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1  Introduction
As a high-accuracy non-contact 3D reconstruction method, the striped structured-light 
profilometry has been widely employed in geometric measurement, relic restoration, 
reverse engineering, etc. [1, 2]. Structured light measurement has also been applied in 
automatic driving in recent years, while the real-time perception of vehicles and obsta-
cles is the research hotspot of IOV (Internet of vehicle) and an important prerequisite 
for automatic and unmanned driving [3]. For road environment perception in automo-
biles, LIDAR and camera are the most widely used sensing devices. LIDAR has a long 
detection distance, but the resolution of 3D imaging is low, and the high cost restricts 
its application, while a single camera without auxiliary lighting cannot calculate the 3D 
profile of the road environment [4, 5]. With the help of invisible light sources, a single 
camera can also carry out road environment reconstruction based on the structured-
light profilometry.
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It projects a structured-light pattern onto the surface to be measured, and then the 
pattern is modulated by the object surface, and the camera collects the deformed struc-
tured-light pattern and restores the height map by demodulating the phase information 
of the deformed structured-light pattern [6, 7]. The Fourier transform profilometry is a 
classical structured-light phase demodulation algorithm, it converts the structured-light 
pattern from the spatial domain to the frequency domain and removes the high-fre-
quency component and 0 Hz component in the frequency domain with an appropriate 
filter, and the rest of the fundamental frequency components are restored to the spa-
tial domain by IFFT (inverse fast Fourier transform) [8]. Then, the phase information 
is demodulated according to the complex form of the restored structured-light pattern 
[9]. However, the demodulated phase is wrapped in the range of (−π ,π) , and auxiliary 
methods such as spatial information are needed, so that the phase can be unwrapped to 
calculate the 3D shape of the measured object [10].

In engineering applications, Fourier transform profilometry can reconstruct 3D profile 
with a single-shot structured-light pattern, so it has the advantage of high measurement 
speed, which is convenient for online measurement and dynamic measurement. How-
ever, the filter parameter setting and phase unwrapping algorithm of the Fourier trans-
form method are difficult, which limit its accuracy and robustness.

In this work, a novel dual-path hybrid model is proposed for structured-light pro-
filometry. Based on UNet, this approach deletes the deepest convolution layers in the 
neural networks to reduce the number of learnable parameters, and a swin transformer 
path is added at the decoding end to improve the global perception ability of the model. 
Experimental results show that this method can reduce the size of the model and recon-
struct 3D profile with high accuracy [11].

2 � Related work
In the theoretical research of structured-light 3D profilometry, for non-contact, high-
precision measurement of pavement texture, Wang et  al. [12] developed an innova-
tive surface structured-light projection (SSLP) based on optical fiber interference, the 
wrapped phase can be demodulated accurately from the wavelet ridge by two-dimen-
sional continuous wavelet transform, and then the measured pavement texture eleva-
tion can be calculated according to the phase-height mapping relationship. A combined 
approach to improve 3D object shape recovery based on Fourier orthogonal structured-
light pattern projection together with Hilbert transform is proposed in [13], which can 
suppress the background intensity of the deformed fringe pattern, and experimental 
results verified better performance in reconstruction of complex objects. In [14], they 
construct a 2D continuous complex wavelet employing a 2D real Mexican hat wavelet 
function, combined with the single-orthant analytical 2D Hilbert transform, and the 
experiments demonstrate that it provides high phase accuracy in the single-shot fringe 
pattern profilometry.

There are also many research improvements on lighting hardware and structured-
light pattern design nowadays. In [15], for the application of structured-light pro-
filometry on a microscopic scale, they present a Gates’ interferometer configuration 
with an LED source to project a structured-light pattern without speckle noise and 
a very long field depth, and the system can obtain excellent sinusoidal structured 
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light on the surface of microscopic objects. Linear structured-light patterns cannot 
uniquely represent the lateral displacement caused by objects with surface discon-
tinuities, Mandapalli et  al. [16] propose using a radially symmetric circular struc-
tured-light pattern as the structured-light pattern for accurate unambiguous surface 
profiling of sudden height-discontinuous objects, and experimental results prove that 
the proposed method can be applied for the reconstruction of objects with 4 times 
higher dynamic range and even at much lower structured-light frequencies.

