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1  Introduction
Forced phonetic alignment is the task of aligning a speech recording with its phonetic 
transcription, which is useful across a myriad of linguistic tasks such as prosody analy-
sis. However, annotating phonetic boundaries of several hours of speech by hand are 
very time-consuming, even for experienced phoneticians. As several approaches have 
been applied to automate this process, some of them brought from the automatic speech 
recognition  (ASR) domain, the combination of hidden Markov models (HMM) and 
Gaussian mixture models (GMM) has been for long the most widely explored for forced 
alignment.

Regardless of the technique adopted, phonetic alignment resources for Brazilian Por-
tuguese (BP) are still scarce. With respect to ASR-based frameworks, our research found 
only three forced aligners that provide pre-trained models for BP: EasyAlign [1], Mon-
treal Forced Aligner (MFA) [2] and UFPAlign [3, 4]. To the best of our knowledge, Easy-
Align is the only HTK-based aligner that ships with a model for BP, but appears to be no 
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longer maintained; MFA is the only Kaldi-based one; and UFPAlign has been evolving 
through time to work with both HTK and Kaldi as back-end.

As a matter of fact, UFPAlign was initiated in [3], providing a package with grapheme-
to-phoneme  (G2P) converter, syllabification system and GMM-based acoustic models 
trained over the HTK toolkit [5]. As usual, tests comparing the automatic versus man-
ual segmentations were performed. An extra comparison was made to EasyAlign [1], 
which to our knowledge was the only aligner that supported BP at that moment. It was 
observed that the tools achieved equivalent behaviors, considering two metrics: bound-
ary-based and overlap rate.

Later on, following Kaldi’s success as the de facto open-source toolkit for speech rec-
ognition [6] due to its efficient implementation of neural networks for training hybrid 
HMM-DNN acoustic models, UFPAlign was updated in [4] with respect to its HTK-
based version, yielding better results with both monophone and triphone GMM-based 
models, as well as with a standard feed-forward, DNN-based model trained using 
nnet2 recipes. Both HTK- and Kaldi-based versions of UFPAlign were then evaluated 
over a dataset containing 181 utterances spoken by a male speaker, whose phonemes 
were manually aligned by an expert phonetician.

Therefore, as nnet2 recipes became outdated, this work builds upon [4] by updat-
ing training scripts to Kaldi’s nnet3 recipe, which contains the current state-of-the-
art scripts for ASR. Up-to-date versions of the acoustic models, phonetic and syllabic 
dictionaries were released to the public under the MIT license on FalaBrasil’s GitHub 
account,1 as well as the scripts to generate them. Assuming Kaldi is pre-installed as a 
dependency, UFPAlign pipelines works fine under Linux environments via command 
line, but also provides a graphical interface as a plugin to Praat [7], a popular free soft-
ware package for speech analysis in phonetics.

Additionally, some intra- and inter-evaluation procedures were performed, the for-
mer considering all acoustic models trained within the Kaldi’s default GMM and DNN 
pipeline, the latter applying the HTK former version of UFPAlign [3], EasyAlign [1], and 
MFA [2] aligners over the same dataset for the sake of a fair comparison. The evalua-
tion dataset was extended from 193 utterances spoken by a male individual to include 
192 sentences spoken by a female speaker, i.e., 385 manually aligned audio files in total. 
The similarity measure is given in terms of the absolute difference between the forced 
alignments with respect to manual ones, which is called phonetic boundary [2]. A sec-
ond metric, known as intersection over union  (IoU), is widely used in image segmen-
tation for object detection [8]. IoU computes the ratio between the overlap regions of 
both forced and manual alignments (intersection) and their respective areas combined 
(union).

In summary, the contributions of this work include:

•	 Release of monophone-, triphone-, and DNN-based (nnet3) acoustic models, 
which comprise a total of five pre-trained, Kaldi-compatible models included as part 
of UFPAlign. Scripts used to train such models are also available.

1  https://​github.​com/​falab​rasil.

https://github.com/falabrasil
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•	 Generation of multi-tier TextGrid files for Praat, based on phonetic and syllabic dic-
tionaries built over a list of words in BP collected from multiple sources and post-
processed by GNU Aspell [9] spell checker in order to remove potential misspellings.

•	 Embedding of FalaBrasil’s G2P [10, 11] and syllabification [12] software tools within 
UFPAlign to generate on-the-fly phonemes and syllables, respectively, for words that 
are eventually missing in the dictionaries.

•	 Comparison to the only two ASR-based phonetic aligners that exist for Brazilian 
Portuguese (to the best of our knowledge), regarding the phone boundary metric [2] 
over a dataset of 385 hand-aligned utterances.

The remainder of this article is structured as follows. Section 2 lists the related academic 
work in the field and public-available toolkits concerning forced phonetic aligners. Sec-
tion 3 presents the acoustic model training pipeline, as well as the forced phonetic align-
ment procedure with Kaldi, and the audio corpora used for training and evaluation. 
Evaluation tests and results are reported and discussed on Sects. 4 and 5 , respectively. 
Finally, Sect. 6 presents the conclusion and plans for future work. Appendix 1 shows the 
detailed per-phone results achieved with respect to the IoU metric for all forced aligner 
systems evaluated.

2 � Related work and toolkits
Several automatic phonetic alignment tools have been developed to relieve the pho-
neticians of the laborious task that is performing manual alignment on an increasing 
amount of speech data. Table 1 summarizes the main characteristics of some of the cur-
rently available open-source tools to perform forced alignment.

Table 1  List of open-source tools that perform forced phonetic alignment

Characteristics like the ASR framework the system is built upon, main algorithms used, license, and whether it supports 
Brazilian Portuguese (BP), training models over the same dataset to be aligned, and interfacing with Praat’s GUI are also 
discriminated. The last column also indicates whether the aligner was found to be still actively maintained

Tools Ref. Based on Algorithm License BP Allow train Praat’s plugin Active

Aeneas [13] – DTW-TTS AGPL No No No �

DSAlign [14] DeepSpeech DNN MPL No No No �

EasyAlign [1] HTK GMM GPL � No � No

FAVE-align [15] HTK GMM GPL No No No �

Gentle [16] Kaldi DNN (nnet3) MIT No No No �

kaldi-dnn-ali-
gop

[17] Kaldi GMM, 
DNN (nnet3)

GPL No No No �

LaBB-CAT​ [18] HTK GMM GPL No � No �

MAUS [19] HTK GMM – No No no �

MFA [2] Kaldi GMM, 
DNN (nnet2)

MIT � � No �

P2FA [20] HTK GMM – No No No No

Prosodylab-
Aligner

[21] HTK GMM MIT No � No �

SailAlign [22] HTK GMM GPL No No No No

SPPAS [23] Julius GMM GPL No � No �

UFPAlign [3, 4] HTK, Kaldi GMM, DNN 
(nnet2, nnet3)

MIT � No � �
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Contrary to most automatic phonetic alignments tools, Aeneas [13] is a non-ASR-
based forced aligner. Instead, it uses an approach called Sakoe-Chiba band dynamic time 
warping (DTW) algorithm and text-to-speech (TTS) to compute the alignments [24]. 
Aeneas is a Python/C library and provides built-in, multi-platform command-line inter-
face (CLI) tools. Currently, Aeneas claims to work on 38 languages.

On the other hand, a well-known ASR-based forced aligner is Prosodylab-Aligner 
[21], developed at McGill University, Canada. It offers a multi-platform Python inter-
face that essentially automates the HTK workflow. It uses an English dictionary and a 
monophone-based acoustic model pre-trained over a North American English speech 
corpus, but it also allows the use of models for other languages with even the possibility 
of training this language-tailored acoustic model over the same dataset to be aligned. 
The resulting word and phone alignments are written to Praat’s TextGrid file.

Munich Automatic Segmentation (MAUS) [19] is GMM-based forced alignment sys-
tem developed at the University of Munich, Germany. Although the CLI provides full 
language support for German only under Linux systems, another 26 languages, includ-
ing European Portuguese, are supported by a web-based interface [25]. MAUS is distrib-
uted under an all rights reserved license and requires HTK as a third-party dependency. 
The result is stored in a Praat TextGrid file. Therefore, MAUS uses a hybrid approach 
consisting of statistically weighted rules to predict possible pronunciation variants and 
an HTK-based search algorithm that uses a statistical classification of the signal to find 
the most likely segmentation and labeling.

U.S. University of Pennsylvania’s Penn Phonetics Lab Forced Aligner (P2FA) [20] pro-
vides a Python-based interface on the top of HTK and uses the CMU Pronouncing Dic-
tionary (CMUDict) [26] along with a GMM-based monophone acoustic model trained 
over the SCOTUS corpus, the U.S. Supreme Court recordings. Although it supports only 
English, a different version is available for Chinese. This toolkit used to be also available 
as a web interface, but only the Python command-line interface is now obtainable. As 
output, P2FA generates a TextGrid file.

SailAlign [22] is a toolkit that implements an adaptive and iterative speech recognition 
and text alignment approach to allow large-scale data to be processed. It uses triphone-
based acoustic models trained with HTK on both Wall Street Journal (WSJ) and TIMIT 
corpora, hence English is the only language supported. SailAlign is available only as a 
CLI for Linux.

The Language, Brain and Behaviour Corpus Analysis Tool (LaBB-CAT) [18] is a 
browser-based linguistics research system developed at the University of Canterbury, 
New Zealand. LaBB-CAT was designed to index audio corpora, orthographic tran-
scripts, and other time-aligned annotations for easy online access in a central database. 
Alternatively, it can be also downloaded as an offline standalone package. LaBB-CAT 
can perform forced alignment using HTK through a train-and-align approach to pro-
duce speaker-dependent monophone models [27].

SPPAS [23] is an automatic annotation and analyses tool developed at the Labo-
ratoire Parole et Langage, France. It is based on Julius decoder [28], which means the 
models included in the toolkit were trained with HTK. SPPAS was developed to be as 
language-and-task-independent as possible, including models for 11 languages including 
Portuguese, although the Portuguese acoustic model was trained over adapted French 
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and Spanish data. SPPAS also offers both GUI and CLI interfaces on multi-platform 
environment.

FAVE-align [15] is a CLI tool developed to align sociolinguistic interviews and thus 
has some advantages when dealing with spontaneous speech, such as allowing multiple 
speakers and being robust to background noise. It is built upon P2FA, therefore relying 
on both CMUDict and HTK. Acoustic models were trained on 8000 h of hand-aligned 
U.S. Supreme Court oral arguments, hence, English is the only language supported. The 
output is also Praat-compliant.

EasyAlign [1] is one of the forced aligners that supports Brazilian Portuguese, as well 
as Spanish, French and Taiwan Min. It was developed at the University of Geneva, Swit-
zerland. Relying on HTK, EasyAlign is developed as a Praat’s plugin for Windows, hav-
ing therefore a lower level of difficulty when compared to other tools, since its features 
are directly accessible from the Praat’s menu. Besides, less manual steps are required to 
generate a multi-level TextGrid output file.

