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1  Introduction
A cell-free system is a new concept of mobile communication system architecture 
derived from distributed MIMO, in which the antenna unit is separated from the pro-
cessing unit. Multiple remote antenna units (RAUs) are connected to the central pro-
cessing unit (CPU) through optical fibers, and joint signal processing is performed 
through the CPU. Compared with the cellular system that eliminates the interference 
between antennas by allocating different frequencies, the joint signal processing of the 
cell-free system can eliminate the interference between antennas on the same frequency 
by means of simultaneous equations that make it possible to improve spectrum effi-
ciency, coverage capability and cell boundary performance [1–4].

However, due to the distributed characteristics of cell-free systems, similar to coordi-
nated multipoint (CoMP) systems or 5G-based IoT, different user equipment (UE) and 
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RAUs have separate propagation delays. These variations will cause the receiver to syn-
chronize with the transmitted signal that arrives first, and DSDs will be generated on the 
asynchronous transmitted signal that arrives later. Especially in the OFDM system, accu-
rate symbol time synchronization is an important prerequisite for removing the cyclic 
prefix (CP) and completing correct demodulation. DSDs will cause the received signal to 
produce a phase rotation that varies with the subcarrier index during the demodulation 
process, which will have a negative impact on system performance [5–11].

The major contributions of this paper are summarized as follows. 

1.	 A multi-RB precoding optimization algorithm to maximize the cell-free massive 
MIMO system sum rate under the total RAU power constraint is proposed.

2.	 A DMRS channel estimation is proposed.

The novelty of this paper is to solve the problem that the performance loss of DSDs to 
broadband precoding increases as the number of subcarriers increases since per subcar-
rier precoding is not supported in the current 5G NR protocol [12].

The following notations are used. All boldface letters represent vectors (lower case) 
or matrices (upper case). The P × P identity matrix is denoted IP . The notations CN and 
C
M×N refer to complex N-dimensional vectors and M × N  matrices, respectively. The 

operators diag(·) , (·)T and (·)H denote diagonalization, transpose and conjugate trans-
pose, respectively. A random vector x ∼ CN (m,�) is a complex Gaussian distribution 
with a mean vector m and covariance matrix �.

2 � Problem formulation
2.1 � Impact of the DSDs

In an OFDM system, obtaining accurate sampling of the transmitted signal within the 
symbol period is the prerequisite for the receiver to perform FFT. For this reason, it is 
necessary to perform symbol timing synchronization after removing CP. However, in the 
cell-free system as shown in Fig. 1, because the distances from RAUs to UEs are differ-
ent, the receiver performs symbol timing synchronization with the signal that arrives 
first, and the signal that arrives subsequently will produce τ samples DSDs during the 
sampling process, as shown in Fig. 2. After FFT, τ samples DSDs result in a phase rota-
tion of e−j2πnτ/Nc on the nth subcarrier, where Nc is the number of FFT points. It can be 
seen that phase rotation increases with the increase of subcarrier index, and the impact 
of phase rotation will be superimposed in the coherence bandwidth, causing additional 
frequency selective fading of the channel.

2.2 � System model

We consider a cell-free massive MIMO-OFDM system, including M multi-antenna 
RAUs and K single-antenna UEs, where each RAU has L antennas. The locations of 
RAUs and UEs are randomly distributed within the coverage area. The total number of 
subcarriers in the system is N, UEs are grouped into NRB resource blocks (RBs), and each 
RB contains �RB = N/NRB subcarriers. The number of UEs in each RB is much smaller 
than the total number of RAUs.
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The frequency-domain symbol sequence sent by RAU m on the tth OFDM symbol is 
xm = [xm,0, ..., xm,n, ..., xm,N−1]

T . The time-domain symbol sequence obtained after the 
Nc-point IFFT at the transmitter is xm[t] =

[

xm,0[t], ..., xm,n′ [t], ..., xm,N−1[t]
]T , where 

xm,n′ [t] =
1
N

∑N−1
n=0 xm,ne

j2πnn′/Nc . According to the derivation in [6], when the signal 
arrives at the receiver, due to the DSDs of τ samples, xm,n′ [t] → xm,n′ [t − τ ] , after Nc-point 
FFT, a phase rotation � = e−j2πnτ/Nc is generated on the frequency-domain symbol of the 
nth subcarrier. Under the impact of DSDs, the channel vector hm,k ,n ∈ CL×1 of the mth 
RAU and the kth UE on the nth subcarrier can be expressed as

where βm,k =
(

dm,k

)−l is the large-scale fading coefficient independent of frequency, 
dm,k is the distance between the mth RAU and the kth UE, and l is the path loss expo-
nent. �m,k ,n = e−j2πnτm,k/Nc is the phase rotation caused by DSDs, where 

(1)hm,k ,n = βm,k
1/2gm,k ,n�m,k ,n

Fig. 1  System model

Fig. 2  Impact of DSDs
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τm,k = dm,k/c − τ
syn
k  is the DSDs between the mth RAU and the kth UE, where 

τ
syn
k = min

m
τm,k is the reference synchronization time and c is the speed of light.

