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1  Introduction
An important challenge in Global Positioning System (GPS)-based localization is the 
non-line-of-sight or multipath problem, commonly encountered in urban environments. 
When the direct line of sight to a satellite is blocked by a building, its signal may reach 
the receiver on the ground via reflections from buildings, resulting in large errors or out-
liers in the pseudorange measurements [1]. Least squares-based localization methods 
that typically rely on Gaussian model errors can be severely distorted due to outliers, 
resulting in poor localization accuracy. Some robust estimation approaches in the recent 
literature to remedy this issue are based on data weighting: M-estimators that rely on 
downweighting of outlying observations [2], mixture distributions that explicitly model 
the outlying observations in the sensor model [3], switchable constraints that utilize 
switch variables to down-weight individual pose constraints [1, 4], dynamic covariance 
scaling [5] and Receiver Autonomous Integrity Monitoring (RAIM) that monitors the 
integrity of satellites [6]. However, none of these robust estimation approaches consid-
ered the unbiasedness of the variance estimators.
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Many data fusion applications require combining measurements from heterogenous 
sensors or matching features of multiple measurements, both tasks requiring an accu-
rate characterization of the noise covariance matrices of measurements. In particular, 
GPS-based localization in urban or contested environments relies on fusion of measure-
ments from inertial measurement unit (IMU) or light detection and ranging (LiDAR) 
systems in the navigation solution [7] to mitigate multipath problems. In vision-based 
localization, combining sequential measurements requires landmarks identified in these 
measurements to be matched, which assumes accurate knowledge of covariances [8, 9]. 
One of the common assumptions made in Bayesian state estimation of dynamic pro-
cesses is that the covariance matrices for the noise sources are known or some reliable 
estimates exist a priori. Unfortunately, accurate a priori knowledge or estimates of the 
covariance matrices in practice may not be available and inaccurate covariance estimates 
can lead to a significant degradation in the estimation quality of the system states. In 
addition, as the applications of Bayesian estimation move from high-quality, expensive 
systems (e.g., the Apollo mission) to lower-cost systems with lower-quality sensors (e.g., 
cell phones), the ability to accurately characterize the uncertainty of all inputs to the sys-
tem become both less repeatable across a class of sensors and less economically feasible.

In this paper, we propose new unbiased estimators of the noise covariances in a factor 
graph formulation when sensor data is contaminated with outliers and Gaussianity of 
data is not satisfied, particularly applicable to the GPS-based localization problem under 
non-line-of-sight conditions. The contributions of the paper are the extending of the 
unbiased variance estimators for factor-graph problem proposed in [10] to the multipath 
problem, the study of both linear and nonlinear vehicle motion models, and the investi-
gation of the performance of the approach with real GPS data. A general solution, based 
on nonlinear regression and robust estimation is proposed that is shown to give unbi-
ased estimators of the multiple variances in factor graph formulation. To jointly com-
pute the proposed variance estimators and the state estimates, an iteratively re-weighted 
least squares (IRLS) algorithm is presented. By contrast to the existing approaches that 
rely on the maximum likelihood principle and use sample variances of the residuals to 
estimate noise variances, the primary contribution of the paper is to incorporate unbi-
ased estimate of the noise variances, which, as will be illustrated, can achieve significant 
improvement in localization accuracy over the existing approaches.1

2 � Review of relevant literature
Factor graphs have become a popular smoothing-based alternative to sequential estima-
tors of dynamic systems. Figure 1 illustrates the factor graph representation of a robot 
localization problem, in which states x1, . . . , xn form a sequence of n unknown robot 
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Fig. 1  A simple factor graph expression of Eq. (4)

1  The software for this study can be obtained at https://​github.​com/​avanli/​Factor-​Graph-​Covar.

https://github.com/avanli/Factor-Graph-Covar
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locations. The factor graph provides a convenient way to represent the multiplicative 
relation of the “factors” (shown as boxes with different colors), or the probabilistic rep-
resentations of states and measurements based on prior beliefs, process dynamics and 
measurement equations, and construct the optimization problem from which to solve 
for the robot locations.

In the simultaneous localization and mapping (SLAM) problem, where the factor 
graph formulation is commonly applied, it was shown that sequential state estimators 
may provide inconsistent solutions due to the inherent model nonlinearities and the 
accumulating effects of the linearization choices [11]. There has been a recent interest 
in smoothing as a fast alternative to sequential estimation, with its advantage of retain-
ing the entire robot trajectory that significantly helps the performance [12]. Based off 
prior smoothing work [13, 14], the factor graph formulation of the estimation problem 
enables batch optimization of the system state estimates leading to better performance 
with nonlinear systems. In addition, the factor graph formulation easily handles situa-
tions where the type, frequency or quantity of measurements may change over time. In 
the SLAM problem, the subset of landmarks being tracked changes over time, meaning 
that the portions of the state that affect the measurement differ. This complex interac-
tion of the state with the measurements is something easily handled in the factor graph 
formulation. Despite factor graph implementations being batch approaches, the sparsity 
of the matrix used to represent the factor graph leads to highly efficient implementa-
tions, including many that can be performed in real-time (e.g., [15]).

To estimate the states of the factor graph formulation, several Bayesian estimation 
algorithms have been introduced, including the sequential approaches of (extended, 
unscented, ensemble) Kalman filter and particle filter and smoothing-based techniques 
[16]. For non-line-of-sight localization, robust estimation and weighted least squares 
methods were investigated to mitigate multipath effects [17, 18]. Recently, methods 
based on Gaussian mixture models (GMM) and expectation–maximization (EM) frame-
work have been proposed for robust estimation of both the states and noise covariances 
in a factor graph framework [19–22]. Pfeifer et al. [20] formulated the problem as a max-
imum likelihood problem and used an EM to achieve robustness against non-Gaussi-
anity. By contrast [19, 21, 22] formulated the problem as a Bayesian estimation using 
maximum a posteriori (MAP) estimator and non-informative priors. As it is well known, 
a Bayesian MAP estimation with non-informative priors is equivalent to maximum like-
lihood inference of the joint conditional probability of the measurements.