DSAlign [14] is a forced aligner based on DeepSpeech [29], an open-source speech rec-
ognition system developed using end-to-end (E2E) deep learning on the top of Google’s 
TensorFlow library. Internally, DSAlign uses a voice activity detector (VAD) to split the 
provided audio data into voice fragments. Then, the resulting fragments are transcribed 
into textual phrases via DeepSpeech and finally the actual text alignment is based on a 
recursive divide and conquer approach, the Smith-Waterman alignment algorithm [30]. 
However, apart from the fact that DeepSpeech outputs characters instead of phonemes 
due to its E2E fashion, DSAlign produces only word alignment-based VAD decision 
boundaries, which might include one or more words per segment in JSON format.

As for Kaldi-based forced aligners, Gentle [16] is available either as a GUI in a web 
browser, or as a Python library. Gentle is built on top of Kaldi’s time-delay neural net-
work (TDNN) models [31, 32], a type of HMM-DNN acoustic model, pre-trained on 
Fisher English corpus following the Kaldi’s ASpIRE recipe. Currently, Gentle performs 
forced alignment only on English data and it does not appear to be an academic work 
since no publications have been found. Therefore, to the best of our knowledge, there 
is no work regarding Gentle’s performance compared to the others currently available 
automatic alignment tools.

Forced-alignment and Goodness of Pronunciation tool (kaldi-dnn-ali-gop) [17] 
is also a Kaldi-based aligner, available as a toolkit to be included under a Kaldi instal-
lation. It supports both GMM and DNN acoustic modeling architectures, the latter 
being built upon Kaldi’s nnet3 setup for TDNNs. Acoustic models are based on Kaldi’s 
LibriSpeech recipe using LibriSpeech dataset [33]. This aligner is released under GPL 
and supports only English.

One of the most recent automatic phonetic alignment tools is the Montreal Forced 
Aligner (MFA) [2]. MFA is a 29-language multilingual update to the English-only 
Prosodylab-Aligner [21] and maintains its key functionality of training on new data, 
as well as incorporating improved architecture (triphone GMMs and speaker adapta-
tion), which also offers the possibility of using DNN-based acoustic models based on 
nnet2 recipes.2 BP support from MFA relies on a model trained over a 22-h corpus 
from GlobalPhone dataset [34].

2  It seems MFA has dropped DNN support in version 2.0 pre-releases.
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Likewise, UFPAlign has been developed exclusively for BP by the FalaBrasil 
Research Group at Federal University of Pará (UFPA), Brazil. It is available as a Praat’s 
plugin, but also works via CLI under Linux environments. UFPAlign consists of a set 
of tools, such as a grapheme-to-phone (G2P) converter, syllabification system and 
acoustic models that automatically produce segmentations audios in Brazilian Por-
tuguese, initially via HTK toolkit, and more recently via Kaldi scripts running on the 
back-end [3, 4].

Undoubtedly, there are currently several open-source toolkits to perform automatic 
phonetic alignment. Thus, it is up to the user to choose which forced alignment tool 
is more appropriate for their goal and necessity according to the offered features, such 
as supported language, algorithm, interface, license, and so on.

Nevertheless, despite the diversity of available tools and resources for speech rec-
ognition as acoustic models, public resources and tools are still scarce for less repre-
sentative languages, such as Brazilian Portuguese. Among the summarized automatic 
phonetic aligners, only three of them support BP.

Therefore, this work’s main motivation is twofold: (1) build upon UFPAlign to miti-
gate that gap for BP by providing MIT-licensed monophone-, triphone- and DNN-
based acoustic models trained with the latest recipes of Kaldi over a corpora of 
approximately 171 h of speech data, as well as phonetic and syllabic dictionaries con-
structed from a list of 200,000 words in Brazilian Portuguese using FalaBrasil’s G2P 
and syllabification tools [10–12]; and (2) provide more consistent tests over hand-
annotated time alignments from a dataset containing 193 and 192 utterances from a 
male and a female speaker, respectively, against the current only two ASR-based tools 
that also work for BP: EasyAlign and MFA.

3 � Methodology
This section details the forced phonetic alignment process within UFPAlign, which is 
similar to a traditional decoding stage in speech recognition where one needs an acous-
tic model and a phonetic dictionary (or lexicon) to decide among senones, except the 

Fig. 1  Visualization of a TextGrid file via Praat’s editor, including five tiers: phonemes, syllables, words, and 
phonetic and orthographic transcription, respectively. FalaBrasil’s G2P [10, 11] and syllabification [12] library 
provide phonetic and syllabic tokens, respectively, from text. Praat [7] is responsible for plotting the audio’s 
waveform in both time and frequency domains, while Kaldi [6] provides the temporal marks for the dark-blue 
vertical bars that keep tokens apart from each other
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language model is not necessary in such case. UFPAlign works via command line on 
Linux, but also as a plugin for Praat, a popular speech-related software which is then 
used as graphical interface to display a visual representation of an audio with its respec-
tive time alignments over ortographic, phonetic and syllabic tokens, as shown in Fig. 1.

For that, UFPAlign uses Kaldi as the ASR back-end to automatically compute time 
stamps based on the knowledge of a previously trained acoustic model (also generated 
by Kaldi), and FalaBrasil’s grapheme-to-phoneme (G2P) and syllabification tools to pro-
vide phonemes and syllables from regular words (also known as graphemes), given that 
users themselves provide such transcriptions as input alongside with the corresponding 
audio file. The output is stored in a TextGrid file—a well-known file format for Praat 
users.

3.1 � UFPAlign tools: Kaldi, grapheme‑to‑phoneme and syllabification

Kaldi [6] is an open-source toolkit developed to support speech recognition researchers. 
Based on finite-state transducers (FST) built upon the OpenFst library [35], the toolkit 
provides standardized scripts written in Bash (called “recipes”), which wrap C++ exe-
cutables to build all sort of input-speech-related tasks. Kaldi relies on hidden Markov 
models (HMM) to model the speech’s sequential characteristics in a dual-fashion archi-
tecture for training acoustic models: HMMs combined either with Gaussian mixture 
models (GMM) [36], or with deep neural networks (DNN) [37]. While GMMs are used 
to model HMM output probability densities from scratch, the DNN training actually 
uses the GMM model to produce high-level alignments as reference for the final acous-
tic model [38].

The DNN training framework is provided by Kaldi in three distinct setups3: nnet1 
[39], nnet2 [40, 41] and nnet3. Among the setups, there are some differences regard-
ing the training, such as nonlinearity types, learning rate schedules, network topology, 
input features and so on. However, unlike nnet1 and nnet2, nnet3 offers an easier 
access to use and configure more specialized kinds of networks other than simple feed-
forward ones, including long short-term memory (LSTM) [42] and time-delay neural 
networks (TDNN) [31, 32], for example.

As Kaldi requires a phonetic dictionary or lexicon to serve as the target being modeled 
by HMMs, this work uses a G2P converter provided by the FalaBrasil Group as an open-
source library written in Java [10, 11]. This tool relies on a stress determination system 
that is based on a set of rules that do not focus in any particular BP dialect and provide 
only one pronunciation by word, which means it deals only with single words and does 
not implement co-articulation analysis between words (i.e., cross-word events are not 
considered). The phonetic alphabet is composed by 38 phonemes plus a silence phone, 
inspired by the Speech Assessment Methods Phonetic Alphabet (SAMPA) [43], a system 
of phonetic notation.

The syllabification tool, on the other hand, is not a requirement when training acoustic 
models for ASR, but rather just a feature of UFPAlign for composing another tier in the 
TextGrid output file. It is also provided by the FalaBrasil Group within the same library 

3  http://​www.​kaldi-​asr.​org/​doc/​dnn.​html.

http://www.kaldi-asr.org/doc/dnn.html
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as the G2P, the algorithm is also rule-based and do not focus on any particular Brazilian 
dialect either [12].

3.2 � Training speech corpora and lexicon

The FalaBrasil speech corpora4 consists of seven datasets in BP , as summarized in 
Table  2. The datasets contain audio files in an uncompressed, linear, signed PCM 
(namely, WAVE) format and are sampled at 16 kHz with 16 bits per sample.

A language model (LM), despite not being used during phonetic alignment, is neces-
sary for training the acoustic model. The LM used here was built in [11] using SRILM 
[48] toolkit over ∼1.5 million sentences from the CETENFolha dataset [49].

Finally, the phonetic dictionary was created via FalaBrasil G2P tool [10, 11] based on 
a list of words collected from multiple sources on the Internet, including a word list 
from University of Minho’s Projecto Natura [50], LibreOffice’s VERO dictionary [51], 
NILC’s CETENFolha dataset [49], FrequencyWords repository based on subtitles from 
OpenSubtitles [52, 53], and the transcription of FalaBrasil’s audio corpora described in 
Table 2. GNU Aspell [9] is responsible for checking out the spelling and consequently 
filtering the huge number of words collected, resulting in approximately 200,000 words 
in the final list.

3.3 � Acoustic models

The deep-learning-based training approach in Kaldi actually uses the GMM training 
as a pre-processing stage. Figure 2 shows the pipeline to train a DNN acoustic model 
based on GMM triphones using Kaldi. For this work, AMs were trained by adapt-
ing the recipe for Mini-librispeech dataset [54], as opposed from our previous work 
in which scripts were originally based on recipes for Wall Street Journal (WSJ) [55] 
and Resource Management (RM) [4] datasets. The difference between recipes relies 
mainly on the architecture of the neural network, as will be shown later.

In the front-end, the acoustic waveforms from the training corpus are windowed at 
every 25 ms with 10 ms of overlap, being encoded as a 39-dimension vector: 12 Mel 
frequency cepstral coefficients (MFCCs) [56] using C0 as the energy component, plus 

Table 2  Speech corpora used to train acoustic models

Dataset Refs. Hours Words Speakers

LapsStory [11] 5 h:18 m 8257 5

LapsBenchmark [11] 0 h:54 m 2731 35

Constitution [44] 8 h:58 m 5330 1

Consumer protection code [44] 1 h:25 m 2003 1

Spoltech LDC [45] 4 h:19 m 1145 475

West point LDC [46] 5 h:22 m 484 70

CETUC​ [47] 144 h:39 m 3528 101

Total 170 h:51 m 14,518 687

4  https://​github.​com/​falab​rasil/​speech-​datas​ets.

https://github.com/falabrasil/speech-datasets
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13 delta ( � , first derivative) and 13 acceleration ( �� , second derivative) coefficients 
are extracted from each window.

The flat-start approach models 39 phonemes (38 monophones plus one silence 
model) as context-independent HMMs, using the standard 3-state left-to-right HMM 
topology with self-loops. At the flat-start, a single Gaussian mixture models each 
individual HMM with the global mean and variance of the entire training data. Also, 
the transition matrices are initialized with equal probabilities.

Kaldi uses Viterbi training [57] to re-estimate the models at each training step. Like-
wise, in order to allow training algorithms to improve the model parameters, Viterbi 
alignment is applied after each training step. Subsequently, the context-dependent 
HMMs are trained for each triphone considering � and �� coefficients. Each tri-
phone is represented by a leaf on a decision tree. Eventually, leaves with similar pho-
netic characteristics are then tied/clustered together.