Nevertheless, the traditional structured-light 3D profilometry is troublesome for 
effective 3D reconstruction in engineering applications. At present, deep neural net-
works are widely used in image processing [17–19], so it has become a new research 
hotspot to apply depth learning to the analysis of structured-light patterns for fast 
3D profile measurement. Many scholars have conducted preliminary research on 
structured-light 3D profilometry with depth learning. Plenty of early studies con-
duct neural networks for one of the steps in structured-light profilometry, such as 
structured-light pattern denoising, phase extraction and phase unwrapping. In [20], 
two low-modulation patterns with different phase shifts are transformed into a set 
of three phase-shifted high-modulation fringes by using FMENet. Yu et al. [21] pro-
pose a novel phase retrieval technique based on CNN, which uses an end-to-end 
deep convolution neural network to transform a single or two patterns into the phase 
retrieval required patterns, and numerically and experimentally verified its applica-
bility for dynamic 3D measurement. In [22], they employ UNet to transform a color 
structured-light pattern into multiple triple-frequency phase-shifted grayscale pat-
terns, from which the 3D shape can be accurately reconstructed. Now, there are many 
works on end-to-end height map directly. In [23], a network with 10 convolutional 
layers is built for full-field height extraction from structured-light pattern. Qiao et al. 
[24] utilize depth-wise separable convolution to build a deep neural network, which 
can reduce the number of learnable parameters of the model, and the accuracy of 3D 
reconstruction does not decrease. In the structural design of CNN, there are many 
research works based on UNet. Nguyen et al. [25] compare different types of end-to-
end networks, and the experimental results demonstrate the high accuracy of UNet 
reconstruction results. Nguyen et al. [26] use an end-to-end neural network to recon-
struct the 3D profile by transforming a single speckle-pattern image into its corre-
sponding 3D point cloud.

In addition to the end-to-end full convolution network (FCN), there are plenty of 
studies utilizing the structure of multi-path neural networks. Qiao et al. [24] present a 
multi-path CNN to predict the high-resolution, crosstalk-free absolute phase directly 
from one single color fringe image, which allows for more accurate phase retrieval and 
more robust phase unwrapping. For different types of multi-path CNN models, Cywin-
ska et al. [27] evaluate the effects of the number of paths and the number of filters on the 
RMSE (root-mean-square error) of the reconstruction result, and also time consump-
tion; then, they give recommended parameters. Nguyen et  al. [28] transform multiple 
(typically two) grayscale images consisting of fringe and/or speckle patterns into a 3D 
depth map using a multi-path neural network and fuse multiple feature maps to obtain 
multiple outputs with an accuracy-enhanced final output. In [29], a novel dual-dense 
block structure is designed and embedded into a multi-path structure to fully utilize the 
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local layers and fuse multiple discrete sinusoidal signals, with which highly reconstruc-
tion results can be obtained even when training with a smaller data sample.

It should be noted that although there are many studies on structured-light 3D meas-
urement based on deep learning, limited by the number of layers of deep neural net-
works, there are few lightweight models for high-resolution 3D reconstruction, and the 
weak long-distance interaction ability of convolution also affects the reconstruction 
accuracy of networks [30, 31].

3 � Methods
For the principle of different structured-light profilometries, Fourier transform pro-
filometry has the lowest computational complexity, and the deformed structured-light 
pattern I(u, v) captured by camera can be written as:

where a(u, v) is the background light intensity of pixels (u, v), b(u, v) is the amplitude of 
structured-light pattern, f0 is the fundamental frequency of the striped structured-light, 
and ϕ(u, v) is the phase amplitude modulated by the surface height h(u, v). Then, h(u, v) 
is expressed as:

where d represents the central distance between the camera and projector, and l0 rep-
resents the distance between reference plane and the camera, and both of them are the 
geometric parameters of the structured-light device.

