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1  Introduction
As the development of 5G wireless technology, artificial intelligence (AI) and the 
increasing number of vehicles in big cities, Internet of Vehicles (IoV) emerges and devel-
ops rapidly. IoV has become a foundation of smart transportation and automatic drive 
[1, 2]. The object identification based on visual information of the road condition has an 
important role in automatic drive. The visual information is collected by imaging system. 
Usually, traditional imaging systems just detect the two-dimensional (2D) spatial data 
of targets, which can only provide limited information for object detection. Snapshot 
multidimensional imaging techniques develop rapidly in recent year, which can acquire 
plenty of optical information of targets as much as nine dimensions (x, y, z, θ, φ, ψ, χ, λ, 
t), including three-dimensional (3D) spatial intensity distribution (x, y, z), propagation 
polar angles (θ, φ), propagations (ψ, χ), wavelength (λ) for spectral intensity and time (t) 
[3]. Multidimensional imager has a variety of applications in remote sensing, astrophys-
ics, security, biochemistry and autonomous driving, etc. [4–7]. Especially, 3D spatial dis-
tribution and one-dimensional (1D) spectral intensity are significant in target detection, 
recognition, tracking and scene classification et al. in computer vision field. The depth 
information and spectral information of the objects can help to identify the overlap 
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boundary, estimate the distances among multiply objects and distinguish between the 
real living beings and figures. These advantages are significant for automatic drive [8, 9].

The 3D imaging integrated with spectral information produces a mass of data; how-
ever, the detection sensor is usually a two-dimensional (2D) format. So that, in order to 
collect and record the whole 3D spatial data, the input light field distribution should be 
modulated onto the sensor. There are two categories of methods to calculate the depth 
information of targets. One includes structured light and Time-of-Flight (ToF) tech-
niques based on active imaging strategy, and the other includes binocular vision and 
light field techniques based on passive imaging strategy [10]. To measure the spectral 
characteristics of each spatial location in real time, the snapshot spectral imaging tech-
niques include direct measurement strategy and computational strategy. The former 
includes the approaches of image-division, aperture-division and optical-path-division, 
and the latter includes the approaches based on computed tomography, compressed 
sensing (CS) and Fourier transform [11, 12].

To acquire 3D spatial and spectral information with high resolution in real time, much 
data need to be detected and recorded by the large format sensor. However, the increas-
ing huge amounts of data would be a burden to the system of detection, storage and 
transmission in hardware. The 3D spatial and spectral information is sparse in some 
transform domains [13]. Hence, snapshot multidimensional imaging with CS and light 
field theory utilizes the correlation and redundancy of input scenes to realize data com-
pression before sampling. This strategy can obtain 3D spatial and spectral information 
simultaneously in a single explosion time.

This paper proposes a snapshot Compressed Light Field Imaging Spectrometer 
(CLFIS) for multidimensional imaging, which can record the 2D spatial distribution and 
the input light direction of the targets directly. In addition, this method can collect the 
spectral information for each spatial location with coded aperture and dispersion ele-
ment based on CS theory. The datacube (contains 2D spatial distribution and spectral 
intensity) with depth estimation of the targets can be recovered using digital refocus 
approach and CS algorithm. CLFIS has potential advantages of high light throughput, 
high spatial resolution and high spectral resolution.

2 � Related works
Vast efforts have been reported in recent years focusing on the 3D spatial imaging with 
spectral measurement. According to the different approaches of 3D spatial measure-
ment, the previous works mainly contain three types: ToF technique, binocular vision 
and light field.