As the review outlined, most of the existing robust estimation methods relied on 
sample covariances of the residuals, which maximizes the likelihood given the state 
estimates, as the direct estimators of the noise covariance matrices. As we show in the 
paper, these estimators are biased [23, p. 103] and may lead to a significant under-esti-
mation of the covariance matrices, adversely impacting the localization accuracy. Other 
prior efforts focused on estimating the state covariance for factor graphs (see e.g., [8]) all 
assume accurate input noise covariances are known a-priori. Our focus in this paper, by 
contrast, is on the estimation of input noise (measurement and process) covariance [24] 
for the factor graph.
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3 � Review of factor graph formulation
We first review the existing factor graph formulation of the state estimation (localiza-
tion) and the noise variance estimation problems. Consider a discrete-time dynamic 
system:

where xt ∈ IRdx and ut ∈ IRdu are the state and control input vectors at time t, respec-
tively, zt ∈ IRdz is the sensor measurement vector, with dx, du and dz representing the 
dimensions of the vectors, f(x, u) is the process dynamics model representing what the 
state is at the next timestep given the current state and inputs, g(x) is the measurement 
model giving the sensor measurement at the current time given the current state, and 
vt and wt are white, zero-mean Gaussian noise sources with covariance matrices Q and 
R, respectively. For the GPS-based localization problem, the states xt may comprise 
the location coordinates of the vehicle and the measurements zt may comprise vehicle 
odometry data or pseudorange measurements acquired from visible satellites. The meas-
urements are conditionally independent. Localization problem consists of estimating the 
states, that is, solving for the sequence of vehicle locations x1, . . . , xn on the basis of a 
sequence of measurements z1, . . . , zn where n is the number of measurements available.

3.1 � State estimation

To find the estimators of the system states, the following optimization problem is solved 
[15]:

where x0 is the initial pose, and X = {xt}
n
t=0 is the sequence of system states to be solved. 

This optimization problem can also be expressed as a factor graph as shown in Fig. 1, 
where the factors (shown as squares) connect only with the state (or portion of the state) 
that are required for that measurement/dynamic equation to be evaluated.

Based on the Gaussian process dynamics and measurement models, the probability 
densities shown in the factorization are p(xt |xt−1,ut) ∝ exp− 1

2�f (xt−1,ut)− xt�
2
Q and 

p(zt |xt) ∝ exp− 1
2�g(xt)− zt�

2
R , where the sign ∝ means “proportional to” and implies 

the density functions are given up to a proportionality constant. Note that because Q 
and R are assumed constant across time, the proportionality constants can be safely 
ignored. Because log(x) is a strictly monotonic function in x, we can rewrite Eq. (3) as:

assuming p(x0) ∼ N (µ0,�0) , where µ0 and �0 are the mean and covariance of the initial 
pose. Since the model equations can be nonlinear in general, the states are solved for 
by linearizing the process and measurement equations using a first-order Taylor series 
expansion around an operating point {x0t }nt=0 as

(1)xt = f (xt−1,ut)+ vt , vt ∼ N (0,Q)

(2)zt = g(xt)+ wt , wt ∼ N (0,R)

(3)X∗ = arg max
X

p(x0)

n
∏

t=1

p(xt |xt−1,ut)

n
∏

t=1

p(zt |xt),

(4)arg min
X

�x0 − µ0�
2
�0

+

n
∑

t=1

�f (xt−1,ut)− xt�
2
Q +

n
∑

t=1

�g(xt)− zt�
2
R
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where F(xt−1) = ∂f (xt−1,ut)/∂xt−1 and G(xt) = ∂g(xt)/∂xt are the Jacobian matri-
ces of the process and measurement equations, respectively, and �xt = xt − x0t  , 
�xt−1 = xt−1 − x0t−1 . Defining the vectors a0t � x0t − f (x0t−1,ut) and c0t � zt − g(x0t ) 
and letting �x0 = x0 − x00 , a linear least squares representation of the problem in (4) is 
obtained as:

where �X = {�xt}
n
t=0, Ft−1 � F(x0t−1) , and Gt � G(x0t ) . Each iteration of the state esti-

mation problem can be written as that of finding the solution of the following system of 
linear equations:

where A ∈ IRm×p is the coefficient matrix, b ∈ IRm is the standardized measurement 
vector, ǫ ∈ IRm is the vector of least squares solution errors, m = (n+ 1)dx + ndz is the 
number of observations and p = (n+ 1)dx is the number of states. If the initial pose 
x0 is known and not to be included in the estimation problem then X = {xt}

n
t=1 are the 

states to be solved for, m = ndx + ndz and p = ndx.
The usual practice in factor graph models is to follow sparse linear algebra and solve 

for �X using a matrix factorization algorithm such as QR or Cholesky factorization fol-
lowed by forward or back substitution [12]. The state estimates for the next iteration 
are found as X ← X +�X , and the new matrices A and b are found at the linearization 
point of X. These iterations are continued until convergence. However, to facilitate stat-
ing the problem and proving the unbiasedness of the variance estimates we will show in 
the proposed method (see Sect. 4.1) the solution of �X in terms of a generalized inverse, 
such as the Moore–Penrose pseudo-inverse (typically (ATA)−1AT).

As an example, for n = 4 poses, the factor-graph model given in Fig. 1 is written as

(5)f (xt−1,ut)− xt ∼=f (x0t−1,ut)+ F(x0t−1)�xt−1 − x0t −�xt

(6)g(xt)− zt ∼=g(x0t )+ G(x0t )�xt − zt

(7)

arg min
�X

��x0 + x00 − µ0�
2
�0

+

n
∑

t=1

�Ft−1�xt−1 − a0t −�xt�
2
Q +

n
∑

t=1

�Gt�xt − c0t �
2
R.

(8)b = A�X + ǫ

(9)A =


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3.2 � Noise variance estimation

In the existing smoothing-based factor graph methods [19–22], the measurement noise 
covariances are estimated iteratively in conjunction with the state estimates, following a 
Gaussian mixture model (GMM) and an expectation and maximization (EM) approach. 
The maximization step in EM maximizes the likelihood, which minimizes the negative 
log likelihood (4), given current state estimates, to find the variances. This maximum 
likelihood (ML) estimator of variances estimates the variances as the sample variance of 
the measured state estimation error sequences et = xt − x̂t [25, p. 79] as

A separate maximum likelihood estimate with the residuals of the initial pose, pro-
cess dynamics and measurements are calculated, respectively, and these estimates 
form the constant diagonal elements of the covariance matrices �0,Q and R. To make 
the estimates robust against outliers, Sunderhauf et al. [1, 4] introduced the concept of 
switchable constraints (SC), which utilizes an augmented optimization problem to con-
currently solve for states and weighting values of loop closure or prior constraints. The 
SC approach, however, adopts ML estimates of the noise variances.