Considering the downlink transmission, we model the received signal of UE k on the nth 
subcarrier as

where

represents the frequency-domain channel vector on the nth subcarrier from all RAUs to 
downlink UE k, sk ,n ∼ CN (0, 1) is the data symbol sent by all RAUs to downlink UE k, 
zk ,n ∼ CN

(

0, σ 2
k ,n

)

 is additive white Gaussian noise,

represents the precoding vector on the nth subcarrier for the data stream of down-
link UE k, where wm,k ∈ C

L×1 . Assume that the precoding granularity is ϕ , the same 
precoding vector is used on the adjacent Nϕ = ϕ�RB subcarriers, and there are a total 
of R=N/Nϕ different precoding vectors in the system bandwidth. That is, for any 
n = (r − 1)Nϕ + 1, ..., rNϕ , where r = 1, ...,R , we have wk ,n = wk . Therefore, the received 
signal of downlink UE k within the system bandwidth can be modeled as

3 � Proposed approach
3.1 � Proposed precoding design

In this paper, we are interested in the problem of the sum rate maximization under total 
RAU power constraints. On the nth subcarrier, the SINR of downlink UE k is

Then, the design problem is given by

(2)yk ,n = hHk ,nwksk ,n +

K
∑

u�=k

hHk ,nwusu,n + zk ,n

(3)hk ,n =
[

h1,k ,n, ...,hM,k ,n

]T
∈ C

ML×1

(4)wk =
[

w1,k , ...,wM,k

]T
∈ C

ML×1

(5)yk =

N
∑

n=1

hHk ,nwk sk ,n +

K
∑

u�=k

N
∑

n=1

hHk ,nwusu,n + zk ,n

(6)γk ,n =

∣

∣

∣
hHk ,nwk

∣

∣

∣

2

∑K
u�=k

∣

∣

∣
hHk ,nwu

∣

∣

∣

2
+ σ 2

k

(7)

max
wk

N
∑

n=1

K
∑

k=1

log2(1+ γk .n)

s.t.

K
∑

k=1

�wk�
2
� Pmax, ∀k
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Since problem (7) is NP-hard, the globally optimal design mainly acts as a theoretical 
benchmark rather than a practical solution. Herein, motivated by [13, 14], we develop a 
low-complexity algorithm that satisfies the necessary optimal conditions of (7).

According to the monotonicity of the logarithmic function, (7) is equivalent to

which can be equivalently rewritten as 

Note that the objective function in (9) admits an SOC representation. Since (9b) 
and (9d) are already convex forms, we mainly focus on dealing with the constraints in 
(9c).

First, (9c) can be rewritten as

where �k ,n = hk ,nh
H
k ,n . We can see that (10) is also non-convex, since the right side of 

(10) has the form of quadratic-over-linear, it can be replaced by its first-order expansions 
[15]. Thus, we define

where � ≥ 0 and f ≥ α . We obtain the first-order Taylor expansion of (11) about a cer-
tain point 

(

w(a), f (a)
)

 as

From the above analysis, we can transform the constraint of (9c) into a convex form

(8)

max
wk

N
∏

n=1

K
∏

k=1

(

1+ γk ,n
)

s.t.

K
∑

k=1

�wk�
2
� Pmax, ∀k

(9a)max
wk ,tk ,n

N
∏

n=1

K
∏

k=1

fk ,n

(9b)s.t.

K
∑

k=1

�wk�
2
� Pmax, ∀k

(9c)γk ,n � fk ,n − 1, ∀k

(9d)fk ,n � 1, ∀k

(10)
K
∑

u =k

∣

∣hHk ,nwu

∣

∣

2
+ σ 2

k �
wH
k �k ,nwk

fk ,n − 1

(11)J (w, f ,�) =
wH

�w

f − α

(12)

J (w, f ,w(a)
, f (a),�,α)

=
2ℜ

{

(

w(a)
)H

�w
}

(f (a) − α)−
(

w(a)
)H

�w(a)(f − α)

(

f (a) − α
)2
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Finally, the original problem (8) can be reformulated as a convex approximate problem 
(14) which can be solved in Algorithm 1.