The representation based on ToF is the Snapshot Compressive ToF + Spectral Imag-
ing (SCTSI) proposed by Hoover Rueda-Chacon [14, 15]. This imager can send optical 
pulse, and the optical pulse will be reflected from targets. ToF sensor can detect the time 
difference between pulse sending and receipting, based on which can calculate the depth 
of objects. In addition, SCTSI can obtain the mixture 2D spatial-spectral information 
and depth information at the same time together with ToF and Coded Aperture Snap-
shot Spectral Imaging technique (CASSI). However, because of the need of active light, 
the system structure is complicated, and the range of depth and spectral measurement is 
limited.
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The technique based on binocular vision mainly utilizes the data measured by two 
imaging paths to recover the 3D spatial information of targets by reconstruction algo-
rithm. Kim et al. developed such a system firstly, which comprises a laser scanner and 
a customized CASSI. The system can obtain high-resolution 3D images with spectral 
intensity, called 3D imaging spectroscopy [16]. Wang et  al. developed a cross-model 
stereo system that integrates the CASSI and an ordinary grayscale camera. The CASSI 
measures the spatial-spectral information of input scene, and the depth is reconstructed 
under the stereo configuration with grayscale data of targets [17]. Heist et  al. utilized 
double snapshot spectral imagers in two paths to realize joint spectral and depth imag-
ing in real time, together with a structured light imaging system to improve depth cal-
culation [18]. Zhang et  al. made use of two general spectral imaging paths to capture 
datacube and reconstruct the 3D spatial information of targets under each single spec-
tral band through binocular vision reconstruction algorithm [19]. Yao et al. also utilize 
the binocular vision method based on two imaging paths [20]. One path is traditional 
RGB camera, the other is spectral imaging camera by optical filters. The RGB images 
and spectral images of targets contain different view angles, which can be used to recon-
struct 3D spectral images. The binocular vision strategy needs two imaging paths, so 
that the optical structure is complicated. The shutter time and exposure time of these 
two paths should be controlled precisely, especially for the dynamic targets changing 
rapidly.

The technique based on light field utilizes the microlenses array to record the spatial 
and direction information of targets and reconstructs the 3D spatial images through dig-
ital refocus algorithm. In order to measure the spectral information, this strategy usually 
obtains the mixture spatial-spectral data through coded aperture approach based on CS 
theory. The 3D spatial datacube is recovered by digital refocus and CS reconstruction 
algorithm. The typical representations include Compressive Spectral Light Field Imager 
(CSLFI) proposed by Marquez et al. [21] and 3D compressive spectral integral imager 
(3D-CSII) proposed by Feng et  al. [22]. CSLFI records the light directions through 
microlenses array and reconstructs the spectral information of targets using the mixture 
spatial-spectral data obtained by coded color filters. The light throughput is low for the 
using of coded filters, and the spectral bands is limited by the number of filters. Since the 
3D-CSII utilizes a lens array as the objective lens, the quality of images would be limited 
for the aberration introduced by the lens array.

In conclusion, CLFIS proposed in this paper has advantages of no need of active illu-
mination compared with ToF system and also benefits from simpler optical structure 
than binocular vision system. In addition, compared with the techniques based on fil-
ter coded aperture for spatial-spectral encoding, CLFIS has higher light throughput. So 
that, CLFIS has compact optical structure which can ensure high robustness, and has 
high light efficiency which can reach 50% in theory, and has a wider range of applica-
tions without the need of active illumination.

3 � Methods
3.1 � General principle

The schematic layout of CLFIS is shown in Fig. 1. The entire system includes two main 
parts which are fore optics and imaging spectrometer. The fore optics is telecentric in 
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image space in order to make the chief ray from L1 is parallel to the optical axis. The 
telecentric structure ensures the chief ray from lenses array converge on the focus, so 
that the microlens center and the sub image center are at the same location in x and 
y directions. The aperture is placed at the focal plane of L1 and is encoded in binary 
randomly. L2 and L3 have the same focal length and form a 4f system. The light from 
first image formed by L1 is dispersed by an Amici prism on the focal plane of L2 and 
L3. Then, the light is collected by L3 and imaged on “light field sensor,” which is com-
posed by lenses array and a format detector. The lenses array consists of hundreds of 
microlenses which have the same focal length and diameter. The distance between 
lenses array and the format detector is the focal length of microlens. The “light field 
sensor” can record the intensity and directions of the light simultaneously. As shown 
in Fig. 1, the object plane and lenses array are conjugate; the coded aperture and for-
mat detector are conjugate. From the above, CLFIS obtains the encoded light field 
data with spectral information. Based on the light field theory and digital refocus 
algorithm, we can recover the depth information of targets using the light field data. 
Since the coded aperture is imaged on the detector, so that the sub-image under each 
microlens is encoded in binary. The sub-image is sparsity in some transform domain, 
such as Fourier domain and wavelet domain. As results, the spatial and spectral infor-
mation of targets can be recovered based on CS theory and CASSI reconstruction 
technique [23].

