errors in multi-target simulation
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