Convert the trigonometric function in Eq.  1 into an exponential form, let 
c(u, v) = 1

2
b(u, v) exp(iϕ(u, v)) , the phase amplitude ϕ(u, v) modulated by the measured 

surface can be expressed as:

The phase amplitude ϕ(u, v) calculated by Eq. 3 is wrapped in the range of (−π ,π) ; after 
phase unwrapping, the final height map h(u, v) can be obtained by Eq. 2 [32].

3.1 � Global feature extraction of structured‑light pattern

At present, for structured-light measurement algorithms based on deep neural net-
work, most of them are encoder–decoder frameworks. Feature maps are extracted from 
the input structured-light pattern by a pre-trained network and then put them into the 
decoder to generate height information.

In the encoder, for feature map extraction of structured-light pattern, it is necessary 
to collect global features, especially when there are discontinuous sections of the meas-
ured surface. The current approaches are: (1) By reducing the resolution (reducing the 
scale) of the convolution layer feature map, such as down-sampling operations (e.g., 
pooling layer), the network can get the feature information between long-distance posi-
tions of the original pattern. However, the output of the convolution layer represents 
the feature information at different spatial positions, and the pattern is segmented into 

(1)I(u, v) = a(u, v)+ b(u, v) cos[ϕ(u, v)+ 2π f0u]

(2)h(u, v) =
l0ϕ(u, v)

2π f0d

(3)ϕ(u, v) =
Im[c(u, v) exp(i2π f0u)]

Re[c(u, v) exp(i2π f0u)]
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grids to obtain the local features of each part. In the process of encoding and decoding, 
the scaling of pattern size leads to the loss of information, resulting in the reduction of 
the accuracy of the 3D reconstruction, or relying on deeper convolution and pooling 
operations [33]. (2) Another method is dilated convolution, compared with the problem 
that the pooling layer increases the receptive field but losses information, and dilated 
convolution network can avoid the down-sampling operation [34]. By adding a dilation 
rate, dilated convolution inserts blanks between the elements of the convolution kernel, 
which expands the kernel for a larger receptive field. However, the sampling process of 
dilated convolution is sparse, while multiple dilated convolutions are superimposed in 
the network, and some lost pixels will lose the continuity of information and the correla-
tion between the feature maps, for object edge and small scale object, which will result 
in the decrease of 3D reconstruction accuracy [35].

Nowadays, most of existing studies are based on deep convolution layers to extract 
global feature maps of the structured-light pattern, which leads a large number of learn-
able parameters of the network, long training time and difficult deployment. Therefore, 
for efficient and accurate 3D reconstruction, a key step is to get more global information 
based on the network with limited neural layers [36, 37].

For global feature maps extraction, self-attention makes great improvement in acquir-
ing large-scale interactivity, which main operation is to obtain the weighted average of 
the calculated values of hidden cells. More than that, self-attention mechanism can get 
a wide range of interactive without increasing parameters, which helps to reduce the 
number of learnable parameters of the network model. This is significant for large-scale 
modeling of high-resolution structured-light profilometry [38, 39].

At present, transformer uses self-attention to acquire long-range interactive infor-
mation. Compared with CNN, the transformer requires fewer computing resources, 
has achieved excellent performance in NLP, image classification, etc. [40, 41], and has 
become a study hotspot in deep learning. The underlying structure of the transformer is 
similar to ResNet, which divides the image into multiple patches of a specified size, and 
this leads to two disadvantages: First, the boundary pixels cannot use the adjacent pixels 
outside the patch for image restoration; second, the restored image may be mixed with 
boundary artifacts around each patch [42].

As an improved visual transformer, swin transformer utilizes a novel general architec-
ture based on shifted-window and hierarchical expression. Compared with the previous 
vision transformer, swin transformer introduces the idea of locality and uses the shifted 
window to calculate the self-attention of the non-coincident patches, which also greatly 
reduces the computing consumption [43, 44].