3.2 � Optical model

We assume that the light intensity from arbitrarily target point is noted by L(xo, yo, zo, 
λ). The coordinate of object plane is represented by (xo, yo, zo). λ is the wavelength that 
is considered. The coordinates of coded aperture are noted by (u, v), which is set as 
the origin of optical axis (zo axis, and the positive direction is the light path direction). 
The coordinate of the first image plane, lenses array and detector is noted by (xi,yi,zi), 
(s, t) and (xd, yd), respectively. The optical layout of the fore optics is shown in Fig. 2. 
The width of the aperture is D1, which is considered as a square. The first image point 
of the arbitrarily object point P (xo, yo, zo) is represented by P’(xi,yi,zi). According to 
the Gauss image formula, (xi,yi,zi) is given as

Fig. 1  The layout of CLFIS
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The light field data record the light direction information. Since the coded aper-
ture conjugates with detector, the pixels under each sub-image are encoded by the 
aperture. The number of coded elements in the aperture is equal to that of pixels 
under each microlens. The position of each sub-pupil is noted by (um, vn) (m = 1, 2, 
…, M, n = 1, 2, …, N; M, N are the numbers of encoded elements of the aperture in u 
direction and v direction, respectively, and m, n are the indexes). The aperture stop is 
encoded randomly in binary, which is illustrated in Fig. 3. Besides, we assume that the 
transmission function printed on the aperture is represented as T(u, v),

where da is the side length of each element, and tm,n represents the coded status (1 for 
open and 0 for closed) at location (um, vn).
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Fig. 2  The layout of Fore Optics

Fig. 3  The layout of coded aperture in binary (10 × 10 elements in aperture for simplify)
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We assume that the light from P(xo, yo, zo) passing through sub-pupil A(um, vn, 0) has 
the intersection point with L1 at Q(ul, vl, f1). The vector PA is parallel to AQ according to 
the geometrical optical theory [24], then we can get

The intersection point with L1 is given by

Since the L2 and L3 form a 4f system, the lenses array conjugates with the first image 
plane, CLFIS without dispersion element can be considered as the system shown in 
Fig. 4 for simplification. In this system, the light from P(xo, yo, zo) passing through A(um, 
vn, 0) intersects with lenses array at P’ (x’a, y’a, f1 + li). Here, li is the distance between first 
image plane and L1. Then,

As seen in Fig. 1, the Amici prism is direct vision, through which the light at center 
wavelength has no deflection. The dispersion coefficient is assumed to be α(λ). Then, the 
position of P’ in CLFIS with dispersion is given by

where λo is the center wavelength, and the “smile,” “keystone” and nonlinear dispersion 
are not considered. Finally, considering the light encoded by aperture stop, the intensity 
of the pixel on detector related to the sub-pupil (um, vn) under the microlens (px, py) is 
expressed as
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Fig. 4  The layout of CLFIS without dispersion in simplification
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where L(*) is the light intensity from P(xo,yo,zo) passing through sub-pupil (um, vn).Con-
sidering the discrete pixels of sensor for sampling, the index of pixels of images (px, py) 
can be given by

where w is the width of sensor format and d is the width of each pixel of the sensor.

3.3 � Datacube reconstruction

The detector records the compressed spectral light field data in CLFIS. In order to obtain 
the spectral images with depth estimation, we should firstly reconstruct the light field 
data under different wavelengths based on CS algorithm and then recover each spectral 
images for depth estimation from light field data based on digital refocus technique. The 
sub-images of spectral light field images have smooth spatial structure, for these pixels, 
measure the light intensity from different directions of the same object point. As results, 
the sub-images are sparsity in some transform domain, like Fourier domain, wavelet 
domain, or some orthogonal dictionary domain et al. We assume that the original mix-
ture data noted by g, and the transform expression in 2D wavelet domain is given by

where g is the vector of 3D spatial information and spectral information, W is the 
transform matrix for 2D wavelets. θ is the transform coefficients of g in 2D wavelets 
domain. The imaging processing can be represented by

where H is the imaging matrix which can be derived by Eq.  (7). If I, H and W are the 
known values, we can estimate θ under the sparsity assumption based on CS reconstruc-
tion algorithm. The estimation processing of θ is to solve the problem as followed, the 
estimation of θ is represented by θ’,