A drawback of the ML estimators, such as (10), in the context of localization is that 
they are asymptotically (as the data size grows) unbiased estimates of the true variances 
[24]. However, as we show in our derivations and results below, the ML estimators are 
biased [25] and loose their effectiveness when data size is relatively small compared to 
the size of the state vector, a common situation in factor graph models where the num-
ber of states grow with data size. In control theory, correlation methods, which analyze 
the innovation sequence of a linear estimator, have been used to provide unbiased esti-
mates of the noise variances of state space models for small data sizes [26]. However, 
such methods do not make any assumptions about the noise probability density func-
tions and do not consider robust estimation to handle outliers and hence are not applica-
ble to non-line-of sight conditions. In the present paper, we develop unbiased estimators 
of the multiple noise variances of the factor graph representation of dynamic systems, 
with a particular focus on GPS-based localization under non-line of sight conditions. 
Another important contrast of the proposed method over the existing methods [1, 4, 
19–22] is that, while these methods present methodology to estimate the measurement 
noise covariance R, none provide explicit estimates of the covariances of the prior �0 or 
of the process dynamics Q. By contrast, the proposed method is that it provides esti-
mates of all these parameters, in addition to ensuring the unbiasedness of the resulting 
estimators.

4 � Methods
In this section, we present the proposed unbiased estimators for the noise variances of 
the factor graph problem and an iteratively reweighted least squares algorithm for jointly 
finding the variance and state estimates in the robust M-estimation framework.

(10)σ 2 =
1

ndx

n
∑

t=1

eTt et .
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4.1 � Unbiased noise variance estimation in factor graph problem
In a linear regression problem, a set of parameters � for the model y = B�+ ǫ are esti-
mated, where y ∈ IRm is the measurement vector containing m observations, B ∈ IRm×p 
is the regressor matrix for p regressor variables and ǫ ∈ IRm is the vector of Gaussian dis-
tributed errors with 0 mean and a common variance of σ 2 . It is clear that the linearized 
factor graph formulation (8) is a linear regression problem, where b, A and �X corre-
spond to y, B and � , respectively.

In linear regression problems, the variance of the measurements y is estimated based 
on the residuals of the fitted regression model, expressed as [25]

where �̂ is the estimated parameter vector and H̃ = B(BTB)−1BT is an orthogonal pro-
jection matrix and the superscript T denotes the matrix transpose. From this equation, 
the sum of squared residuals rTr is

The expectation of the random quantity rTr with respect to the Gaussian probability dis-
tribution of the measurements can be found as [25, pp. 554–555]

where p = rank(H̃) . Following the “method of moments approach” for estimation [27], 
an unbiased estimate of the variance is [25, p. 77]

There are two assumptions in linear regression work, however, that differ from the factor 
graph formulation. First, linear regression assumes that a there is a single covariance for 
all inputs. The factor graph formulation, however, has at least two different covariances 
(R and Q), and often many more. Second, the residuals computed in a factor graph are 
pre-weighted by the current covariance estimates. In our proposed method, we extend 
the linear regression based method for finding variances to the factor graph formulation 
of the system state estimation problem by incorporating these two important aspects.

Assume a reordering of the factor graph linear system (8) and divide the equations in 
to s partitions as

where b1, . . . , bs correspond to the standardized measurements of the partitions contain-
ing n1, . . . , ns elements such that 

∑s
i=1 ni = m and ǫ1, . . . , ǫs are mutually un-correlated 

random errors of the partitions with 0 mean and unit variances. Each partition has its 
own covariance matrix before standardization. For example, the system described in 
Eq. (9) can be split into s = 3 partitions corresponding to unstandardized measurement 

(11)r = y− B�̂ = (I − H̃)y

(12)rTr = yT(I − H̃)y.

E[rTr] = σ 2(m− p)

σ 2 =
rTr

m− p
.

(13)









b1
b2
...
bs









=


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


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A2
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As









�X +


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...
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noise covariances �0,Q and R, where σ 2
1 , σ

2
2  and σ 2

3  are the constant diagonal elements of 
the respective 3 matrices.

The proposed method will provide unbiased estimators of the (unstandardized) meas-
urement variances σ 2

1 , . . . , σ
2
s  . The standardized measurement vector b is a random vari-

able with an identity covariance matrix, that is, �b = diag(In1 , . . . , Ins) , where Ini is an ni 
dimensional identity matrix. The unit variances of the standardized partitions are satis-
fied if the estimated noise variances σ 2

1 , . . . , σ
2
s  are correct. However, before convergence 

is achieved (when noise variances are incorrect) the standardized measurements has the 
covariance matrix

Therefore, if ki, i = 1, . . . , s converge to 1 then the standardized noise variances converge 
to unity and the unstandardized noise variances converge to the true values σ 2

1 , . . . , σ
2
s  . 

In our approach, to accomplish convergence, the variance for the next iteration is found 
by scaling the variance in the current iteration with ki as

To do this scaling, we must estimate ki in each iteration. Let us define H = I − H̃ where 
H ∈ IRm×m and H̃ = A(ATA)−1AT is the projection matrix found by the coefficient 
matrix A obtained with the standardized measurements and the covariance estimates in 
the current iteration. Partition H as

where Hij ∈ IRni×nj and i, j = 1, 2, . . . , s . Note that because H is symmetric, Hji = HT
ij  . 

The residual vector for the ith partition, ri ∈ IRni×1 , is obtained as

leading to the sum of squared residuals of the i-th partition:

Because this is a scalar, we can take the “trace” of the right-hand side, leading to:

Applying expectation operation, E[.], we obtain:

(14)�b = diag(k1In1 , . . . , ksIns).

(15)σ 2
i ← kiσ

2
i for i = 1, . . . , s.

(16)H =









H11 H12 . . . H1s

H21 H22 . . . H2s

...
...

. . .
...

Hs1 Hs2 . . . Hss









=









H1

H2

...
Hs









.

ri =Hib

=
[

Hi1 Hi2 . . . His

]

b

(17)rTi ri = bTHT
i Hib.

rTi ri =trace(bTHT
i Hib)

=trace(bbTHT
i Hi).

(18)E[rTi ri] =trace(E[bbT]HT
i Hi)

(19)=trace(�bH
T
i Hi)



Page 9 of 26Vanli and Taylor ﻿EURASIP Journal on Advances in Signal Processing          (2022) 2022:3 	

Appendix shows the calculations to obtain Eq.  (20) from Eq.  (19). Equation (21) is 
obtained by defining Tij = trace(HjiHij).