The next step is the linear discriminant analysis (LDA) combined with the maxi-
mum likelihood linear transform (MLLT) [58–60]. The LDA technique takes the 
feature vectors and splices them across several frames, building HMM states with a 
reduced feature space. Then, a unique transformation for each speaker is obtained 
by a diagonalizing MLLT transform. On top of LDA+MLLT features, a speaker nor-
malization that uses feature-space maximum likelihood linear regression (fMLLR) as 
alignment algorithm is applied [61].

The last step of the GMM training is the speaker adaptive training (SAT) [62, 63]. 
SAT is applied on top of the LDA+MLLT features performing adaptation and project-
ing training data into a speaker normalized space. This way, by becoming independent 

Fig. 2  Stages for training a hybrid DNN-HMM acoustic model on the top of a triphone-based, 
speaker-adapted GMM one. Lexicon and LM are omitted, but are basic inputs for all training blocks as well 
as the MFCCs. Scripts are based on Kaldi’s Mini-librispeech recipe, and the DNN in particular was trained 
following the nnet3 setup. At the top of each block, there is a reference for a script (boldface) and a 
directory where resources created by that script are usually stored (normal text). More details on the DNN 
training (dashed block) are depicted in Fig. 3
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of specific training speakers, the acoustic model generalizes better to unseen testing 
speakers [64].

Figure 3 details how the DNN model is obtained as a final-stage AM by using the neu-
ral network to model the state likelihood distributions as well as to input those likeli-
hoods into the decision tree leaf nodes [65]. In short terms, the network input (left side 
of the flowchart) are groups of feature vectors and the output (on the right side) is given 
by the aligned state of the SAT GMM system for the respective features of the input. The 
number of HMM states in the system also defines the DNN’s output dimension [66].

The Mini-librispeech recipe also performs data augmentation on the original data-
set through speed and volume perturbations, which increases the amount of data by 
five times [67]. Moreover, alongside normalized cepstral coefficients, the network is 
also fed i-vectors [68, 69], also extracted from the speech signal, as input features by 
default, which have proven to increase performance in speech recognition tasks by 
incorporating characteristics related to the speakers themselves.

Kaldi’s nnet3 scripts use factorized time-delay neural networks (TDNN-F) as default 
architecture [31], which are a type of feed-forward network that has a behavior similar 
to recurrent topologies like the long short-term neural network (LSTM) in the sense of 
capturing past and future temporal contexts with respect to the current speech frame to 

Fig. 3  Stages for training the neural network (TDNN-F) following Kaldi’s Mini-librispeech recipe. 
High-resolution, cepstral-normalized MFCCs (40 features instead of 13) are extracted from a speed/volume 
augmented corpora, as are the 100-dimensional i-vector features; to be used as input to the DNN. Training 
labels, on the other hand, are provided by a GMM tri-SAT acoustic model. At the top or bottom of each block, 
there is a reference for a script (boldface) and the directory where resources created by that script are usually 
stored (normal text). For details on the training pipeline of the tri-SAT and all previous GMM-based acoustic 
models, the reader is referred to Fig. 2
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be recognized, but with an easier procedure for parallelization. This opposes to previous 
nnet2 recipes, for instance, which are pure vanilla networks.

The implementation in Kaldi uses a sub-sampling technique that avoids the whole 
computation of a feed-forward’s hidden activations at all time steps and therefore allows 
a faster training of TDNNs. The “factorized” term distinguishes a TDNN-F from a tra-
ditional TDNN architecture by a singular value decomposition (SVD) that is applied at 
the hidden layer’s weight matrices in order to reduce the number of model parameters 
without degrading performance [32].

Figure 4 illustrates the default architecture of the TDNN-F defined in Mini-librispeech 
recipe. Multiple instances of the so-called TDNN-F layers appear as a sequence of linear 
affine operations followed by a rectified linear unit (ReLU) activation function. Linear 
operations are here referred as the usual dot product affine function that multiplies the 
resulting coefficients of the immediate predecessor layer by the weight matrix [70], but 
without considering any bias vector in this case.

A bypass operation similar to what happens in residual networks (ResNet) also appears 
in between TDNN-F hidden layers. Batch normalization is applied after each ReLU acti-
vation, and after the last affine computation that precedes the output layer, while l2 regu-
larization (also known as l2 norm or Euclidean norm) is applied after every single block. 
Finally, Euclidean norm is applied over the softmax output layer that models the prob-
ability distributions over senones. Table 3 summarizes some of the parameters used dur-
ing training.

3.4 � Kaldi forced phonetic alignment

UFPAlign uses Kaldi, a toolkit that is under active development and provides state-
of-the-art algorithms for many speech-related tasks, including stable neural-network 

Fig. 4  Default architecture of the TDNN-F from Kaldi’s Mini-librispeech recipe. The setup is composed 
by multiple TDNN-F layers, although only one is being depicted. The dotted arrow represents a bypass 
connection similar to what happens in ResNet topologies. All layers but the output apply batch 
normalization, while l2 regularization is applied without exception. Linear blocks are intentionally thinner by 
either being bottlenecks or just having a lower dimension with respect to other layers
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frameworks. Our aligner has also been developed as a plugin for Praat [7], a popu-
lar speech analysis software, which aims to ensure a user-friendly interface requiring 
only a few manual steps in the process. In fact, the plugin’s interface was developed 
in Praat’s programming language—Praat Scripting. Following a successful alignment, 
a multi-level annotation TextGrid (.tg) file can be loaded into Praat. Figure 5 shows 
the pipeline within UFPAlign to phonetically annotate speech samples. As usual, 
it requires an audio file (.wav) and its corresponding orthographic transcription 
(.txt) as input.

Kaldi forced alignment block itself performs several steps for obtaining the time-
marked conversation (CTM) files, which contains a list of numerical indices corre-
sponding to phonemes with both their start times and durations in seconds. After 
Kaldi scripts extract some features from time-domain audio data, the forced align-
ment step, that employs the aforementioned pre-trained acoustic models, is com-
puted by Kaldi using Viterbi beam search algorithm [71]. Depending on the model, 
the input features could be simply normalized MFCCs for monophone and tri-� 
models, LDA for tri-LDA and tri-SAT models, or i-vectors for TDNN-F model.

Table 3  Parameters used for TDNN-F training

Parameter Value

# TDNN-F layers 12

# Epochs 10

Time strides (TDNN-F layers) {1, 1, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3}

Dimension 768 on both TDNN-F and prefinal layers

Bottleneck dimension 96 on TDNN-F layers, 192 on prefinal layer

Bypass scale 0.66

Frame subsampling factor 3

Regularization parameter 0.015 for output layer, 0.03 otherwise

Learning rate 0.002 down to 0.0002

Fig. 5  The phonetic alignment pipeline followed by UFPAlign. When a user feeds the system with an audio 
(.wav) and its respective transcription (.txt), they should expect a TextGrid file as output. Time marks are 
provided by Kaldi, which relies on the knowledge of the acoustic model (AM) and tokens of the lexicon (L.fst). 
Preparation of data and language files (dashed block) are especially detailed in Fig. 6
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The data and language preparation stage in particular also creates some “data files” 
on the fly, which contain information regarding the specifics of the audio file and 
its transcription, namely text, wav.scp, utt2spk, and spk2utt. The language 
preparation stage, on the other hand, is given by a script provided by Kaldi to create 
another set of important files, the main one being the lexicon parsed into an FST 
format, called L.fst. The creation of Kaldi’s data and language files is illustrated in 
Fig. 6.

For data preparation, the first step consists in checking whether there are any new 
words in the input data that were not seen during the acoustic model training. If 
any word in the transcriptions is not found in the pronunciation dictionary (lexi-
con), it calls the grapheme-phoneme conversion module (G2P) [10, 11] to extend the 
lexicon with each new word along with its respective phonemic pronunciation. For 
Praat’s final visualization purposes, the word is also divided into syllables through 
the embedded syllabification tool [12]. Original phonetic and syllabic dictionaries 
originally contain approximately 200,000 entries and are represented as lex 200k 
and syll 200k, respectively, in Fig.  6. After missing words are appended, both 
become lex 200k+ and syll 200k+.

The last block of the phonetic alignment process handles the conversion of both 
CTM files to a Praat’s TextGrid (.tg), a text file containing the alignment informa-
tion. Therefore, CTM files are read by a Python script that in the conversion process 
uses the lex 200k+ and syll 200k+ extended dictionaries to generate the out-
put five-tier TextGrid that can be displayed by Praat’s editor (c.f. Fig. 1).

Fig. 6  Data and language (lang) preparation as a pre-processing step for performing forced alignment with 
Kaldi. Eventual words that are missing in the vocabulary of the phonetic and syllabic dictionaries (lex 200k 
and syll 200k, respectively) are inserted during run time thanks to the embedding of FalaBrasil’s G2P and 
syllabification tools within UFPAlign. Kaldi specific data and language files are also created
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4 � Evaluation tests
The evaluation procedure takes place by comparing a bunch of TextGrid files: the hand-
aligned reference and the ones automatically annotated by the forced aligners (i.e., by 
inference), as the phone boundary and IoU metrics consider the absolute difference 
between the ending time of both phoneme occurrences [2]. The calculation is performed 
for each acoustic model, and it takes place over all utterances from the evaluation data-
set composed by one male and one female speaker.

It would be important to mention that only the phonetic information is considered 
during evaluation, i.e., the time stamps of the other tiers that compose the TextGrid file 
are used just as a product of the output of the aligner. In other words, time boundaries of 
syllables and words will not be part of the analysis. Furthermore, once again we remind 
the reader that syllabic tokens are not part of an ASR system, but rather just a feature of 
our forced aligner as a tool.

4.1 � Evaluation speech corpus

In these experiments, the automatic alignment was estimated on the basis of the man-
ual segmentation. The original dataset used for assessing the accuracy of the phonetic 
aligner is composed of 200 utterances spoken by a male speaker, and 199 utterances spo-
ken by a female speaker, in a total of 15 min and 32 s of hand-aligned audio, as shown in 
Table 4. Praat’s TextGrid files, whose phonetic time stamps were manually adjusted by a 
phonetician, are available alongside audio and text transcriptions.

Although we do acknowledge that this volume of test dataset is small, as is the num-
ber of different speakers in the corpus, we also emphasize as a disclaimer the difficulty 

Table 4  Speech corpus used to evaluate the automatic phonetic aligners

Actual duration and number of files after discard are shown between parentheses, as well as the number of unique words

Dataset Duration # Files # Words # Tokens

Male 7 m:58 s (7 m:40 s) 200 (193) 1260 (665) 5275

Female 7 m:34 s (7 m:18 s) 199 (192) 1258 (664) 5262

Total 15 m:32 s (14 m:58 s) 399 (385) 2518 (686) 10,537

Table 5  Cross-word mismatches between transcriptions manually aligned by a phonetician (top) 
versus generated by our G2P software (bottom)

Word boundary losses, typically present in spoken language rather than in text, are represented by the empty set symbol 
( ∅ ), as well as deletion or addition of phonetic tokens that can be later merged into one (/u∼ m → /u∼ ) or split into two or 
more (/6/ /Z/ → /a/ /j/ /s/), respectively.