3.2 � Downlink channel estimation

In this section, considering the impact of DSDs on the accuracy of cell-free mas-
sive MIMO-OFDM system channel estimation, we propose a high-precision multi-RB 
downlink channel estimation scheme, which provides the necessary channel informa-
tion for multi-RB precoding optimization. In the pilot design of the 5G NR [16], CSI-RS 
is mainly used for channel sounding to obtain the path loss and DSD between UEs and 
RAUs. DMRS is mainly used for the demodulation of uplink and downlink data. The 
least squares (LS) algorithm is usually used to estimate the initial channel response of 
the pilot position, and then, interpolation filtering is performed in the frequency domain 
to obtain the channel response of the data position [17].

Regarding the CSI-RS of cell-free system, in uplink, sounding reference signal (SRS) 
is used to collect DSDs and large-scale fading; in downlink, tracking reference signal 
(TRS), a special CSI-RS, is used to track the phase deviation on the received signal.

For SRS, per UE tracking can be achieved in the 5G NR protocol. Therefore, the uplink 
channel estimation can be implemented in CPU. For downlink channel estimation, the 
signal overhead for per AP tracking is too large, and the implementation complexity is 
too high for UEs. Therefore, to estimate the statistical properties of downlink channels, 
we choose to use a composite channel tracking method, which is discussed in the follow-
ing specific steps.

The specific steps of the multi-RB channel estimation we proposed are as follows:
First, all RAUs transmit orthogonal CSI-RS, UE k estimates large-scale fading, 

β
1/2
1 ,β

1/2
2 , ...,β

1/2
M  and DSDs, τ1, τ2, ..., τM of the overall channel with all RAUs based on 

the reference signal. It is worth mentioning that all RAUs can also send the same CSI-RS 

(13)
K
∑

u =k

∣

∣hHk ,nwu

∣

∣

2
+ σ 2

k � J (wk , fk ,w
(a)
k , f

(a)
k ,�k , 1)

(14)
max

{wk ,tk ,n}

N
∏

n=1

K
∏

k=1

fk ,n

s.t. (9b), (9d), (13)
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pilot, that is, the CSI-RS pilot adopts a single-port design. At this time, the receiver only 
estimates the composite signal from all RAUs to the UE. Specifically, multiple RAUs are 
regarded as multipath signals, and the power and delay of each path are estimated on UE 
k based on the distinguishable time-domain multipath signals. The single-port design 
can effectively reduce the pilot overhead and design complexity, but it will produce addi-
tional channel time/frequency selectivity. In the case of sufficient estimation accuracy, 
these two methods are theoretically equivalent.

Second, considering that there are P equally spaced DMRS in the coherent bandwidth, 
after LS, the frequency-domain signal collected by UE k is

For convenience of representation, the subscript k is omitted in the following notation. 
On subcarrier p,

The precoding vector of the channel between UE k and RAU m is wm . Assuming that 
the frequency-domain channel remains unchanged on these P resource elements, the 
frequency-domain signal collected by UE k can be modeled as

wherein

Subsequently, using minimum mean square error (MMSE) channel estimation, the 
cross-correlation matrix of ynP and f  is

and the autocorrelation matrix of yNP is

where Cf = diag
(

σ 2
f1
, ..., σ 2

fM

)

= diag(β1, ...,βM) is the covariance matrix of f  , A is the 

pilot power.
Finally, the MMSE estimate of f  is [18]

(15)yNP =
[

yN1 , yN2 , ..., yNP

]T
∈ C

P×1

(16)yNp =

M
∑

m=1

β1/2
m �m,Npg

T
m,Np

wm + zNp

(17)







yN1

...
yNP






=







�1,N1 · · · �M,N1

...
. . .

...
�1,NP · · · �M,NP















β
1/2
1 gT1,N1

w1

...

β
1/2
M gTM,Np

wM









+







zN1

...
zNP







(18)� =







�1,N1 · · · �M,N1

...
. . .

...
�1,NP · · · �M,NP







(19)f =
[

β
1/2
1 gT1,N1

w1, ...,β
1/2
M gTM,NP

wM

]T
= [f1, ..., fM]T

(20)RfyNP
= E

[

fyHNP

]

= Cf�
H

(21)RyNP yNP
= E

[

yNPy
H
NP

]

= �Cf�
H +

σ 2

A
IP
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where ψ = E

[

∣

∣

∣
hHk ,nwk

∣

∣

∣

2
]

/A is the average signal-to-pilot power ratio, and 

ζ = E

[

∣

∣

∣
hHk ,nwk

∣

∣

∣

2
]

/σ 2 is the average signal-to-noise ratio. Through DMRS interpolation, 

the MMSE estimate of UE k can be obtained as

wherein

Through calculation, the mean square error of channel estimation is

where C
f̂
= (C−1

f̂
+ ζ

ψ
�

H
�)−1 is the covariance matrix of the estimated channel f̂ .