3.2 � Dual‑path hybrid submodule

Convolution has good local perception ability, but it lacks the interaction of long-range 
information, which will lose the global feature of the structured-light pattern. If the net-
work only relies on deeper convolution layers and pooling layers to expand the recep-
tive field, it will lead to a huge number of learnable parameters and over-fitting of the 
network. A pure transformer or swin transformer network has an obvious advantage in 
the global perception of the pattern, but the pattern detail information is lost in the divi-
sion of patches [45]. In [46], a hybrid network structure is proposed to take advantage 
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of convolutional operations and self-attention mechanisms for enhanced representation 
learning, which can significantly improve the representation ability of the base network 
under comparable parameter complexity. Inspired by this, we present a dual-path hybrid 
submodule for feature learning, in which there are two parallel subpaths, the local and 
global features are represented by convolution path and swin transformer path, respec-
tively, and each convolution block has its corresponding parallel swin transformer block 
for feature interaction [47]. The diagram of the dual-path hybrid submodule is shown in 
Fig. 1.

In the convolution path of the dual-path hybrid submodule, the feature map fi output 
by the previous submodule is directly transmitted to the convolution path for local fea-
ture extraction, and this feature is also serialized by a FC (feature coupling) Down block 
and indirectly sent to the swin transformer path for global feature extraction. The output 
global feature ps of the swin transformer is converted into 3D form fu (H jW jC j ) by a 
FC Up block, and it is coupled with the output feature fc from the convolution layer by 
the Average layer. There are a UpSampling2D layer and a Dense layer in the behind of 
the Average layer, and the purpose is to keep the feature dimension consistent with the 
residual information from the encoder. After the feature information and residual infor-
mation are concatenated, they are used as the input fj for the next submodule [48, 49].

In the swin transformer path, the tensor pi output by the previous submodule and 
the 2D feature map passed from the convolutional layer are also coupled by the Average 
layer and then passed to the current swin transformer block for global feature extraction. 
The tensor ps gets from the swin transformer has two branches: One is coupled to the 
convolution path for providing global feature information, and the other is upsampled 
by patch expanding layer and passed to the next submodule for further global feature 
representation.

The FC Down block is composed of a patch extracting layer, a patch embedding 
layer and a LayerNormalization layer, and the 3D feature map fi is serialized by the 
patch extracting layer into 2D patches by the patch extracting layer. These patches are 
tokenized by the patch embedding layer and maintain a similar dimension to the previ-
ous pi ; after the LayerNormalization layer, the disappearance of gradient can be avoided. 
In the FC Up block, after a patch expanding 2D layer, the serialized global feature ps is 
reshaped into 3D form; then, its dimension is supplemented by the 11 convolution layer 
and then outputs through the BatchNormalization layer.

Patch Embedding

Patch Extract

Layer Normalization
patch×embeds

Patch Expanding 2D

1×1 Conv2D

Batch Normalization

Hi×Wi×Ci

patch×embeds

Hj×Wj×Cj

FC
Up

3×3 
Conv2D

fi

skip conncetion

Dense fj

pi pj

C

UpSampling2D
Patch expanding

Concatenate Average

A

A

A

C
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Down

fu

fc

psSwin
Transformer

pd

Fig. 1  The diagram of the dual-path hybrid submodule
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With this dual-path hybrid submodule, for feature maps with different scales, the 
convolutional path and the swin transformer path can extract local and global features, 
respectively, and those two different features are strongly fused by coupling blocks. 
Through the hybrid submodule, the number of layers of the neural network can be effec-
tively reduced, and a high-precision 3D reconstruction can be obtained.

3.3 � The proposed dual‑path hybrid decoder network

Based on the dual-path hybrid submodule mentioned above, we proposed a novel dual-
path decoder network for single-shot structured-light profilometry, which is improved 
from the classic UNet [50], and the final network architecture is shown in Fig. 2.

There are three convolution blocks in the encoder, which consist of two 33 convolu-
tion layers, two BatchNormalization layers and a MaxPooling layer. Between the convo-
lution blocks, 2 down-sampling is performed by the MaxPooling layer. Compared with 
4 downsampling convolution blocks and a bottom convolution block in UNet, the pro-
posed network eliminates the deepest convolution blocks in order to reduce the overall 
size of the model, and the global feature information is extracted and represented by 
the hybrid submodules in the decoder. Meanwhile, each convolution block also outputs 
residual information for skipping to the decoder, which can avoid the gradient disap-
pearance in the back-propagation process [51].