where the || ||2 term is l2 norm of (I−HW θ’) and the || ||1 term is l1 norm of estima-
tion value θ’. The first term minimizes the l2 error, and the second term minimizes the 
number of elements in θ to ensure the sparsity of θ. Plenty of approaches are proposed 
to solve this optimization problem, such as Two-step Iterative Shrinkage/Thresholding 
(TwIST) algorithm [25], Gradient Projection for Sparse Reconstruction (GPSR) algo-
rithm [26], Orthogonal Matching Pursuit (OMP) algorithm [27] and some learning 
methods based on deep network [28–30]. In this paper, we chose the traditional TwIST 
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for the optimal sparse solution. This algorithm is to use the regularization function to 
penalize the estimations of θ’ that are undesirable to appear in the estimated θ’. τ is a 
tuning parameter to control the sparsity of θ’. The code of TwIST is available online 
(http://​www.​lx.​it.​pt/​~biouc​as/​code.​htm). After estimating θ, we can calculate the esti-
mated g through Eq. (9). Since the estimated g is spectral light field data, we need digital 
refocus for g to obtain the depth information of targets. The digital refocused method 
used in this paper is proposed in [31]. The refocused processing is to remap the light 
field onto the selected imaging plane and integrate within the pupil plane. According to 
Fourier projection-slice theorem, the projection integration in spatial domain is equiva-
lent to the slicing in Fourier domain. The derived Fourier slice imaging theorem shows 
that the imaging projection of the light field in the spatial domain is equivalent to the 
slicing of the Fourier transform of light field in frequency domain, and the slicing angle 
is perpendicular to the projection angle. If the image distance after digital refocus is 
assumed to be zi’, which is represented as zi’ = γzi, the image after refocusing is given by

where

According to Eq. (13), we could choose γ value in order for acquiring the distinct spec-
tral images under different depths. The depth estimation approaches using light field 
camera data usually include three main categories: sub-aperture image matching-based 
methods, Epipolar- Plane Image (EPI)-based methods and learning-based methods. In 
this paper, we use the first one integrating with defocus cue mentioned in Ng’s work 
[31]. The spectral light field images are refocused at a series continues depth candidates. 
Among these candidates, the most distinct one for the selected area judged by an aver-
age gradient function is thought to be the actual depth.

4 � Simulations
In order to evaluate the feasibility and effectiveness of CLFIS proposed in this paper, we 
conduct simulations for imaging and reconstruction. The target used for simulations is 
chosen from the iCVL portal for the database of hyperspectral images that are available 
online [32]. The size of target is 320 × 320, and the bands rang is from 450 to 660 nm 
with the number of 8. The input datacube is shown in Fig. 5. The lenses array contains 
64 × 64 microlenses, of which each lens covers 32 × 32 pixels on detector. If each pixel 
is with size of 10 μm × 10 μm, then the size of each microlens is 320 μm × 320 μm. The 
object distance is set 92 mm, 100 mm, 108 mm, respectively. The distance 100 mm is 
assumed to be the ideal object distance with which the image of targets forms on the 
lenses array. The aperture stop is the entrance pupil of the system, which is encoded in 
binary randomly with 32 × 32 elements. As described above, the sub-image under each 
microlens is encoded the same as the entrance pupil.

(12)f ′
(

x′d , y
′

d

)

�
=

∫∫

f�
(

um, vn, xd , yd
)

dumdvn

(13)







xd =
x′d
γ
+ um

�

1− 1
γ

�

yd =
yd
γ
+ vn

�

1− 1
γ

�

http://www.lx.it.pt/~bioucas/code.htm


Page 9 of 17Ding et al. EURASIP Journal on Advances in Signal Processing          (2022) 2022:6 	

We conduct two simulations. The first one is conducted using the entire datacube 
with the object distances of 92 mm, 100 mm and 108 mm, respectively, to test the 
feasibility of the imaging principle and reconstruction method. The second one is 
conducted with a datacube in which different parts are related to different object 
distances. This simulation is performed to evaluate the accuracy of depth estimation 
in CLFIS.