Equation (19) shows how the expected sum of squared residuals E[rTi ri] is related to 
the covariance �b of the standardized measurements and therefore can be used to find 
its unbiased estimator. Similarly, Eq. (21) can be used to find unbiased estimates of the 
scaling factors kj , j = 1, 2, . . . , s (diagonals of �b before convergence) needed to drive 
the unstandardized variances to their true values via Eq.  (15). Following the method 
of moments approach, the unbiased estimators of the scaling factors for all partitions 
i = 1, 2, . . . , s can be solved by writing out a matrix equation and setting equal the 
observed values rTi ri to their expected values, i.e., the right hand side of (21):

The solution k1, . . . , ks of the system (22) is a set of unbiased estimates for the scaling 
factors in each iteration. The unbiased variance estimators for the unstandardized par-
titions σ 2

1 , . . . , σ
2
s  are obtained by using Eq. (15), given the scaling factors and the state 

estimates (“maximization” step). The states are then estimated by solving (7), given the 
variance estimates (“expectation” step), and the iterations continue until convergence. 
The following two subsections discuss the state estimation (“expectation”) procedure 
and the IRLS procedure that implements the expectation and maximization steps.

4.2 � Robust state estimation 
To make the state estimates robust to outliers that arise in non-line-of sight conditions, 
we present an approach to incorporate the proposed factor graph unbiased variance 
estimation method with M-estimators. M-estimators [25] are a class of popular robust 
estimators in linear regression that make use of a weight matrix W that assigns a weight 
of 1 to inlying observations (which are consistent with the assumed distribution) and 
smaller weights to outlying observations. We implement the M-estimator by incorporat-
ing a weight matrix W within the coefficient matrix A and the measurement vector b of 
the system of equations (8) as follows:

in which the weight matrix is defined as

(20)=

s
∑

j=1

trace(HjiHij)kj

(21)=

s
∑

j=1

Tijkj .

(22)


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


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
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k2
...
ks









.

(23)Aw � W 1/2A, and bw � W 1/2b

(24)W = diag(τ1, . . . , τm)
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where τi is the weight found as a function of the ith scaled measurement defined as 
zi = bi/γ and using the definitions given in Table 1, where γ is a nonparametric estimate 
of the standard deviation, defined as:

where the constant 0.6745 is chosen so that γ is an unbiased estimator based on Gauss-
ian error distribution [25, pp. 373–374]. The proposed variance estimators are unbiased 
within the robust M-estimation framework. The Appendix proves this result, by extend-
ing the proof shown in Sect. 4.1 for the least squares estimation problem.

While there is a large number of weight functions for M-estimators available, we 
focus here on two of the most commonly utilized choices, Huber and Cauchy functions, 
to illustrate the main features of the weight and loss functions. We refer the reader to 
[28], for an extensive review of other M-estimators in regression. Huber and Cauchy 
weight and loss functions are plotted in Fig.  2 and defined in Table  1, along with the 
ordinary least squares (OLS) estimator (3), which is a quadratic function of the stand-
ardized residuals and does not provide any robustness. For a given loss function, the 
tuning parameter ( aC in Cauchy, aH in Huber), to be specified by the user, determines 
the strength of downweighting applied to outliers. For the factor graph formulation, the 
weights are only applied to measurement residuals and weights for process residuals are 
unity, that is: τi for i = ndx + 1, . . . ,m is found from Table 1 and τi = 1 for i = 1, . . . , ndx.

From Fig. 2b, the Huber weight function decreases for residuals larger than aH , while 
Cauchy is smooth. Barron [29] proposed a family of robust loss functions to generalizes 

(25)γ = median
1≤i≤n

|bi −median
1≤i≤n

(bi)|/0.6745

Fig. 2  OLS, Huber’s t and Cauchy M-estimators: a loss functions, b weight functions

Table 1  Huber, Cauchy and OLS loss and weight functions

Method Huber’s t Cauchy OLS

Weight
τi =

{

1.0 if |zi | ≤ aH
aH/|zi | if |zi | > aH

τi = 1/(1+ (zi/aC )
2) τi = 1

Loss fnc
ρi =

{

1/2z2i if |zi | ≤ aH
|zi |aH − 1/2a2H if |zi | > aH

(a2C/2) log(1+ (zi/aC )
2) 1/2z2i

Parameter aH aC NA
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several popular robust kernels such as Huber, Cauchy, Geman–McClure and Welsh. The 
choice of the tuning parameter is typically made based on the measurement noise for the 
inlier observations or can be treated as an additional unknown parameter determined 
by minimizing a generalized loss function [2, 30]. In this paper, we illustrated the use of 
proposed variance estimators following the first approach of manually determining the 
tuning parameter based on the measurement residuals of the inlier data. However, the 
optimal tuning approaches [2, 30] can easily be adopted with the proposed estimators. 
The manual tuning is accomplished by overlaying the weight function (Fig. 2b) with the 
histogram of the residuals and adjusting the tuning parameter until the residuals greater 
than about 3 standard deviations are weighed down almost completely (i.e., τi is almost 
0). For the Cauchy weight function, this corresponds to setting aC equal to the standard 
deviation of the inlying data residuals, such that residuals larger than about 3aC receive a 
very small weight.

4.3 � Iteratively reweighted least squares
In implementing the robust estimators in regression [31], an iteratively reweighted least 
squares (IRLS) algorithm is often used to solve iteratively, for the best state estimate for 
a given set of noise variance values and the best variance values for a given state solution 
until convergence. These steps are analogous to the expectation and maximization steps 
of the methods in [19–22] where the residuals are used to compute a covariance (the 
M-step), and the estimated covariances are used to compute new residuals (the E-step). 
The proposed IRLS algorithm to implement the proposed unbiased variance estimators 
of the factor graph formulation and the M-estimators for robust state estimation follow-
ing this iterative framework is described in Algorithm 1.

Note that, the measurement vector bw and matrix Aw used in the algorithm already 
incorporates the M-estimator weight matrix W, as shown in Eq.  (23). The iterative 
approach solves for the best state estimate in the factor graph framework using the cur-
rent unbiased variance estimates σ 2

1 , σ
2
2 , . . . , σ

2
s  and the scaling factors k1, k2, . . . , ks of 

the partitions. This state estimate is then used to scale the variance estimates for the next 
iteration and the process is repeated until convergence.
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5 � Experiments
This section illustrates the efficacy of the proposed method using a simulation experi-
ment involving a mobile robot and a case study experiment based on real GPS data.

5.1 � Simulation experiment

The mobile robot simulation was based on a two-dimensional constant velocity model as 
shown in Fig. 3. Figure 3a, b shows, respectively, the simulations without and with outli-
ers introduced due to non-line-of-sight conditions.