4 � Numerical results
In this section, some numerical examples are evaluated to show the performance of the 
proposed channel estimation and precoding optimization under various system settings. 
We consider a cell-free massive MIMO-OFDM system with detailed simulation param-
eters listed in Table 1.

Figures 3 and 4 compare the achievable sum rate of the system when using traditional 
conjugate precoding and the proposed optimized precoding, where the precoding gran-
ularity is 2RB, 4RB, 6RB and 8RB, respectively. In these two precoding schemes, the sum 

(22)f̂ = RfyNP
R−1
yNP yNP

yNP =

(

ψ

ζ
Cf

−1 +�
H�

)−1

�
HyNP

(23)ŷNϕ = �f̂ = �

(

ψ

ζ
Cf

−1 +�
H
�

)−1

�
HyNP

(24)� =







�1,1 · · · �M,1

...
. . .

...
�1,Nϕ · · · �M,Nϕ







(25)MSEŷNϕ
=

1

Nϕ

E

[

(

yNϕ − ŷNϕ

)H(
yNϕ − ŷNϕ

)

]

=
1

Nϕ

tr
(

C
f̂
�

H
�
)

Fig. 3  Performance comparison of the multi-RB precoding
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rate increases as the SNR increases and decreases with increasing granularity of the pre-
coding. In addition, as expected, our proposed optimized precoding always performs 
better than conjugate precoding in terms of sum rate. When the precoding granularity is 

Fig. 4  Performance comparison of the multi-RB precoding

Fig. 5  MSE comparison of the multi-RB channel estimation

Table 1  Simulation parameters

Number of RAUs 8

Number of UEs 4

Number of antennas per RAU​ 4

Number of subcarriers per RB 12

Granularity of precoding 2, 4, 6, 8 (RBs)

Granularity of channel estimation 2, 4, 8, 12, 24 (RBs)

Radium of background 12 (m)

Path loss exponent − 3.7

FFT points 4096

Power constraint for RAUs 10(W)

DMRS interpolation interval 4
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2RB and 4RB, the sum rate is increased by approximately 20 percent, and when the pre-
coding granularity is 6RB and 8RB, the sum rate is increased by approximately 10 per-
cent. This result is because as the number of subcarriers increases, the impact of DSDs 
on system performance becomes increasingly serious. Since the minimum granularity of 
precoding in the existing 5G NR protocol is 2RB and is usually statically configured as 
4RB, the proposed algorithm can reflect the robustness to DSDs in wideband precoding 
under the existing 5G NR protocol.

Figure 5 shows the MSE vs. SNR performance comparison of the proposed downlink 
channel estimation when the channel estimation granularity is 2RB, 4RB, 8RB and 12RB. 
It can be observed that as the SNR increases, the MSE of the proposed channel estima-
tion decreases, and the accuracy of the channel estimation increases. In addition, the 
accuracy of the proposed channel estimation improves with increasing channel estima-
tion granularity. This result is due to the use of DMRS interpolation intervals of the same 
width. The larger the bandwidth of the estimated channel is, the greater the number of 
DMRS participating in the channel estimation. Since the CSI-RS pilot can be designed 
in a single-port mode, the pilot overhead and design complexity are effectively reduced, 
thereby realizing low-complexity accurate estimation of the wideband channel with 
DSDs.

Figure 6 shows the performance comparison when the UE estimates the path loss and 
time delay based on the single-port CSI-RS sent by all RAUs, and different numbers of 
RAUs send DMRS. Assuming that the number of RAUs sending DMRS is 2, 4, 6 and 
8 and the granularity of frequency-domain joint channel estimation is 2RB, 12RB and 
24RB, it can be seen that the mismatch of CSI-RS and DMRS has little effect on the 
accuracy of channel estimation. Especially when the signal-to-noise ratio is low and the 
channel estimation granularity is small, the loss caused by this mismatch can be ignored.

5 � Conclusion
In this paper, we have studied the DSDs problem in a cell-free massive MIMO-OFDM 
system due to its distributed characteristics, which causes the received signal to produce 
phase rotation related to the subcarrier index during demodulation. Since the existing 

Fig. 6  MSE comparison of the multi-RB channel estimation
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5G NR protocol does not support per subcarrier precoding, to address the impact of 
DSDs, we designed a multi-RB precoding optimization problem and used convex 
approximation to solve the problem. Then, to cope with the influence of the DSDs on 
the accuracy of channel estimation, we propose a downlink channel estimation method, 
which uses CSI-RS and DMRS jointly to realize multi-RB channel estimation. The simu-
lation results show that, compared with conjugate precoding, the proposed optimal pre-
coding can effectively improve system performance. In addition, the proposed downlink 
channel estimation can obtain accurate channel information.
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