For the first simulation, the object distance is set 92 mm, 100 mm, and 108 mm, 
respectively, and the size of target is assumed to be 20.48 mm × 20.48 mm. To make 
the image cover the entire lenses array, the magnification of fore optics is 0.5. The 
entrance pupil is a square with size of 10  mm × 10  mm. The focal lengths of L1, 
L2, and L3 have the same value of 50  mm. Since the image of entrance pupil is of 
size 320 μm × 320 μm, so that the focal length of microlens is 0.8 mm according to 
the conjugate relationship. The main parameters of this system are summarized in 
Table 1. The dispersion coefficient α(λ) is considered to be the value that makes the 
input images from adjacent wavelengths shift a distance of the size of a single sensor 
pixel from each other.

The simulations are conducted by MATLAB based on Eq. (7) which should be dis-
cretized to adjust to the computer calculations. The input datacube is with the size 
of 320 × 320 × 8, and the number of encoded elements in aperture is 32 × 32, so that 
there should be about 800 million light rays to be calculated for tracing. The simula-
tion results are shown in Fig. 6. The mixture data are with the size of 2048 × 2055.

Fig. 5  The input datacube

Table 1  The system parameters for simulations

System parameters Values

Target size 20.48 mm × 20.48 mm

Band range and number 450 nm—660 nm, 8

Object length 92 mm, 100 mm, 108 mm

Size of entrance pupil 10 mm × 10 mm

Number of encoded elements 32 × 32

Number of microlenses 64 × 64

Pixel size on the sensor 10 μm × 10 μm

Focal length of L1, L2, L3 50 mm
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5 � Results and discussion
The reconstructed spectral images performed by CS algorithm and digital refocus 
method are given in Fig.  7. As seen in this figure, we reconstruct the spectral light 
field images from the compressed light field data by TwIST algorithm. The parameter 
τ is an empirical value, which is chosen as 0.05 by plenty trials. With the processing 
of reconstruction, the datacube with light field information is sparsely represented 
by a 2D wavelet coefficient. Though the TwIST and 2D wavelet transform may not be 
the best approach for reconstruction; however, this should be a widely used method. 
And the work in this paper we performed is to verify the feasibility of CLFIS. So that 
a universal and robust algorithm should be the best choice. In addition, some future 
work will be conducted to explore more accurate and efficient algorithm for better 
reconstruction results. After reconstructing the datacube with light field information, 
we obtain the light field data for each single spectrum from 450 to 660 nm. The digital 
refocus method is performed on each spectral light field data to get the quality spec-
tral images at the object distance, which means that the refocused image distances 
should be about 77.174 mm, 75 mm and 73.148 mm, respectively, calculated based on 
the conjugate relation between object and image. According to the ideal image dis-
tances, the values of γ are set to be 1.029, 1 and 0.975, respectively. The digital refocus 
method used in this paper is conducted in spatial domain. The clearly focused images 
at any position can be recovered by this method within the range of depth of field.

To validate the ability of CLFIS to reconstruct the spatial and spectral feature of 
the objects in the scenes, we calculate PSNR of each spectral images and get the 
average value for each object distance comparing with the ideal input datacube. The 
PSNR values are 39.4 dB, 40.1 dB, 38.8 dB for object distance of 92 mm, 100 mm, and 
102  mm, respectively. We choose five points in the targets at random and plot the 
spectral curves. The curves are normalized and illustrated in Fig. 8.

From the reconstructed results, especially for the object distances of 92  mm and 
108  mm which are defocus when imaging, the reconstruction strategy can recover 
the quality of datacube. For each object distances, 30 points are chosen randomly to 
extract spectral curves and calculate the Relative Spectral Quadratic Error (RQE) [33] 
and Spectral Angle (SA) [34] to evaluate the curves, the average values are given in 
Table 2. The RQE is defined as

Fig. 6  The compressed light field spectral images of simulations, a zo = 92 mm, b zo = 100 mm, c 
zo = 108 mm
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Fig. 7  The series of reconstructed spectral images, a zo = 92 mm, b zo = 100 mm, c zo = 108 mm
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where λ is the standard spectral curve, and λ’ is the measured spectral curve. Nλ is the 
number of sampling and i is the index. Noted by this equation, when the value of RQE is 
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Fig. 8  The reconstructed spectral curves. a the selected object points, b the spectral curves for point A 
(zo = 92 mm), c the spectral curves for point B (zo = 92 mm), d the spectral curves for point C (zo = 100 mm), e 
the spectral curves for point D (zo = 108 mm), f the spectral curves for point E (zo = 108 mm)

Table 2  The evaluation of spectral curves

Object distance (mm) RQE SA (rad)