(a) “nada como um almoç o ao a r livre” → “nada como um almoç oa r livre”

a w m o s O ∅ ∅ a h/

a w m o s u a w a X

(b) pair a u m ar de arara rara no rio” → “pair u m ar de arara rara no rio”

p a j 4 ∅ u ∼ m a h/

p a j r a u ∼ ∅ a X

(c) “o baile inicia às nov e e meia” → “o baile inicia às nov i meia”

6 ∅ Z n O v i ∅

a j s n O v i i
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to have access to this kind of somewhat very specific labeled data. Moreover, the time it 
takes even for expert phoneticians to annotate each phoneme’s time stamp by hand is 
insurmountably high [1].

This dataset was aligned with a set of phonemes inspired by the SAMPA alphabet, 
which in theory is the same set used by the FalaBrasil’s G2P software that creates the lex-
icon during acoustic model training. Nevertheless, there are some problems of phonetic 
mismatches, and some cross-word phonemes between words, which makes the mapping 
between both phoneme sets challenging, given that FalaBrasil’s G2P only handles inter-
nal-word conversion [10].

The example in Table 5 shows the phonetic transcription for three sentences given by 
the original dataset (top) and the acoustic model (bottom) which then suppress vowel 
sounds altogether due to cross-word rules (usually elision and apocope) when they 
occur at the end of the current word and at the beginning at the next. Such mismatches 
occur because the dataset was aligned by a phonetician considering acoustic informa-
tion (i.e., listening) as the sentences are spoken in real life, which cannot be done by the 
G2P tool that creates the acoustic model’s lexicon, since it is provided only with textual 

Fig. 7  Evaluation procedure, in which a comparison on the output of all forced aligners to a hand-aligned 
ground-truth, is performed. However, metrics should be calculated considering a one-to-one mapping 
between inference and reference phonemes. This is where the M2M mapping is applied to make different 
phone sets inside TextGrid files match the SAMPA phonetic alphabet version used by FalaBrasil’s G2P 
converter, which is provided by the lexicon generated over transcriptions from the evaluation speech 
corpora for both male and female speakers (lex M/F). That way, M2M mapping ensures each reference and 
inference utterance shares the same number of phones before undergoing evaluation
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information. Situations like these of phonetic information loss led to the removal of such 
audio files from the dataset before evaluation.

In the end, fourteen files were excluded from the dataset, so about 34  s of audio 
was discarded, and 193 and 192 utterances remained in the male and female datasets, 
respectively. The filtering also ignored intra- and inter-word pauses and silences, result-
ing in 2518 words (686 unique, since the utterances’ transcriptions are identical for both 
speakers, i.e, they speak the very same sentences) and 10,537 phonetic segments (tokens) 
(c.f. Table 4).

4.2 � Simulation overview

Figure  7 shows a diagram of the experiments where EasyAlign, UFPAlign and MFA 
forced aligners receive the same input of audio files (.wav) with their respective tex-
tual transcriptions (.txt). These are the files whose manual annotation is available. All 
three aligners output one TextGrid file (.tg) for each audio given as input, which then 
serve as the inference inputs to the phone boundary and IoU calculation. The reference 
ground-truth annotations, on the other hand, are provided by the 385 TextGrid files that 
contain the hand-aligned phonemes corresponding to the transcriptions in the evalua-
tion dataset.

However, for computing the metrics, there must exist a one-to-one mapping between 
the reference and the inference phones, which was not possible at first due to the nature 
of the phonetic alphabets: UFPAlign and EasyAlign share the same SAMPA-inspired 
lexicon generated by FalaBrasil’s G2P tool, while MFA is based on ARPAbet [72]. Fur-
thermore, the hand-aligned utterances fall on a special case where the phonetic alphabet 
used (referred here as “original”) is also SAMPA, but is not exactly the same as FalaBra-
sil’s, as shown in Table 6.

Apart from the fact seen in Table  5 in which cross-word rules can insert or delete 
phones when considering word pairs rather than single words, some phonemes do not 
have an equivalent, such as /tS/ and /dZ/. Besides, there are also usual swaps between 
phonetically similar sounds: /h//, /h\/, /h/ and /4/, for instance, might be almost 
deliberately mapped to either /r/, /R/ or /X/. Obviously, the situation is worse for 
MFA where the set of phonemes is completely different.

Table 6  Equivalence table between phonemes present in the hand-aligned dataset (original) and 
the ones yielded by FalaBrasil’s G2P tool (FB)

Most of the mappings are one-to-one, but some phones do not have a mapping, and phone swaps frequently occur (both 
cases are shaded in light gray)
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Thus, since the situation seemed to require a smarter approach than a simple one-
to-one tabular, static mapping, it was necessary to employ a many-to-many (M2M) 
mapping procedure (c.f. dashed blocks on Fig. 7) based on statistical frequency of occur-
rence, e.g., how many times phones /t/ and /S/ from the original evaluation dataset 
were mapped to a single phone /tS/ in the lex M/F file representing FalaBrasil’s G2P 
SAMPA-inspired alphabet. This mapping also works when dealing with MFA’s ARPAbet 
phonemes and will be further discussed in Sect. 4.3.

4.3 � Many‑to‑many (M2M) phonetic mapping

By taking another look at Table  5, one might have also reasoned that the mapping 
between the two sets of phonemes is not always one-to-one. The usual situation is where 
a pair of phonemes from the dataset (original) is merged into a single one for the AM 
(FalaBrasil G2P), such as /i∼ / /n/ → /i∼ / and /t/ /S/ → /tS/. However, a single 
phoneme can also be less frequently split into two or more, such as /u/ /S/ → /u/ 
/j/ /s/.

To deal with these irregularities, we used the many-to-many alignment model (m2m-
aligner) software [73] in the core of a pipeline that converts the original TextGrid from 
the evaluation dataset to a TextGrid that is compatible with the FalaBrasil’s phonetic 
dictionary (or lexicon) used to train the acoustic models, as shown in Fig. 8. We took 
advantage of the same pipeline to convert MFA’s ARPAbet-based phonemes to SAMPA 
as well.

The m2m-aligner works in an unsupervised fashion, using an edit-distance-based 
algorithm to align two different (unaligned) strings from a file in the news format, 
in order for them to share the same length [73]. As this algorithm works based on 
frequency counts (e.g., how many times phonemes /d/ and /Z/ are merged to /
dZ/), all 385 TextGrid files from our evaluation dataset, represented as short .tg, 
are used to compose a single news file, whose format is exemplified in Table  7. 
Notice the file is composed by the phonemes of the whole sentence rather than by 
isolated words, in order to mitigate the effects of the cross-word boundaries. The 

Fig. 8  Pipeline to convert from many-to-many phonetic correspondence to one-to-one by the m2m-aligner 
software [73]. This is necessary given that the nature of the phone set used to train AMs is not the same used 
to manually align the evaluation dataset, although both are SAMPA-inspired; and that MFA uses a different set 
of phonemes based on ARPAbet
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string mapping is finished after a certain number of iterations when the m2m-
aligner provides a one-to-one mapping in a file we called m2m (c.f. Fig. 8) that joins 
some phonemes together, as shown by shades of gray in Table 7.

Finally, as the m2m-aligner provides the mapping for phonemes, another script 
provides the time stamps calculations prior to creating the converted TextGrid 
file. Table 8 illustrates how the phonetic time stamps, in milliseconds, are mapped 
accordingly. Basically if two or more phonemes are mapped into a single one (merg-
ing), as in /o∼ / /n/ → /o∼ / or /d/ /Z/ → /dZ/ (marked with an ∗ ), the time 
stamp of the last phoneme is considered. However, if one phoneme is mapped to two 
or more (splitting) as in /e∼ / → /e∼ / /j∼ /, then linearly spaced time stamps are 
generated in between the phone to be split ( † ) and its immediate predecessor ( ‡).

We acknowledge that, after splitting a single phoneme into two or more, attribut-
ing equal durations to new phonemes does not reflect the physical events of speech, 
as it is known that vowels have longer durations than consonants and semivowels. 
However, at first, we kept this model for the sake of simplicity. Moreover, as splitting 
occur more or less at the same proportion across the output of all forced aligners we 
tested, we believe this does not influence the accuracy of such.

Table 7  Example of a single news file with phonemes from three out of 385 TextGrid files for 
sentences “é bom pousar”, “os lindos jardins” and “vergonha do país” 

Each line contains a whole phonetic sentence to be converted, and different phone sets are separated into two distinct 
columns divided by a tabular ‘\t’ character, so every other phonetic token is separated by a single space. Groups of 
phonemes which are supposed to be later merged by m2m-aligner in the m2m file are shaded in gray

Table 8  Conversion of time stamps for the sentence “onde existem”

Markers depict either merging (*) or splitting (‡) of phones

494 533* 558 565* 583 682 748 854 929 979‡ 1042‡

o∼ n d Z i i z i S t e∼

o∼ dZ i e z i s t e∼ j∼

533
∗

565
∗ 583 682 748 854 929 979

‡ 1010 1042
†
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4.4 � Example of phone boundary and intersection over union

Here, we depict a practical example of the phone boundary and IoU calculation. This 
is meant to introduce the reader to Sect. 5, in which the results are presented. Figure 9 
shows an example of manual and forced alignments for the utterance “ela tem muita 
fome.” The time stamps are given in milliseconds. Table 9 shows both the phone sets, the 
phone boundary, and the IoU values for each phoneme.

To calculate the phone boundary, one would need only to subtract one of the values 
at the top (either blue or orange) from their respective vertical pair at the bottom (the 
reference value in green) and then ignore negative signals by considering the absolute 
value. In a perfect segmentation, all values would be zero, which corresponds to com-
puting the metric on the reference annotations against itself.

The intersection over union, on the other hand, considers the intersection area 
between the start and end boundaries of each phoneme. For unidimensional signals such 
as speech, the area is simply the difference (subtraction) between the ending and the 
starting times. This is then simply divided by the area of the union between the reference 
and automatic aligned phonemes’ time stamps.

Fig. 9  Example of alignments for the utterance “ela tem muita fome.” Ground-truth boundaries are 
shown in green, while automatic ones produced by Kaldi’s monophone- and TDNN-F-based models are 
shown in blue and orange, respectively. Tokens (phonemes) are shown at the bottom at their respective 
in-between-boundaries middle position. Notice that phonemes /j∼:m/ and /j∼:n/ have been created in 
the ground-truth through a merge of the individual phones /j∼ , /m/ and /n/, based on M2M mappings

Table 9  Original (orig) and FalaBrasil (FB) SAMPA-based phonetic transcriptions for the phrase “ela 
tem muita fome”

Respective phone boundary (integer) and intersection over union (floating point) values achieved by the monophone and 
TDNN-F models for the example in Fig. 9 are also shown

Orig. E l 6 t e∼ j∼:m m u∼ j∼:n t 6 f o∼ m i

FB E l a t e∼ j∼ m u j∼ t a f o∼ m i

mono 8 12 9 1 7 21 3 10 7 9 2 5 10 5 18

TDNN-F 12 22 19 1 37 9 3 0 33 1 42 175 10 5 18

mono .94 .71 .71 .87 .87 .52 .62 .78 .75 .80 .86 .96 .92 .88 .78

TDNN-F .92 .53 .50 .75 .58 .31 .71 .95 .63 .47 .64 .37 .10 .86 .79
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Taking the phoneme /f/ as example, one can see that the TDNN-F boundaries are really 
off, while the monophone model could almost perfectly align the phoneme (c.f. Fig.  9.) 
Therefore, the IoU “score” for the monophone would be closer to one (0.96, i.e., better), as 
their intersection (numerator) is large, which consequently reduces the area of their union 
(denominator); while for the TDNN-F model, the score would be closer to zero (0.37, i.e., 
worse), as the area of their union is greater than their intersection (c.f. Table 9, rows 5–6, 
13th column.) Analogously, the boundary for phoneme /f/ should have ended at 905 ms 
(green), but ended at 910 ms (blue, better) and 1080 ms (orange, worse) when aligned with 
monophone and TDNN-F models, yielding therefore a phone boundary value of 5 and 175, 
respectively (c.f. Table 9, rows 3–4, 13th column.)