Two different motion models are considered. (i) A linear model where the state vec-
tor xt = (xt , ẋt , yt , ẏt)

T gives the position and velocity of the robot, the measurement 
vector zt = (xt , yt) gives the position of the robot in two dimensions and the control 
vector ut = (u1t ,u2t)

T affects the velocities ẋt and ẏt . (ii) A nonlinear model, with 
state vector xt = (xt , yt , θt , �t)

T where the θt is rotational velocity and �t is forward 
velocity; measurement vector zt = (xt , yt) is the position of the robot, and control 
vector ut = (u1t ,u2t)

T affects the velocities θt and �t . Figure 3 shows simulations with 
n = 20 timesteps. The performance of robust estimators is studied by considering sce-
narios involving outliers for the linear robot motion model.

Table 2 shows the definitions of the terms of the dynamics and measurement equa-
tions (1) and (2) of the linear and nonlinear motion models. The sampling period was 
taken as T = 1 and the initial pose was x0 = (0, 2, 0, 0)T . According to these models, 
variances correspond to process dynamics and measurements as follows. For linear 
motion σ 2

Q1 is for the dynamics of (xt , ẋt) ; σ 2
Q2 is for the dynamics of (yt , ẏt) and σ 2

R 
is for the measurements of (xt , yt) . For nonlinear motion σ 2

Q1 is for the dynamics of 
(xt , yt) ; σ 2

Q2 is for the dynamics of (θt , �t) and σ 2
R is for the measurements of (xt , yt).

The proposed variance estimation method was applied by performing the partition-
ing shown in Eq. (13) on the factor graph formulation with s = 3 partitions. The par-
titioned matrices A1,A2,A3 are formed such that they correspond to the rows of A 
containing σ 2

Q1, σ
2
Q2 and σ 2

R , respectively, and the partitions and b1, b2, b3 are similarly 
obtained from the rows of b . See Table 2 for the definitions of Q and R and Eq.  (9) 
for how A and b are defined for an example with n = 4 . In the simulations, the initial 
pose x0 is assumed to be known and therefore, it treated as a constant in the factori-
zation (7) and x0 and �0 are not estimated.

Fig. 3  Mobile robot simulation for n = 20 poses showing control ( vt = 0,wt = 0 ), true trajectories ( wt = 0 ) 
and measured trajectories a with no outliers b with outliers
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The control input for the linear motion case was defined as:

which has the effect of (without process and measurement noises, i.e., vt = 0,wt = 0 ) 
making the robot move forward 10 units, then up 10 units, forward 10 units, then back 
down 10 units and as this pattern repeats, a “square wave” would be created. Figure 3a 
shows an example of running this system for 20 timesteps. The control input for the 
nonlinear motion case was defined as:

Similar to the linear motion model, this control input will make the robot to move for-
ward 10 units, then up 10 units, forward 10 units, then back down 10 units. The control 
trajectory of the nonlinear motion is identical to that of linear motion shown in Fig. 3a. 

(26)u1t =







−2 t = 5, 15, 25, . . .
+2 t = 10, 20, 30, . . .
0 otherwise

(27)u2t =







+2 t = 5, 20, 25, 40, 45, . . .
−2 t = 10, 15, 30, 35, 50, 55, . . .
0 otherwise

(28)u1t =







π/2 t = 5, 15, 25, . . .
−π/2 t = 10, 20, 30, . . .
0 otherwise

(29)u2t = 0 for all t.

Table 2  Model terms of the mobile robot examples

Linear motion Nonlinear motion

xt = f (xt−1, ut)+ vt xt = f (xt−1, ut)+ vt

= Fxt−1 + But + vt

= xt−1 +







�t−1T cos θt−1

�t−1T sin θt−1

0
0






+ But + vt

vt ∼ N(0,Q) vt ∼ N(0,Q)

xt = (xt , ẋt , yt , ẏt) xt = (xt , yt , θt , �t)

zt = g(xt)+ wt zt = g(xt)+ wt

wt ∼ N(0, R) wt ∼ N(0, R)

F = ∂ f /∂xt−1 Ft−1 = ∂ f /∂xt−1

=







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1






=







1 0 − �t−1T sin θt−1 T cos θt−1

0 1 �t−1T cos θt−1 T sin θt−1

0 0 1 0
0 0 0 1







B =







0 0
1 0
0 0
0 1







 ,    
G =

[

1 0 0 0
0 0 1 0

]

B =







0 0
0 0
1 0
0 1







 ,    
G =

[

1 0 0 0
0 1 0 0

]

Q =









σ 2
Q1 0 0 0

0 σ 2
Q1 0 0

0 0 σ 2
Q2 0

0 0 0 σ 2
Q2









, R = σ 2
R I2 Q =









σ 2
Q1 0 0 0

0 σ 2
Q1 0 0

0 0 σ 2
Q2 0

0 0 0 σ 2
Q2









, R = σ 2
R I2
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The motion and measurement simulations were generated by using σ 2
Q1 = 0.5, σ 2

Q2 = 0.2 
and σ 2

R = 1.5 as the true variances of the models.
In order to realistically represent the non-line-of-sight conditions, we used a two 

component mixture process for the measurements of the linear motion model in 
Table 2

where α is the mixture proportion and the second mixture component with variance 
102 represents outliers with large variance (compared to the variance σ 2

R = 1.52 of the 
inlying measurements). The mixture model injects unusually large or small deviations in 
randomly selected measurements, mimicking the effect of reflections of satellite signal 
from buildings. Figure 3b shows one simulation with the mixture parameter α = 0.1 and 
n = 20 poses that resulted in only one outlier.

5.2 � Case study experiment: GPS‑based localization

In this section, we illustrate the application of the proposed method in a GPS-based 
localization under non-line-of-sight conditions using the real data set presented in 
Pfeifer and Protzel [19]. The data set was collected in the city center of Chemnitz, 
Germany, by driving an instrumented vehicle several times over a road network, as 
shown in Fig.  4. The urban setting and the road layout consist of several tall build-
ings that cause a large number of outliers due to satellite blockages or reflections 
from the buildings. The data set contains high-precision inertial measurements of the 
vehicle position with a precision of 2 cm used as ground truth and GPS pseudorange 
measurements that will be used in the estimation procedure. The data set contained 

(30)wt ∼ (1− α)N (0, σ 2
RI2)+ αN (0, 102)

Fig. 4  Chemnitz City urban environment and ground truth
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pseudorange measurements at 8570 timesteps. At each timestep pseudorange meas-
urements are gathered from 7 to 12 satellites that are visible to the vehicle.