The decoder is composed of 4 dual-path hybrid submodules in series, which mainly 
represent the local and global features of the structured-light pattern, and scale the fea-
ture maps in the two paths by UpSampling layer and Patch expanding layer, respectively. 
It should be noted that in the decoder, each convolution block consists of one 33 con-
volution layer and one BatchNormalization layer, while each swin transformer block is 
composed of two swing transformer layers.

The output layer in the model is a 11 convolution, and the final 3D height map is out-
put in the form of linear regression.

4 � Experiments and analysis
In order to verify the effectiveness of the proposed network in structured-light profilom-
etry, we compare our method with the existed methods, including classical UNet and 
different ablation models. Sufficient experiments have proved the feasibility and light-
weight of this method in 3D reconstruction.

MaxPooling
UpSampling2D

A A A A

AAA

C C C

Dense

Patch expanding

Swin Transformer

Conv2D & BN

FC
Up

FC
Down

FC
Up

FC
Down

FC
Up

FC
Down

FC
Up

FC
Down

Fig. 2  Structure diagram of the proposed network
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The experimental hardware platform is a server that consists of an NVIDIA Tesla 
P100 GPU, 64GB ram and an Intel Xeon 4110 CPU. The software tools that we select are 
Python 3.8 and deep learning framework TensorFlow.

4.1 � Visual assessment and accuracy evaluation

For the selection of dataset, we use the actual dataset that mentioned in [25], which is 
collected from the structured-light patterns of real gypsum sculptures, and the ground 
truths are measured by phase-shift method. In order to expand the number of samples, 
the dataset is expanded by rotating and translating these gypsum sculptures randomly.

The total number of structured-light patterns in training set is 500, and the number of 
validation set is 100. For the training of UNet and the proposed network, let batch size = 
2, the initial learning rate is set to 0.0001. After 200 epochs training, we randomly select 
structured-light patterns in the test set for 3D reconstruction prediction. The final visual 
results are shown in Fig. 3.

For the visual performance of the comparison experiments in Fig. 3, the 1st column is 
ground truths of sculptures, the 3D reconstruction results of UNet are in the 2nd col-
umn, and the 3rd column is the results of the proposed network. In our subjective analy-
sis, compared with Fig. 3b, most of the folds of the clothing in Fig. 3c can be exposed. 
This shows that it is useful to add global features to the convolution path, so the pro-
posed network can obtain richer height map details and fully display the overall effect, 
which can effectively improve the accuracy of 3D reconstruction.

In order to quantitatively compare the 3D reconstruction errors of different networks, 
we choose to compare the measurement errors of Fig.  3b and c. We take the ground 
truth of the height map measured by the phase-shift method as the reference and carry 
out the least square fitting on the reconstruction results of the two networks, so as to 
scale the reconstruction height map in the range of (0, 255). The final absolute errors of 
the different networks are shown below:

Figure  4 shows the error comparison of different networks, and the height map of 
UNet is partially offset from the ground truth after surface fitting in Fig. 4a. The average 

(a) (b) (c)

(d) (e) (f)

Fig. 3  3D reconstruction of different sculptures: a, d ground truth; b, e results of UNet; c, f results of the 
proposed network
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error of UNet is 8.34 RMSE/pixel, and the proposed network is 7.79 RMSE/pixel; for the 
maximum error, the proposed network is reduced by 8% compared with UNet.

4.2 � Ablation experiment

More than that, in order to verify the importance of mutual fusion of local features and 
global features in the hybrid network, we design two simplified unidirectional feature 
fusion networks and compared with the proposed network. The diagrams of those two 
simplified dual-path hybrid networks are shown in Fig. 5.