Finally, taking the results from the monophone-based model as target example, one can 
see that from the total of 15 phonemes, ten are less than 10ms, and the remaining five are 
less than 25ms off the manual alignment references, which means 66.7% and 33.3% of the 
tokens (i.e., all of them), for this single utterance, were respectively aligned within these two 
pre-specified thresholds. With the TDNN-F model, the results were worse: it achieved 40% 
and 33.3%, but alone these values do not provide an early sum to 100% as they do with 
the monophone model. Furthermore, for the real evaluation of phone boundary, these per-
centages are calculated over the whole reference dataset, which means there will be one 
instance of Table 9 for each of the 385 utterances, and the percentage values are computed 
with regard to the overall number of tokens (e.g., ∼  5200 for each speaker, as shown in 
Table 4.) IoU scores are grouped in a phoneme-wise fashion per speaker, however.

A summary of the expected goals for each numeric analysis is as follows:

•	 The lower the phone boundary values, i.e., closer to zero, the better;
•	 The higher the IoU score, i.e., closer to one, the better;
•	 The higher the percentage of phonetic tokens aligned at a lower threshold value (in mil-

liseconds), i.e., 100% below the 10ms threshold, the better.

5 � Results and discussion
Results for the phone boundary metric will be reported in terms of a tolerance threshold 
that shows the how many phonetic tokens were more precisely aligned with respect to the 
manual alignments. Besides, in order to support the phone boundary evaluation, the inter-
section over union metric was also computed in forced alignments values against the refer-
ence ones, and results will be shown in a per-phoneme basis for both speakers from the 
evaluation dataset.

For IoU, however, only the most accurate results we have achieved will be discussed in 
detail for the sake of simplification, but as the values seem to follow a relatively consistent 
pattern across all systems, Appendix 1 shows the complete graphical results for all HTK-, 
MFA- and UFPAlign-based acoustic models.

5.1 � Phone boundary

Numerical values, in milliseconds, are presented in Tables 10 and 11 for the female and 
male portions of the evaluation dataset, respectively. The best ones are highlighted in 
bold.
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As far as MFA train-and-align (T&A) feature is concerned, roughly only 1% of pho-
neme tokens aligned by Kaldi-based aligners are off the 100  ms tolerance, against 3% 
of tokens aligned by HTK-based tools. In fact, approximately 96–97% of phonemes 
were under the 50 ms tolerance when aligned by acoustic models trained with MFA and 
UFPAlign, considering an average of all models. Unfortunately, this is not true for MFA’s 
pre-trained model for Brazilian Portuguese (in align-only mode), which on the other 
hand, for larger tolerance threshold values, performed a little worse than HTK.

Among HTK-based aligners, EasyAlign performed best considering all statistics 
and tolerance thresholds for both male and female speakers. However, as already 
pointed out in [3], the same ground-truth dataset used for evaluation in this work 
was also used to train the BP acoustic model shipped with EasyAlign, so this might 
have had some bias when comparing it to UFPAlign. Overall, UFPAlign (HTK) 
achieved very similar values across metrics for both speakers of the dataset, while 
EasyAlign’s behavior shows a greater accuracy on the female voice. Nevertheless, 

Table 10  Results for the female dataset regarding the cumulative percentage below a tolerance 
threshold, in milliseconds, of the differences between forced aligned audio and ground-truth 
phonemes, also known as phone boundary

Notations on MFA stand for align-only (A) and train-and-align (T&A) procedures, while on UFPAlign, they denote either the 
nature of the toolkit or the acoustic model

Toolkit Cumulative tolerance

< 10 ms < 25 ms < 50 ms < 100 ms

UFPAlign (HTK) 31.40% 63.94% 88.19%  97.08%

EasyAlign 36.59% 78.12% 94.06%  98.91%

MFA ( A ) 39.34% 75.99% 87.77%  95.65%

MFA (T&A) 37.65% 78.69% 95.16%  99.08%

UFPAlign (mono) 47.47% 87.70% 97.55%  99.57%

UFPAlign (tri-�) 50.44% 89.88% 98.34%  99.62%

UFPAlign (tri-LDA) 47.48% 89.22% 98.27%  99.76%

UFPAlign (tri-SAT) 45.69% 88.20% 98.15%  99.77%

UFPAlign (TDNN-F) 34.41% 75.94% 97.61%  99.87%

Table 11  Results for the male dataset regarding the cumulative percentage below a tolerance 
threshold, in milliseconds, of the differences between forced aligned audio and ground-truth 
phonemes, also known as phone boundary

Notations on MFA stand for align-only (A) and train-and-align (T&A) procedures, while on UFPAlign they denote either the 
nature of the toolkit or the acoustic model

Toolkit Cumulative tolerance

< 10 ms < 25 ms < 50 ms < 100 ms

UFPAlign (HTK) 30.73% 62.45% 86.55%  96.42%

EasyAlign 31.53% 67.51% 89.69%  96.95%

MFA ( A ) 32.81% 64.85% 78.49%  90.61%

MFA (T&A) 45.12% 83.34% 97.23%  99.66%

UFPAlign (mono) 43.51% 83.42% 96.29%  99.42%

UFPAlign (tri-�) 46.28% 85.55% 97.13%  99.74%

UFPAlign (tri-LDA) 43.49% 84.50% 97.19%  99.74%

UFPAlign (tri-SAT) 42.14% 83.51% 97.19%  99.78%

UFPAlign (TDNN-F) 32.02% 70.62% 96.65%  99.94%
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the parcel of phonetic tokens whose difference to the manual segmentation was less 
than 10 ms stayed below the 40% even for EasyAlign.

In align-only (A) mode, MFA models performed slightly better than EasyAlign’s 
until 10 ms, but increasingly worse for larger values of tolerance for both male and 
female speakers. These poor results may be due to the nature of the dataset used 
to generate MFA’s pre-trained acoustic models (GlobalPhone [34]), which contains 
only 22 h of transcribed audio. In contrast, training and aligning (T&A) on the same 
evaluation dataset with MFA proved better than HTK for the male speaker, and the 
results are similar for the female speaker.

The monophone- and triphone-based GMM models we trained with Kaldi for 
UFPAlign achieved the best performance with respect to phone boundary when 
compared to both MFA and HTK-based aligners. On average, approximately, 45% of 
tokens were accurately aligned within the 10 ms margin for all GMM models. Mean 
and median values are the lowest (except for tri-SAT on the male dataset, which was 
greater than MFA’s T&A) and at most ∼4 ms distant from each other. With respect 
to the speakers’ gender, UFPAlign (Kaldi) performed approximately 4% better for the 
woman’s voice until the 50 ms of tolerance, and about 2 ms more accurate according 
to the average mean.

Finally, TDNN-F simulation was definitely disappointing. We expected that results 
from a nnet3 DNN-based setup would be at least similar to GMM-based ones, as 
it was in [4] with nnet2, but cumulative tolerance values were instead just slightly 
better than EasyAlign. The discussion Section sheds some light on possible reasons, 
as well as further evidence. Therefore, even though one can say that the best result 
was achieved by tri-delta ( � ) models on both male and female datasets, since it 
holds the rows with most boldface values in Tables 10 and 11 (except MFA was bet-
ter off after 50 ms on the man’s voice, but the values compared to UFPAlign’s tri-� 
model are fairly and virtually the same), holding the greatest percentage of tokens 
more accurately aligned under 10 ms, we would rather prefer to state that all GMM-
based AMs in UFPAlign achieved similar results.

Table 12  Mean and median of IoU scores over all phonemes for both speakers

Best results are highlighted in bold

Toolkit Female Male

Mean Median Mean Median

UFPAlign (HTK) 0.562 0.600 0.558 0.597

EasyAlign 0.634 0.686 0.578 0.625

MFA ( A ) 0.650 0.723 0.567 0.674

MFA (T&A) 0.678 0.722 0.691 0.736

UFPAlign (mono) 0.711 0.755 0.686 0.730

UFPAlign (tri-�) 0.729 0.769 0.704 0.743
UFPAlign (tri-LDA) 0.717 0.751 0.694 0.726

UFPAlign (tri-SAT) 0.710 0.743 0.690 0.721

UFPAlign (TDNN-F) 0.600 0.645 0.563 0.624
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5.2 � Intersection over union

Table 12 shows the average mean and median values for all acoustic models with respect 
to the IoU metric. As it can be seen, on average, the pattern already seen during phone 
boundary evaluation is maintained: Kaldi GMM-based models perform better overall, 
MFA train and align feature achieves close results, and finally, HTK-based aligners, MFA 
in align-only mode, and Kaldi’s chain TDNN-F model are the worse ones.

Once again, the HMM-GMM tri-delta ( � ) model trained with Kaldi was the overall 
winner, even though all GMM-based models also achieved pretty similar results. Moreo-
ver, the median value is slightly higher ( ∼ +0.04 ), possibly due to a couple of outliers that 
may have dragged the average mean down.

Figures  10 and 11 show boxplots on the values achieved for the tri-� model on the 
female and male speakers, respectively, in a per-phoneme fashion. Horizontal, dashed 
lines represent the mean and median values, green triangles are the per-phoneme mean, 
and gray diamonds depict the outliers.

Some curious patterns can be extracted, though. Others do make sense indeed. For 
instance, the IoU values for the fricatives /f/, /s/ and /S/, as well as for the open and 
nasal realizations of grapheme “o,” /O/ and /o∼ /, respectively, and plosives in general 

Fig. 10  IoU values per phoneme on the utterances of the female speaker regarding the tri-� acoustic model 
trained with Kaldi

Fig. 11  IoU values per phoneme on the utterances of the male speaker regarding the tri-� acoustic model 
trained with Kaldi
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are very high on both speakers, even though they seem slightly higher for the male 
speaker. For phonemes /R/, /r/, and /X/, on the other hand, which all map to the 
same grapheme “r” in BP, the accuracy was very poor, especially for the female speaker.

Some low IoU values for phonemes /i/, /j/ and /j∼ / also draw attention. The latter, 
a nasal semivowel for grapheme “i,” appears lots of times in merged phones, which may 
indicate something to be looked upon with more care at the M2M procedure. Perhaps 
an unrelated event, /w/ and /w∼ /, both semivowels for grapheme “o,” also got below-
average scores that are easy to see.