The proposed unbiased variance estimation method with M-estimators was applied 
to find the location of the vehicle while making the solution robust to outliers. Our 
results are compared to those of [1, 19, 20] who used the same data set.

To develop the factor graph model we define the state vector as xt = (xt , yt , zt , bt , dt) 
where bt is the satellite clock error and dt = ḃt is clock error drift. The pro-
cess dynamics model, incorporating only the satellite clock error and drift, is 
(bt , dt)

T = f (bt−1, dt−1)+ vt where

where the sampling period in the data set was T = 0.25 s and vt ∼ N (0,Q) is the process 
error, with covariance matrix

where σ 2
b  and σ 2

d  are the error variances of clock offset and clock drift. The Jacobian 
matrix F = ∂f /∂xt−1 of the process equation is

The measurement equation consists of the pseudorange from the vehicle to the ith satel-
lite at time t

where nst is the number of satellites visible at time t, wit is the measurement error of 
the ith satellite. The measurement errors of all satellites are Gaussian distributed 
wt ∼ N (0,R) with covariance matrix is R = σ 2

RInst . The noiseless measurement equation 
is (omitting the time index t in the state variables and satellite coordinates):

where (Sxi, Syi, Szi) are the coordinates of the ith satellite, c = 3× 108 m/s is the speed of 
light, and γ = 7.3× 10−5 rad/s is the earth’s rotation speed. The measurement equation 
for the complete set of satellites is

where g = (g1, . . . , gnst )
T . The Jacobian matrix Gt = ∂g/∂xt of the measurement equa-

tions is

(31)f (bt−1, dt−1) =

[

bt−1 + Tdt−1

dt

]

(32)Q =

[

σ 2
b 0

0 σ 2
d

]

F =

[

0 0 0 1 T
0 0 0 0 1

]

.

(33)zi(xt) = gi(xt)+ wit , i = 1, 2, . . . , nst

gi(x) =

√

(Sxi − x)2 + (Syi − y)2 + (Szi − z)2 + c × b+ (γ /c)(Sxiy− Syix)

(34)zt = g(xt)+ wt

Gt =







−(Sx1,t − xt )/g̃1 − (γ /c)Sy1,t − (Sy1,t − yt )/g̃1 + (γ /c)Sx1,t − (Sz1,t − zt )/g̃1 c 0

...
...

...
...
...

−(Sxnst ,t − xt )/g̃nst − (γ /c)Synst ,t − (Synst ,t − yt )/g̃nst + (γ /c)Sxnst ,t − (Sznst ,t − zt )/g̃nst c 0






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where (Sxi,t , Syi,t , Szi,t) are the coordinates of the ith satellite at time t and 

g̃i =
√

(Sxi,t − xt)2 + (Syi,t − yt)2 + (Szi,t − zt)2
.

6 � Results and discussion
6.1 � Mobile robot experiments

Using the example mobile robot systems, we evaluate the performance of the factor 
graph noise variance and localization estimates. 1000 Monte Carlo replications of the 
robot simulation were generated for n = 20 timesteps and in each replication the loca-
tion sequence of the robot and the noise variances are estimated. The proposed unbiased 
noise variance estimator [specified by Eqs. (22) and (15)] is compared to the to the exist-
ing ML estimator [specified by Eq.  (10)]. Both estimators are implemented within the 
IRLS scheme given in Algorithm 1.

We compared the performance of the estimators based on (i) bias in the variance esti-
mates and (ii) Mahalanobis distance of the location solution. Bias of the estimates (of 
all 3 variances) measures the difference between the computed variances and the true 
variances. Since we have a variance estimate in each simulation, the average bias from N 
simulations is calculated as

where σ 2
Ti is the true value of ith variance, σ 2

ij is its estimated value in jth simulation, 
i = 1, 2, 3 is the index of the variance component, j = 1, . . . ,N  is the index of the simula-
tion run and N = 1000.

Total squared Mahalonabis distance of the estimated locations from the truth over all 
timesteps is used to quantify the localization error. The total Mahalanobis localization 
error is found (in each simulation) as the sum of the errors over n poses as

in which xt is the state and x̂t is the state estimate of tth pose, Pt ∈ IRdx×dx is the covari-
ance matrix of the state estimate x̂t that can be obtained from the corresponding entries 
of the matrix (ATA)−1 , which is an m×m matrix (see Sect. 3 for definition of m and dx ). 
The quantity (36) is also known as average normalized (estimation) error squared, or 
ANEES, in the tracking literature [32]. If the predicted uncertainty on the state estimate 
is correct, then G should follow a Chi-squared distribution with degree of freedom ndx , 
with an expected value ndx [23, 33].

The estimated poses and the 95% confidence ellipses using the two approaches super-
imposed with the true poses from a single simulation of the linear motion problem is 
shown in Fig. 5. The location estimates from both methods are very similar. However, 
the confidence ellipses, which are the direct result of the covariance estimates, from the 
methods result in two very different conclusions about the true (unknown) location of 
the robot. The localization with the proposed unbiased variance estimates has the true 
location within its confidence interval at every timestep, while the ML method variance 
estimates frequently has the true location either outside or very close to the confidence 

(35)C = 1/(3N )

3
∑

i=1

N
∑

j=1

(σ 2
ij − σ 2

Ti)
2

(36)G =

n
∑

t=1

(xt − x̂t)
TP−1

t (xt − x̂t) , t = 1, 2, . . . , n
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ellipse. As the robot moves, the uncertainty in position estimates grows due to the 
increasing variance estimates, as indicated by uncertainty ellipses growing in diameter 
over time. Further, the variance estimates from the proposed method (Fig. 5a) are larger 
than those from ML method (Fig. 5b) as evidenced by the larger ellipses of the former, 
indicating larger uncertainty about the true location. This demonstrates some of the 
practical concerns of underestimation with the existing ML-based covariance estimation 
techniques.

The variance estimates σ 2
R , σ

2
Q1 and σ 2

Q2 obtained across the Monte Carlo simulations 
(of robot motion with n = 20 steps) are shown in Fig. 6 (for linear and nonlinear mod-
els) and the distributions of the Mahalanobis distances (for linear motion model) are 
shown in Fig. 7. The cases of n = 20 and n = 100 timesteps are considered to study the 
influence of larger data sets on the quality of the noise variance estimates. The variance 
estimates obtained with n = 20 and 100 are shown in Fig. 8. The summaries of the dis-
tributions are given in Table 3 which reports the average variance estimate, the bias of 
the variance estimates C and the average Mahalanobis localization error G, defined in 
Eqs.  (35) and (36), respectively, computed in the simulations of both linear and nonlin-
ear models with n = 20.