In the unidirectional feature fusion network A (Hybrid-A), compared with the previ-
ous proposed network, we delete the FC Up block in some hybrid submodules. Only in 

Fig. 4  Measurement error of different networks: a UNet; b the proposed network

A A A AC C C

A

AAA

C C C

FC
Up

FC
Down

FC
Up

FC
Down

FC
Up

FC
Up

FC
Up

FC
Down

FC
Down

FC
Down

(a)

(b)

Fig. 5  Structural comparison of simplified dual-path hybrid networks: a Hybrid-A; b Hybrid-B
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the last hybrid submodule, the global feature information of the swin transformer path is 
fused back to the convolution path by the FC Up block, while other hybrid submodules 
only fuse the local feature information from the convolution path through the FC Down 
block to the swin transformer path.

For the other unidirectional feature fusion network B (Hybrid-B), which is similar to 
Hybrid-A on the contrary, in the first hybrid submodule, the local feature information of 
the convolution path is fused to the swin transformer path by the FC Down block, and the 
subsequent hybrid submodules only transfer the global feature information back to the con-
volution path from the swin transformer path, but no local feature information is trans-
ferred to the swin transformer path.

Those two simplified networks are trained on the same dataset, and the quantitative com-
parison results with the proposed network and UNet are shown in Table 1.

By the normalized MAE of reconstruction results of different networks, we can find out 
that the performance of the proposed network and Hybrid-A is better than that of UNet, 
while Hybrid-A is the worst. The visual performance comparison of those two simplified 
dual-path hybrid networks in Fig. 6, Hybrid-B has more distortion details than Hybrid-A.

5 � Results and discussion
Compared with UNet, the learnable parameters of the proposed network are 60% less 
than UNet, and the parameters of the two simplified networks are also much less than 
UNet, which helps to reduce the computing consumption and the difficulty of hardware 
deployment.

Table 1  The performance comparison of networks with different structures

Learnable parameters (MB) Normalized MAE

UNet 359 0.0092

Proposed network 144 0.0087

Hybrid-A 141 0.0088

Hybrid-B 99 0.0102

(a) (b)

(c) (d)

Fig. 6  The performance comparison of simplified dual-path hybrid networks: a the structured-light pattern; 
b ground truth; c result of Hybrid-A; d result of Hybrid-B
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In the structure comparing of Hybrid-A and Hybrid-B, we find out that if the deep fea-
ture map is extracted only once from the convolution path for global feature representa-
tion, even if the global features are fed back to the convolution path for many times, the 
back-propagation of the network still has the problem of gradient disappearance, which 
leads to the weak generalization capability of the hybrid network, and also the decline of 
the accuracy of 3D reconstruction. In Hybrid-A, the swin transformer path can extract 
local feature information from the convolution path repeatedly and fuses them with the 
global features from the previous swin transformer layer, just like the residual skip con-
nection of ResNet, which can avoid the gradient disappearance of the model and help to 
improve the 3D reconstruction accuracy [52, 53].

From the comparative experiments of the above two dual-path hybrid networks, for 
the fusion of global and local feature information in deep neural network, we can con-
clude that, compared with the global features obtained unidirectionally from the swing 
transformer blocks, the decoder can obtain local feature information of different scales 
from convolution path at different layers, which can better improve the prediction per-
formance. This also proves the positive role of multi-attention mechanism such as swin 
transformer in structured-light 3D reconstruction.

6 � Conclusion
In order to design a lightweight structured-light 3D reconstruction network, we pro-
posed a dual-path hybrid network based on research of multi-attention mechanism. 
Compared with the classical UNet, we eliminate the deepest convolution block to 
reduce the total learning parameters of the network. Meanwhile, to improve the global 
perception ability of the network, a swin transformer path is added to the decoder for 
global feature representation, and the local features of the convolution path are strongly 
fused by the bidirectional fusion submodule. The experimental result demonstrates that 
the learnable parameters of the proposed network are 60% less than that of UNet. For 
the fusion direction between the local features of the convolution path and the global 
features of the swin transformer path, its influence on the generalization ability of the 
model is verified by two simplified hybrid networks in the ablation experiment. Through 
these experiments, this dual-path hybrid network framework provides a new idea for 
structured-light 3D reconstruction and engineering applications in automatic driving.
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