For a visualization of boxplots for all AMs, the reader is referred to Appendix 1.

5.3 � Discussion

A possible reason for such a difference between HTK- and Kaldi-based aligners might 
be that HTK uses Baum-Welch algorithm for training HMMs while Kaldi uses Viterbi 
training [57]. On the other hand, among Kaldi models, tri-� stands out as being virtually 
the best one. However, with just a ∼1–3% difference in tolerance, and ∼0.02 difference 
in IoU scores, we cannot tell whether it is significant enough to classify one model into 
being better than the others, as they appear pretty close at glance. The linear sequence of 
model training just does not result in lower errors in phonetic boundaries as it resulted 
in lower word error rates for speech recognition [55].

The poorest results were produced by the TDNN-F, which needs careful investigation. 
Data insufficiency could have been the issue in the first place, as ∼171 h of training data 
are far from the ideal volume to train a neural network efficiently. Other reasons include 
the use of frame subsampling, since Fig. 9 proves that time alignments (in orange) are 
always a multiple of 3; and the modified topology of HMMs which the TDNN-F trains 
upon, also known as chain model [74], which is further discussed with preliminary 
results in Sect. 5.3.1.

Moreover, navigating through all the burden to train a DNN model with Kaldi (which 
requires at least one GPU card) may not be the more appropriate move if the final 
task’s goal is to align phonemes rather than to recognize speech. As MFA seem to have 
dropped support to DNN models, and our previous results with a nnet2 neural net-
work setup only took tolerance values so far as to match tri-� models [4]. Neverthe-
less, conjectures still need to be experimented to remove doubts and prove hypothesis 
empirically.

Table 13  Phone boundary results for the female dataset

TDNN-F model Features Cumulative tolerance

< 10 ms < 25 ms < 50 ms < 100 ms

Chain MFCCs + i-Vectors 33.09% 70.49% 92.37% 99.08%

Chain MFCCs 32.24% 68.76% 91.84% 99.02%

Chain-free MFCCs + i-Vectors 47.05% 83.46% 96.08% 99.36%

Chain-free MFCCs 48.78% 85.30% 96.80% 99.64%
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5.3.1 � Investigation on TDNN‑F chain models

To further investigate some of the hypotheses to why the neural network performed so 
poorly in comparison with GMM models, we trained another four TDNN-F-based mod-
els, but this time varying some of the input features as well as the topology of the HMMs 
the neural network trains upon. The insight for the latter comes from the experience of 
others on the goodness of pronunciation5 task in Kaldi.

We refer back to Fig. 3, where there is a block called “build tree.” This stage recreates 
HMMs for the tri-SAT model that contain a single-state instead of the traditional three-
state, left-to-right topology that is used to train the GMM-based models [74]. The deci-
sion tree that models senones is therefore also modified.

Tables 13 and 14 show the results for the female and male speakers, respectively, from 
four additional models trained over the same tri-SAT GMM model, with (chain) and 
without (chain-free) the use of modified HMM topology. At the input of the network, we 
also tested the high-resolution MFCCs with and without the i-Vector features stacked.

As it can be seen, even though i-Vectors seem to help chain models ( ∼1–2%), remov-
ing them from the training stage in chain-free models actually does improve results, 
even if sometimes just marginally ( ∼0.1–2%.) Nevertheless, the difference is not signifi-
cant as the comparison chain vs. chain-free: the absolute gains at the smallest thresholds 
are of ∼15% and ∼13% for the female and male speakers, respectively. Also, in spite of 
the clear improvement with respect to previous results, the values for phone boundary 
are still behind the GMM-based models.

6 � Conclusion
This paper presented contributions for the problem of forced phonetic alignment in 
Brazilian Portuguese (BP). An update to UFPAlign [4] was offered by providing adapted 
Kaldi recipes for training acoustic models on BP datasets, as well as properly releasing all 
the acoustic models for free under an open-source license on the GitHub of the FalaBra-
sil Group.6 UFPAlign works either via command line (Linux) or in a graphical interface 
as a plugin to Praat. Up-to-date phonetic and syllabic dictionaries created over a list of 
200,000 words for BP are also provided, as well as standalone grapheme-to-phoneme 
and syllabification systems for handling out-of-vocabulary words.

For evaluation, a comparison among the Kaldi-based acoustic models trained with an 
updated version of the scripts from [4] was performed, as well as a comparison to an 

Table 14  Phone boundary results for the male dataset

TDNN-F model Features Cumulative tolerance

< 10 ms < 25 ms < 50 ms < 100 ms

Chain MFCCs + i-Vectors 34.14% 69.51% 91.42% 99.23%

Chain MFCCs 33.67% 68.84% 91.38% 99.25%

Chain-free MFCCs + i-Vectors 46.60% 83.14% 96.16% 99.34%

Chain-free MFCCs 46.75% 83.59% 96.87% 99.68%

5  https://​github.​com/​kaldi-​asr/​kaldi/​tree/​master/​egs/​gop_​speec​hocea​n762.
6  https://​github.​com/​falab​rasil.

https://github.com/kaldi-asr/kaldi/tree/master/egs/gop_speechocean762
https://github.com/falabrasil
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outdated HTK-based version of UFPAlign from [3]. Results regarding the absolute dif-
ference between forced and manual aligned utterances (phone boundary metric) and the 
overlap rate (intersection over union, or IoU) showed that the HTK-based aligner per-
formed worse when compared to any of the Kaldi-based models, and that our acoustic 
models we trained from scratch performed better than MFA’s pre-trained models.

6.1 � Future work

As future work, there are a couple of experiments to be investigated. The simplest one 
would be to train GMM-based tri-� , tri-LDA, tri-SAT and even monophone-based 
acoustic models with a higher number of Gaussian mixtures per senone. We are already 
training DNNs on the top of tri-� and other triphone-based models other than the 
default tri-SAT, since that was the one that yielded the most accurate results accord-
ing to phone boundary, but with smaller datasets the results did not seem to improve. 
Besides, training a DNN on the top of context-independent monophones also does not 
seem to help.

We also plan on testing on a new dataset of hand-aligned utterances spoken by a sin-
gle male speaker that we recently had access to. Unfortunately that only leaves us with 
a three-speaker test set in total, but at least the volume of data is much greater than 
it once was approximately one and a half hour of speech whose phonemes’ times were 
annotated by a phonetician.

Aiming at creating a more trustworthy mapping between phone sets, there could be 
an estimation of the durations of phones from the evaluation dataset in order to avoid 
attributing linearly spaced time stamps after the splitting procedure during M2M map-
ping. This is probably more complex as coarticulation between phones always occur, 
and we are aware that the volume of hand-aligned annotation per speaker may note 
be enough to perform a biphone analysis, for example. However, we plan to compute 
one overall duration per phone considering an average of all occurrences of that single 
(mono) phone to see whether automatically inferred boundaries vary.

Regarding the DNN, some preliminary results already suggest that chain models [74] 
are not well suited for phonetic alignment, and that the input features do not affect 
phone boundary values by a large margin. Even so, splicing cepstral features with LDA 
would also be a valid test. In addition, the TDNN-F setup has not been altered from 
Mini-librispeech’s default recipe, which means some parameters such as layer dimen-
sion, number of layers, context width, and the application of frame subsampling could 
still undergo tuning for different languages of different training dataset sizes. It seems 
natural that the research shall continue now on chain-free models. Finally, other archi-
tectures like LSTMs should have its use evaluated.

At last, although UFPAlign can be used as a plugin to Praat, we plan in the future to 
train models compatible with MFA or Gentle under the same licensing, as to avoid open-
source competition. Unfortunately, such effort did not work by the time of this submis-
sion, but as both codebases are more well documented and well maintained, they may 
potentially cover a broader community. The provision of a train-and-align feature for 
UFPAlign is also an ongoing plan.
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Fig. 12  IoU values per phoneme on the utterances of the female speaker
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Fig. 13  IoU values per phoneme on the utterances of the male speaker
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Appendix 1: Phoneme‑wise analysis on intersection over union
Figures  12 and 13 show boxplots on the values achieved for the female and male 
speakers, respectively, in a per-phoneme fashion for all acoustic models evaluated. 
The horizontal, dashed lines on both plots are the average mean (green) and median 
(red) across all phonemes, which are previously summarized in Table  12. Further-
more, green triangles and gray diamonds represent the mean and the outliers for each 
phoneme.

The boxplots provide a great deal of information that can be overwhelming at 
glance. Still, they offer a great tool to analyze the behavior across models and pho-
nemes in general. For a more in-depth discussion on the overall “best” performant 
system, the reader is referred to Sect. 5.2. We found that most of the patterns already 
discussed can also be extended and visualized on results for the remaining forced 
aligners.

Abbreviations
AGPL: Affero GNU General Public License; AM: Acoustic model; ASR: Automatic speech recognition; BP: Brazilian Portu-
guese; CETUC​: Centro de Estudos em Telecomunicações; CLI: Command line interface; CMU: Carnegie Mellon University; 
CTM: Time marked conversation; DTW: Dynamic time warping; E2E: End-to-end; FB: FalaBrasil; FST: Finite state transducer; 
G2P: Grapheme-to-phoneme; GMM: Gaussian mixture models; GPL: GNU General Public License; GPU: Graphic Process-
ing Unit; GUI: Graphical user interface; HMM: Hidden Markov models; HTK: Hidden Markov model toolkit; IoU: Intersec-
tion over union; IPA: International phonetic alphabet; JSON: JavaScript object notation; LDA: Linear discriminant analysis; 
ASpIRE: Automatic SPeech recognition In Reverberant Environments; CAPES: Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior; CNPq: Conselho Nacional de Desenvolvimento Científico e Tecnológico; fMLLR: Feature space 
maximum likelihood linear regression; NILC: Núcleo Interinstitucional de Linguística Computacional; LDC: Linguistic data 
consortium; LM: Language model; LSTM: Long short-term memory; MAUS: Munich automatic segmentation system; 
MFA: Montreal forced aligner; MFCC: Mel frequency cepstral coefficients; MIT: Massachusetts Institute of Technology; 
MPL: Mozilla Public License; NLP: Natural language processing; P2FA: Penn phonetics lab forced aligner; PCM: Pulse code 
modulation; RM: Resource management; SAMPA: Speech assessment methods phonetic alphabet; SAT: Speaker adaptive 
training; SCOTUS: Supreme Court of the United States; TDNN-F: Factorized Time Delay Neural Network; TDNN: Time Delay 
Neural Network; TIMIT: Texas instruments and MIT; TTS: Text-to-speech; UFPA: Universidade Federal do Pará; VAD: Voice 
activity detection; VERO: VERificador Ortográfico; WSJ: Wall Street Journal.

Acknowledgements
We gratefully acknowledge NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. The 
authors would also like to thank CAPES research funding agency and, on behalf of all contributors of this project, 
PROPESP/UFPA and FAPESPA (under grant 001/2020, process 2019/583359) for the financial support.