Fig. 5  Estimated poses and 95% confidence ellipses for the linear robot motion using a proposed covariance 
estimates and b existing ML covariance estimates

Fig. 6  Variance estimates from simulations with proposed and existing ML methods. Horizontal dashed lines 
show the true variances. a Linear and b nonlinear vehicle motion
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For all variances, the (existing) ML estimates are significantly smaller than the true 
value (underestimate), while the proposed variance estimates are centered around 
the true value (unbiased). See Fig.  6. The smaller ML variance estimates result in 
Mahalanobis errors being too large (Fig.  7). Further, the proposed variance estimates 
have improved precision with less variability while remaining unbiased with larger 

Fig. 7  Mahalanobis localization errors for linear motion. Vertical dashed line is the true mean 2n = 40 . Based 
on variance estimates from a proposed method and b ML method

Fig. 8  Effect of data size n used on the quality of the proposed variance estimates with the linear vehicle 
motion model. Horizontal dashed lines show the true variances

Table 3  Average variance estimates and localization errors, from simulations with n = 20

Motion model Estimate σ 2
R σ 2

Q1 σ 2
Q2

C G

Linear Existing 0.81 0.13 0.06 0.628 103.93

Proposed 1.46 0.52 0.17 0.003 51.13

Truth 1.50 0.50 0.20 NA NA

Nonlinear Existing 0.49 0.77 0.18 1.097 95.81

Proposed 1.20 1.22 0.38 0.638 59.57

Truth 1.50 0.50 0.20 NA NA
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n (Fig. 8). For both motion models, the existing ML estimates have far more bias and 
the resulting average Mahalanobis error is significantly larger than it should be, which 
is ndx = 20× 2 = 40 (Table  3). In comparison, the proposed variance estimates agree 
much more closely with true values (significantly smaller bias) resulting in about 50% 
smaller Mahalanobis localization errors.

Performance under non-line-of-sight conditions: Monte Carlo simulations of the 
linear robot motion model with the mixture meausurement noise distribution equa-
tion (30) and n = 20 poses were conducted to study the performance of the proposed 
variance estimator with robust M-estimators. Outlier mixture proportions α = 0.10 
and 0.25 were considered, in which the latter case contains more outliers than the for-
mer. The proposed method was implemented with a Cauchy M-estimator with param-
eter aC = 1.645 . Figure 9 shows the estimates of robot location for one realization with 
α = 0.10 , with and without an M estimator. It can be seen that the localization estimates 
are similar with both methods; however, due to the presence of outliers, the confidence 
ellipses are significantly different depending on whether or not an M-estimator is uti-
lized. The confidence ellipses of the position solution with the M-estimator (Fig. 9a), by 
virtue of downweighting the unusual observations, are smaller than those of the non-
robust method (Fig. 9b) which are much larger (more uncertain).

Table 4 summarizes the means and biases of the variance estimates and the Mahalano-
bis distances from 1000 Monte Carlo simulations. The benefit of using an M-estimator 
in conjunction with the unbiased variance estimators on the quality of the estimates is 
evident, in particular when the outliers are more frequent (i.e., α = 0.25 versus 0.10). 

Fig. 9  Estimated poses and 95% confidence ellipses using proposed method for linear motion with outliers 
with α = 0.1 . a With M-estimator and b without M-estimator

Table 4  Variance estimates and localization errors, linear model with outliers, n = 20

Method α σ 2
R σ 2

Q1 σ 2
Q2

C G

Proposed method 0.10 1.69 0.39 0.15 0.05 55.87

with M-estimator 0.25 3.57 0.39 0.15 4.31 47.98

Truth 1.50 0.50 0.20 NA NA

Proposed method 0.10 11.19 1.04 0.59 94.28 56.00

without M-estimator 0.25 25.37 0.96 0.73 570.28 59.37

Truth 1.50 0.50 0.20 NA NA
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With the presence of more outliers, the variance estimates deviate more drastically from 
the true values if M-estimator is not employed (bias increases from 94.3 to 570.3 due to 
outliers). By contrast, when an M-estimator is used, in conjunction with the unbiased 
variance estimators, the bias in the estimates is much smaller (bias increases only from 
0.05 to 4.31 due to outliers). The average Mahalanobis localization error is not drastically 
different from the expected value of 2n = 40 due to the outliers, regardless of whether or 
not an M-estimator is used, since unbiased variance estimators are used in both results. 
However, when M-estimator is used, the localization error is smaller, due to the down-
weighting of the unusual observations.

6.2 � GPS experiments

The proposed unbiased variance estimation and the existing ML variance estimation 
were applied to the GPS data set of the vehicle driving experiment shown in Fig. 4. The 
methods were used to estimate the variances σ 2

b , σ
2
d  and σ 2

R of the clock error offset [sec-
onds2 ], drift (unitless) and measurement error [meters2 ], respectively, and the vehicle 
trajectory by incorporating M-estimators following the procedure described in Sect. 4. 
The Cauchy M-estimator with parameter aC = 3.5 was used to achieve robustness 
against outliers with both methods.

We compare the Mahalanobis localization errors of the proposed method to those 
reported by the existing approaches [1, 19, 20] that used the same data set. Reference 
[1] considered several combinations of the multiple factors of (i) pseudo range, (ii) prior, 
(iii) state transition and (iv) dependence between successive measurements. In our com-
parisons, we considered the results reported for the combinations (i & ii) and (i, ii, iii, & 
iv), which we refer to as SC method 1 and 2, respectively. Reference [19] used a Gaussian 
mixture model (GMM). Reference [20] improves the GMM by using an expectation–
maximization (EM) algorithm. Both [19, 20] use a max-mixture approach as an efficient 
approximation of the Gaussian sum-mixture, as discussed in [3]. Self-tuning GMM 
approach, by contrast to the static GMM approach, includes the weights, means and var-
iances of mixtures as additional variables in the optimization problem.

Figure 10 shows the localization results obtained with M-estimation and the proposed 
variance estimates and the ML variance estimates and Table 5 summarizes the variance 
estimates. It is clear that the localization with the proposed (unbiased) variance esti-
mates is much closer to the ground truth than the ML (biased) estimates. From Table 5, 
it can be seen that, similar to the simulation study, the ML variance estimates are much 
smaller than the proposed variance estimates, which indicates that it is likely that the 
ML estimates are underestimating the actual variances.