92 0.252 0.063

100 0.116 0.054

102 0.257 0.082
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smaller, the two spectral curves are more similar. SA is another evaluation function for 
spectral data, in which the two spectral curves are regarded as vectors in a 2D space. The 
similarity of two curves is evaluated by calculation the generalized angle between these 
two vectors. The angle is represented by the arccosine that is defined as

The first simulation is conducted to identify the feasibility of the system proposed in 
this paper. The imaging simulation synthesizes the aliasing raw data, and the reconstruc-
tion method could effectively recover the 2D spatial distribution, 1D spectral inten-
sity of input sense from different field depths based on the aliasing data. To verify the 
estimation of depth, we perform the second simulation. The input datacube of target is 
assumed to be tridimensional. Different parts of input field are related to different object 
distances. The target datacube inputted in this simulation is illustrated in Fig.  9. The 
whole object is divided to three parts whose object distances are set as 92 mm, 100 mm 
and 108 mm, respectively. The system parameters have the same value from above. The 
simulation result is given in Fig. 10.

We use Average Gradient to evaluate the images definition, when perform recon-
struction and digital refocus. When the object distance of digital refocus varies from 
85 to 115  mm, we obtain the most distinct images for three parts of the target at 
94.5 mm, 98.4 mm and 110.6 mm, respectively. The images at wavelengths of 450 nm, 
510 nm, 570 nm, 630 nm are shown in Fig. 11. Choose the spectral image at 660 nm as 
R band, spectral image at 540 nm as G band, and spectral image at 450 nm as B band 
to synthesize the true color images as shown in Fig. 12. According to the depth esti-
mation results, we form a synthetic 3D image for the input sense in Fig. 13. From the 
reconstruction results, the CLFIS proposed in this paper can estimate the depth infor-
mation of the targets. The error is about between 1.5% and 2.7% in simulations. The 
estimation error is correspondence with the object distance, angular resolution and 
the quantization error of the light field sensor. Larger object distance usually means 

(15)SA
�

�, �′
�

= cos−1





N�
�

i=1

�i�
′

i

�





�

�

�

�

N�
�

i=1

�
2
i ·

�

�

�

�

N�
�

i=1

�
′2
i









Fig. 9  The layout of input datacube (Single spectral image at 570 nm)



Page 14 of 17Ding et al. EURASIP Journal on Advances in Signal Processing          (2022) 2022:6 

larger estimation error. The angular resolution is determined by the pixels covered by 
a single microlens and the pupil aperture diameter. Higher angular resolution helps 
to make more precise depth estimation. For the depth estimation in practical applica-
tions, we need to scan the image field to calculate the depth successively to acquire 

Fig. 10  The mixture spatial-spectral light field result for the second simulation

Fig. 11  The reconstructed spectral images, a the estimated object distance is 94.5 mm, b the estimated 
object distance is 98.4 mm, c the estimated object distance is 110.6 mm
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the entire 3D distribution of the targets. In the future, the digital refocus methods will 
be studied to calculate the 3D spatial information of targets directly for CLFIS.

6 � Conclusion
In this paper, we propose the CLFIS technique, which utilizes the coded aperture, dispersion 
prism and microlenses array to obtain the compressed spectral light field data of targets. The 
2D spatial distribution, depth estimation and spectral intensity can be recovered from the 
mixture data measured by sensor through CS reconstruction algorithms and digital refocus 
methods. This is a type of snapshot multidimensional imaging technique. This paper estab-
lishes the mathematical model according to light ray tracing theory. Imaging simulations are 
conducted to verify the model and reconstruction strategy. From the simulated compressed 
mixture data, we can reconstruct and estimate the spectral images at different depths. The 
images and spectral curves are evaluated by evaluation functions such as PSNR, RQE and SA, 
whose results reveal that the reconstructed datacube conforms the quality of ideal datacube. 
The refocus object distances estimated are mostly similar to the real distance in simulation, 
and the estimation error is from 1.5 to 2.7%. Finally, CLFIS has the potential advantages of 
high light throughput and high robustness of optical structure. In future works, the research 
will focus on the optimization of the coded aperture and the reconstruction processing.

Fig. 12  The reconstructed datacube for depth estimation simulation

Fig. 13  Reconstructed synthetic 3D image at 570 nm
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