Authors’ contributions
All authors contributed to this research, including the design of the simulations and analyses of the results. CB adapted 
Kaldi scripts to work with data in Brazilian Portuguese, prepared the evaluation dataset to fit a uniform pattern for com-
parison, generated results and wrote the first version of the manuscript. ALD worked in the Praat plugin and continually 
revised the manuscript, while NN contributed to substantial revisions of the text. All authors read and approved the final 
manuscript.

Authors information
Cassio Batista received his B.S. degree in computer engineering from the Federal University of Pará (UFPA), Brazil, in 
2016, and his M.S. degree in computer science in 2017, at the same institution. He is currently pursuing Ph.D. from the 
Computer Science Graduate Program at Federal University of Pará. His current research areas include speech and natural 
processing for Brazilian Portuguese.
Ana Larissa Dias received her B.S. degree in computer engineering from the Federal University of Pará (UFPA), Brazil, in 
2018. Currently, she is a master’s student in Computer Science at the same institution. Her research areas include speech 
recognition and processing for Brazilian Portuguese.
Nelson Neto received his B.S. degree in electrical engineering from the Federal University of Pará (UFPA), Brazil, in 2000, 
his MS degree in electrical engineering in 2006, and his Ph.D. in electrical engineering in 2011, at the same institution. He 
is currently a Professor in the Computer Science Graduate Program at UFPA. His research areas include speech recogni-
tion, speech synthesis and natural language processing for Brazilian Portuguese.

Funding
This work is sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho 
Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the provision of graduate scholarship fundings.



Page 30 of 32Batista et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:11 

Availability of data and materials
From the speech corpora used to train the acoustic models, CETUC, LapsBenchmark, Constitution and Consumer 
Protection Code datasets are freely available in https://​github.​com/​falab​rasil/​speech-​datas​ets. LapsStory is not publicly 
available for licensing issues, since it was extracted from private audio books. Spoltech and West Point can be purchased 
from Linguistic Data Consortium (LDC). As for the evaluation dataset of hand-aligned utterances, it was ceded by the 
group and cannot be released, but can be requested. Language model and lexicon files can be found in https://​gitlab.​
com/​fb-​nlp under the MIT license.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 16 April 2021   Accepted: 3 February 2022

References
	1.	 J.-P. Goldman, Easyalign: an automatic phonetic alignment tool under praat, in Proceedings of the Annual Conference 

of the International Speech Communication Association, INTERSPEECH, pp. 3233–3236 (2011)
	2.	 M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, M. Sonderegger, Montreal forced aligner: trainable text-speech align-

ment using kaldi, in Proceedings of Interspeech, pp. 498–502 (2017). https://​doi.​org/​10.​21437/​Inter​speech.​2017-​1386
	3.	 G. Souza, N. Neto, An automatic phonetic aligner for Brazilian Portuguese with a Praat interface, in Computational 

Processing of the Portuguese Language. ed. by J. Silva, R. Ribeiro, P. Quaresma, A. Adami, A. Branco (Springer, Cham, 
2016), pp. 374–384

	4.	 A.L. Dias, C. Batista, D. Santana, N. Neto, Towards a free, forced phonetic aligner for Brazilian Portuguese using Kaldi 
tools, in Intelligent Systems. ed. by R. Cerri, R.C. Prati (Springer, Cham, 2020), pp. 621–635

	5.	 S. Young, D. Ollason, V. Valtchev, P. Woodland, The HTK Book. Cambridge University Engineering Department, version 
3.4 (Cambridge, 2006)

	6.	 D. Povey, A. Ghoshal, G. Boulianne, N. Goel, M. Hannemann, Y. Qian, P. Schwarz, G. Stemmer, The Kaldi speech recog-
nition toolkit, in IEEE 2011 Workshop (2011)

	7.	 P. Boersma, D. Weenink, Praat: Doing Phonetics by Computer (Version 6.1.15) [computer Program]. https://​www.​fon.​
hum.​uva.​nl/​praat/

	8.	 H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Generalized intersection over union: a metric and a 
loss for bounding box regression, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 
658–666 (2019). https://​doi.​org/​10.​1109/​CVPR.​2019.​00075

	9.	 K. Atkinson, GNU Aspell. https://​aspell.​net
	10.	 A. Siravenha, N. Neto, V. Macedo, A. Klautau, Uso de regras fonológicas com determinação de vogal tônica para 

conversão grafema-fone em português brasileiro (2008). https://​gitlab.​com/​fb-​nlp/​nlp-​gener​ator
	11.	 N. Neto, C. Patrick, A. Klautau, I. Trancoso, Free tools and resources for Brazilian Portuguese speech recognition. J. 

Braz. Comput. Soc. 17(1), 53–68 (2011). https://​doi.​org/​10.​1007/​s13173-​010-​0023-1
	12.	 N. Neto, W. Rocha, G. Sousa, An open-source rule-based syllabification tool for Brazilian Portuguese. J. Braz. Comput. 

Soc. (2015). https://​doi.​org/​10.​1186/​s13173-​014-​0021-9
	13.	 Pettarin, A.: Aeneas. https://​github.​com/​readb​eyond/​aeneas
	14.	 Mozilla: DSAlign: DeepSpeech Based Forced Alignment Tool. https://​github.​com/​mozil​la/​DSAli​gn
	15.	 Rosenfelder, I., Fruehwald, J., Evanini, K., Seyfarth, S., Gorman, K., Prichard, H., Yuan, J.: FAVE: Forced Alignment and 

Vowel Extraction. https://​github.​com/​JoFrh​wld/​FAVE/
	16.	 Ochshorn, R.M., Hawkins, M.: Gentle Forced Aligner. https://​github.​com/​lower​quali​ty/​gentle
	17.	 M. Tu, A. Grabek, J. Liss, V. Berisha, Investigating the role of l1 in automatic pronunciation evaluation of l2 speech, in 

Proceedings of Interspeech 2018, pp. 1636–1640 (2018). https://​doi.​org/​10.​21437/​Inter​speech.​2018-​1350
	18.	 R. Fromont, J. Hay, LaBB-CAT: an annotation store, in Proceedings of the Australasian Language Technology Association 

Workshop (Dunedin, 2012), pp. 113–117. https://​www.​aclweb.​org/​antho​logy/​U12-​1015
	19.	 F. Schiel, Automatic phonetic transcription of non-prompted speech, in Proceedings of the ICPhS (San Francisco, 

1999), pp. 607–610
	20.	 J. Yuan, M. Liberman, Speaker identification on the Scotus corpus. J. Acoust. Soc. Am. 123(5), 3878–3881 (2008). 

https://​doi.​org/​10.​1121/1.​29357​83
	21.	 K. Gorman, J. Howell, M. Wagner, Prosodylab-aligner: a tool for forced alignment of laboratory speech. Can. Acoust. 

39(3), 192–193 (2011)
	22.	 A. Katsamanis, M.P. Black, P. Georgiou, L. Goldstein, S. Narayanan, SailAlign: robust long speech-text alignment, in 

Proceedings of Workshop on New Tools and Methods for Very-Large Scale Phonetics Research (2011)
	23.	 B. Bigi, SPPAS: multi-lingual approaches to the automatic annotation of speech. J. Int. Soc. Phonetic Sci. 111–112, 

54–69 (2015)
	24.	 F. Malfrère, T. Dutoit, High-Quality Speech Synthesis for Phonetic Speech Segmentation, vol. 3329 (1997)
	25.	 F. Schiel, The Munich Automatic Segmentation System (MAUS). https://​www.​bas.​uni-​muenc​hen.​de/​Bas/​BasMA​US.​

html
	26.	 R. Weide, The CMU Pronouncing Dictionary (version 0.7b). http://​www.​speech.​cs.​cmu.​edu/​cgi-​bin/​cmudi​ct

https://github.com/falabrasil/speech-datasets
https://gitlab.com/fb-nlp
https://gitlab.com/fb-nlp
https://doi.org/10.21437/Interspeech.2017-1386
https://www.fon.hum.uva.nl/praat/
https://www.fon.hum.uva.nl/praat/
https://doi.org/10.1109/CVPR.2019.00075
https://aspell.net
https://gitlab.com/fb-nlp/nlp-generator
https://doi.org/10.1007/s13173-010-0023-1
https://doi.org/10.1186/s13173-014-0021-9
https://github.com/readbeyond/aeneas
https://github.com/mozilla/DSAlign
https://github.com/JoFrhwld/FAVE/
https://github.com/lowerquality/gentle
https://doi.org/10.21437/Interspeech.2018-1350
https://www.aclweb.org/anthology/U12-1015
https://doi.org/10.1121/1.2935783
https://www.bas.uni-muenchen.de/Bas/BasMAUS.html
https://www.bas.uni-muenchen.de/Bas/BasMAUS.html
http://www.speech.cs.cmu.edu/cgi-bin/cmudict


Page 31 of 32Batista et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:11 	

	27.	 R. Fromont, Forced alignment of different language varieties using LaBB-CAT, in Proceedings of the 19th Interna-
tional Congress of Phonetic Sciences (ICPhS) (Melbourne, 2019), pp. 1327–1331. https://​www.​aclweb.​org/​antho​logy/​
U12-​1015

	28.	 A. Lee, T. Kawahara, K. Shikano, Julius-an open source real-time large vocabulary recognition engine 3, 1691–1694 
(2001)

	29.	 A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, A.Y. Ng, 
Deep Speech: Scaling Up End-to-End Speech Recognition (2014). arXiv:​1412.​5567

	30.	 T.F. Smith, M.S. Waterman, Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981). 
https://​doi.​org/​10.​1016/​0022-​2836(81)​90087-5

	31.	 V. Peddinti, D. Povey, S. Khudanpur: a time delay neural network architecture for efficient modeling of long temporal 
contexts, in Proceedings of Interspeech, pp. 3214–3218 (2015)

	32.	 D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi, S. Khudanpur, Semi-orthogonal low-rank matrix factori-
zation for deep neural networks, in Proceedings of Interspeech 2018, pp. 3743–3747 (2018). https://​doi.​org/​10.​21437/​
Inter​speech.​2018-​1417. http://​dx.​doi.​org/​10.​21437/​Inter​speech.​2018-​1417

	33.	 V. Panayotov, G. Chen, D. Povey, S. Khudanpur, Librispeech: an ASR corpus based on public domain audio books, in 
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210 (2015). https://​
doi.​org/​10.​1109/​ICASSP.​2015.​71789​64

	34.	 T. Schultz, N.T. Vu, T. Schlippe, Globalphone: a multilingual text speech database in 20 languages, in 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pp. 8126–8130 (2013). https://​doi.​org/​10.​1109/​ICASSP.​
2013.​66392​48

	35.	 C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, M. Mohri, Openfst: A General and Efficient Weighted Finite-state Transducer 
Library, vol. 4783, pp. 11–23 (2007). https://​doi.​org/​10.​1007/​978-3-​540-​76336-9_3

	36.	 L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 
257–286 (1989). https://​doi.​org/​10.​1109/5.​18626

	37.	 G. Hinton, L. Deng, D. Yu, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath, B. Kings-
bury, Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. 
IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://​doi.​org/​10.​1109/​MSP.​2012.​22055​97

	38.	 A. Georgescu, H. Cucu, C. Burileanu, Kaldi-based DNN architectures for speech recognition in romanian, in 2019 
International Conference on Speech Technology and Human–Computer Dialogue (SpeD), pp. 1–6 (2019). https://​doi.​
org/​10.​1109/​SPED.​2019.​89065​55