Table  6 summarizes the Mahalanabis localization errors from the truth (the mean, 
median and max over all poses) computed using the proposed unbiased estimators, ML 
variance estimators and the existing approaches [1, 19, 20]. It can be seen that the pro-
posed variance estimators, in conjunction with an M-estimator, achieve smaller median 
localization error than the existing SC method 1 and static GMM method, while the 
median error is slightly higher than those of SC method 2 and self-tuning GMM coun-
terparts. The median and maximum errors are not reported in [20] and could not be 
included in Table 6. While the existing approaches with some more complex configura-
tions have better performance in localization error, a significant benefit of the proposed 
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method is that of providing unbiased estimates of the prior and noise covariances. As 
discussed previously, and in literature [8], having good variance estimates is crucial for 
localization applications such as matching observations with landmarks and loop clo-
sure detection.

To get a better understanding of the quality and reasonableness of the variance estimates, 
the uncertainty of the localization results is visualized by plotting the 95% confidence ellip-
ses of the true vehicle positions obtained with both the proposed and ML variance esti-
mates in Fig. 11. In order to maintain clarity of the display, we showed only the initial 2870 

Fig. 10  GPS-based localization results with robust M-estimation and using the proposed variance estimator 
and the ML variance estimator

Table 5  GPS data variance estimates using the proposed method

Method σ 2
R  [m2] σ 2

b  [s2] σ 2
d

Proposed method 19.24 5.498 0.704

ML method 18.35 4.84E–9 9.35e–04

Table 6  Localization errors (m) of the proposed method and the existing SC [1], GMM [19] and 
EM-GMM [20] approaches using the GPS data

Method Mean (m) Median (m) Max (m)

Proposed method 6.06 3.48 121.08

ML method 7.06 4.05 131.13

SC method 1 [1] 17.91 3.66 171.61

SC method 2 [1] 2.96 2.45 16.31

Static GMM [19] 4.52 3.57 31.75

Self-tuning GMM [19] 2.45 1.99 13.91

Static EM-GMM [20] 4.13 NA NA

Self-tuning EM-GMM [20] 2.56 NA NA
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poses out of the entire 8570 poses and plot the confidence ellipse of 1 pose for every 10 
poses. The size and shape of the ellipse for each true position is proportional to the variance 
estimate and quantifies the uncertainty of the localization estimate. The estimated locations 
and their uncertainty ellipses with the proposed variance estimates more closely follow the 
ground truth than with the ML variance estimates. To summarize the performance of both 
methods, we compare the number of times the ground truth positions fall within the con-
fidence ellipses for the entire data set. Using the proposed variance estimates, the ground 
truth is captured correctly for 7283 out of the 8570 of the vehicle poses (85.0% of the time), 
while using the ML variance estimates, the ground truth is captured correctly for the 6,832 
poses (79.7% of the time). This demonstrates that the proposed variance estimates achieves 
a 6.6% improvement in quantifying the uncertainty for GPS-based localization over the ML 
variance estimates.

7 � Conclusions
This paper proposed a new methodology to estimate multiple noise variances in a factor-
graph based formulation of the GPS-based localization problem under non-line-of-sight 
conditions. Unbiased variance estimators of the factor graph formulation are developed 
following the method of moments approach in linear regression theory. An iteratively 
reweighted least squares (IRLS) approach was presented for jointly estimating the system 
state and the noise variances. The existing smoothing-based state estimation approaches 
have largely relied on the maximum likelihood (or residual sample variance) estimators of 
variances in an expectation–maximization framework. While the ML estimators are easy 
to compute and have good performance in many applications, they can result in significant 
underestimation of the true variances which may in turn impact the localization accuracy.

A simulated mobile robot motion analysis showed that using the proposed variance 
estimators, the localization errors can be significantly improved over the ML estimators, 
considering model nonlinearities and measurement outliers. In addition, a case study 
involving real GPS data compared the performance of the method to an existing switching 

Fig. 11  Estimated poses and 95% confidence ellipses for the GPS data using a proposed variance estimators 
and b maximum likelihood variance estimators
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constraints method for a localization problem in an urban environment with significant 
multipath problems.

A major assumption in the current study was that the noise components are mutually 
uncorrelated and covariance matrix we estimate was diagonal. A future work of practical 
interest is to extend the presented approach to unbiased estimators of non-diagonal covari-
ance matrices. Further, in our evaluations we demonstrated the benefits of proposed unbi-
ased variance estimators over maximum likelihood variance estimators in an M-estimation 
framework. It is important to note that the approach is general and can be implemented 
with other weighting based robust estimators, such as switchable constraints and dynamic 
covariance scaling. As most of the existing robust estimation frameworks use ML-based 
variance estimators, if the unbiased variance estimators were to be implemented within 
these frameworks it is reasonable to expect a similar improvement in localization accuracy 
to that observed within the M-estimator framework.

Appendix: Unbiasedness of the Variance Estimators
In this appendix, we present the calculations needed to show unbiasedness of proposed 
variance estimators under both least squares (non-robust) and robust M-estimator based 
state estimation. First we prove how Eq. (20) follows from Eq. (19) for the least squares esti-
mation problem.

To prove unbiasedness when robust M-estimators are used, we need to consider the 
weight matrix. When a weight matrix W is used, the system coefficient and observation 
matrices are

where A is an m× p matrix, W is an m×m diagonal matrix, with elements τi for 
i = 1, 2 . . . ,m . Define Hw = I − H̃w where H̃w is the projection matrix with the 
weighted system
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Analogous to the way matrix H is partitioned in Eq.  (16), partition Hw to find Hw
ij  , 

which is an ni × nj matrix for i, j = 1, 2, . . . , s , and Hw
i  , which is an ni ×m matrix for 

i = 1, 2, . . . , s . The sum of squared residuals with M-estimators for the ith partition is 
then written as

Note that the sum of squared measurements is

Therefore, its expected value can be found as

Applying some matrix algebra, similar to Eqs. (19)–(21), we find

where

and Dij is an ni × nj matrix obtained by partitioning the ni ×m matrix Di as

Equation (40) proves that, when this system of equations, with the observed residuals 
replacing the expected values on the left hand side (based on the method of moments 
approach), is solved for ki, i = 1, 2, . . . , s , one obtains unbiased estimators of the scaling 
factors needed for each linearizing iteration. Equation (42) follows from Eq. (41) using 
the steps shown in Eqs. (37)–(39) for the least squares case, but by replacing Tij with Dij . 
The system of equations for (42) is obtained, analogous to (22), but by replacing Tij with 
Dij . This completes the proof that the proposed variance estimators are unbiased within 
the M-estimation framework.
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