	39.	 Vesely, K., et al., Sequence-discriminative training of deep neural networks, in INTERSPEECH 2013, pp. 2345–2349 
(2013)

	40.	 X. Zhang, J. Trmal, D. Povey, S. Khudanpur, Improving deep neural network acoustic models using generalized max-
out networks, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 215–219 
(2014). https://​doi.​org/​10.​1109/​ICASSP.​2014.​68535​89

	41.	 D. Povey, X. Zhang, S. Khudanpur, Parallel training of DNNs with Natural Gradient and Parameter Averaging (2015). 
arXiv:​1410.​7455

	42.	 V. Peddinti, Y. Wang, D. Povey, S. Khudanpur, Low latency acoustic modeling using temporal convolution and LSTMs. 
IEEE Signal Process. Lett. 25(3), 373–377 (2018). https://​doi.​org/​10.​1109/​LSP.​2017.​27235​07

	43.	 D. Gibbon, R. Moore, R. Winski, SAMPA Computer Readable Phonetic Alphabet. https://​www.​phon.​ucl.​ac.​uk/​home/​
sampa/

	44.	 PCD Legal: PCD Legal: Acessível Para Todos. http://​www.​pcdle​gal.​com.​br/
	45.	 LDC: CSLU: Spoltech Brazilian Portuguese Version 1.0. https://​catal​og.​ldc.​upenn.​edu/​LDC20​06S16
	46.	 LDC: West Point Brazilian Portuguese Speech. https://​catal​og.​ldc.​upenn.​edu/​LDC20​08S04
	47.	 PUC-Rio: Centro de Estudos em Telecomunicações (CETUC). http://​www.​cetuc.​puc-​rio.​br/
	48.	 A. Stolcke, Srilm—an extensivle language modeling toolkit, in Proceedings of the 7th International Conference on 

Spoken Language Processing (ICSLP), vol. 2, pp. 901–904 (2002)
	49.	 Interinstitutional Center for Computational Linguistics: CETENFolha Dataset. https://​www.​lingu​ateca.​pt/​ceten​folha/​

index_​info.​html
	50.	 J.J. Almeida, A. Simões, Projecto Natura. https://​natura.​di.​uminho.​pt/​wiki/​doku.​php
	51.	 R. Moura, LibreOffice’s VERO Dictionary. https://​github.​com/​Libre​Office/​dicti​onari​es/​tree/​master/​pt_​BR
	52.	 GitHub: FrequencyWords. https://​github.​com/​hermi​tdave/​Frequ​encyW​ords
	53.	 Opensubtitles.org: OpenSubtitles. https://​www.​opens​ubtit​les.​org/
	54.	 D. Povey, OpenSLR: Open Speech and Language Resources. https://​opens​lr.​org/​index.​html
	55.	 C. Batista, A.L. Dias, N. Sampaio Neto, Baseline acoustic models for brazilian portuguese using Kaldi tools, in Proceed-

ings of IberSPEECH, pp. 77–81 (2018). https://​doi.​org/​10.​21437/​IberS​PEECH.​2018-​17
	56.	 S. Davis, P. Mermelstein, Comparison of parametric representations for monosyllabic word recognition in continu-

ously spoken sentences. IEEE Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980). https://​doi.​org/​10.​1109/​
TASSP.​1980.​11634​20

	57.	 S. Buthpitiya, I. Lane, J. Chong, A parallel implementation of viterbi training for acoustic models using graphics pro-
cessing units, in 2012 Innovative Parallel Computing (InPar), pp. 1–10 (2012). https://​doi.​org/​10.​1109/​InPar.​2012.​63395​
90

	58.	 R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley-Interscience, New York, 2000)
	59.	 R.A. Gopinath, Maximum likelihood modeling with Gaussian distributions for classification, in IEEE International Con-

ference on Acoustics, Speech and Signal Processing, ICASSP, vol. 2, pp. 661–6642 (1998). https://​doi.​org/​10.​1109/​ICASSP.​
1998.​675351

	60.	 S.P. Rath, D. Povey, K. Veselý, J. Černocký, Improved feature processing for deep neural networks, in Proceedings of 
Interspeech, pp. 109–113 (2013). https://​www.​isca-​speech.​org/​archi​ve/​inter​speech_​2013/​i13_​0109.​html

	61.	 M.J.F. Gales, Maximum likelihood linear transformations for hmm-based speech recognition. Comput. Speech Lang. 
12(2), 75–98 (1998). https://​doi.​org/​10.​1006/​csla.​1998.​0043

https://www.aclweb.org/anthology/U12-1015
https://www.aclweb.org/anthology/U12-1015
http://arxiv.org/abs/1412.5567
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.21437/Interspeech.2018-1417
https://doi.org/10.21437/Interspeech.2018-1417
http://dx.doi.org/10.21437/Interspeech.2018-1417
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2013.6639248
https://doi.org/10.1109/ICASSP.2013.6639248
https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/SPED.2019.8906555
https://doi.org/10.1109/SPED.2019.8906555
https://doi.org/10.1109/ICASSP.2014.6853589
http://arxiv.org/abs/1410.7455
https://doi.org/10.1109/LSP.2017.2723507
https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
http://www.pcdlegal.com.br/
https://catalog.ldc.upenn.edu/LDC2006S16
https://catalog.ldc.upenn.edu/LDC2008S04
http://www.cetuc.puc-rio.br/
https://www.linguateca.pt/cetenfolha/index_info.html
https://www.linguateca.pt/cetenfolha/index_info.html
https://natura.di.uminho.pt/wiki/doku.php
https://github.com/LibreOffice/dictionaries/tree/master/pt_BR
https://github.com/hermitdave/FrequencyWords
https://www.opensubtitles.org/
https://openslr.org/index.html
https://doi.org/10.21437/IberSPEECH.2018-17
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/InPar.2012.6339590
https://doi.org/10.1109/InPar.2012.6339590
https://doi.org/10.1109/ICASSP.1998.675351
https://doi.org/10.1109/ICASSP.1998.675351
https://www.isca-speech.org/archive/interspeech_2013/i13_0109.html
https://doi.org/10.1006/csla.1998.0043


Page 32 of 32Batista et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:11 

	62.	 T. Anastasakos, J. Mcdonough, R. Schwartz, J. Makhoul, A compact model for speaker-adaptive training, in Proceed-
ings of ICSLP, pp. 1137–1140 (1996)

	63.	 T. Anastasakos, J. McDonough, J. Makhoul, Speaker adaptive training: a maximum likelihood approach to speaker 
normalization, in 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1043–10462 
(1997)

	64.	 Y. Miao, H. Zhang, F. Metze, Speaker adaptive training of deep neural network acoustic models using i-vectors. IEEE/
ACM Trans. Audio Speech Lang. Process. 23(11), 1938–1949 (2015)

	65.	 S. Guiroy, R. de Cordoba, A. Villegas, Application of the Kaldi toolkit for continuous speech recognition using Hid-
den–Markov models and deep neural networks, in IberSPEECH’2016 On-line Proceedings, IberSPEECH 2016 (Lisboa, 
Portugal, 2016), pp. 187–196. https://​ibers​peech​2016.​inesc-​id.​pt/​wp-​conte​nt/​uploa​ds/​2017/​01/​Onlin​eProc​eedin​gs_​
IberS​PEECH​2016.​pdf

	66.	 I. Kipyatkova, A. Karpov, Dnn-based acoustic modeling for Russian speech recognition using kaldi, in Speech and 
Computer (Springer, Cham, 2016), pp. 246–253

	67.	 T. Ko, V. Peddinti, D. Povey, S. Khudanpur, Audio augmentation for speech recognition, in Proceedings of Interspeech 
(2015)

	68.	 N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-end factor analysis for speaker verification. IEEE Trans. 
Audio Speech Lang. Process. 19(4), 788–798 (2011). https://​doi.​org/​10.​1109/​TASL.​2010.​20643​07

	69.	 D. Snyder, D. Garcia-Romero, D. Povey, S. Khudanpur, Deep neural network embeddings for text-independent 
speaker verification, in Proceedings of Interspeech 2017, pp. 999–1003 (2017). https://​doi.​org/​10.​21437/​Inter​speech.​
2017-​620. http://​dx.​doi.​org/​10.​21437/​Inter​speech.​2017-​620

	70.	 G. Strang, Introduction to Linear Algebra, 5th edn. (Wellesley-Cambridge Press, Wellesley, 2016)
	71.	 X. Huang, A. Acero, H.-W. Hon, Spoken Language Processing: A Guide to Theory, Algorithm, and System Development, 1st 

edn. (Prentice Hall PTR, Upper Saddle River, 2001)
	72.	 J.E. Shoup, Phonological aspects of speech recognition, in Trends in Speech Recognition, pp. 125–138 (1980)
	73.	 S. Jiampojamarn, G. Kondrak, T. Sherif, Applying many-to-many alignments and hidden Markov models to letter-

to-phoneme conversion, in Human Language Technologies 2007: The Conference of the North American Chapter of 
the Association for Computational Linguistics; Proceedings of the Main Conference, Association for Computational 
Linguistics (Rochester, New York, 2007), pp. 372–379. http://​www.​aclweb.​org/​antho​logy/N/​N07/​N07-​1047

	74.	 D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar, X. Na, Y. Wang, S. Khudanpur, Purely sequence-trained 
neural networks for ASR based on lattice-free MMI, in Proceedings of Interspeech 2016, pp. 2751–2755 (2016). https://​
doi.​org/​10.​21437/​Inter​speech.​2016-​595

https://iberspeech2016.inesc-id.pt/wp-content/uploads/2017/01/OnlineProceedings_IberSPEECH2016.pdf
https://iberspeech2016.inesc-id.pt/wp-content/uploads/2017/01/OnlineProceedings_IberSPEECH2016.pdf
https://doi.org/10.1109/TASL.2010.2064307
https://doi.org/10.21437/Interspeech.2017-620
https://doi.org/10.21437/Interspeech.2017-620
http://dx.doi.org/10.21437/Interspeech.2017-620
http://www.aclweb.org/anthology/N/N07/N07-1047
https://doi.org/10.21437/Interspeech.2016-595
https://doi.org/10.21437/Interspeech.2016-595

	Free resources for forced phonetic alignment in Brazilian Portuguese based on Kaldi toolkit
	Abstract 
	1 Introduction
	2 Related work and toolkits
	3 Methodology
	3.1 UFPAlign tools: Kaldi, grapheme-to-phoneme and syllabification
	3.2 Training speech corpora and lexicon
	3.3 Acoustic models
	3.4 Kaldi forced phonetic alignment

	4 Evaluation tests
	4.1 Evaluation speech corpus
	4.2 Simulation overview
	4.3 Many-to-many (M2M) phonetic mapping
	4.4 Example of phone boundary and intersection over union

	5 Results and discussion
	5.1 Phone boundary
	5.2 Intersection over union
	5.3 Discussion
	5.3.1 Investigation on TDNN-F chain models


	6 Conclusion
	6.1 Future work

	Acknowledgements
	References


