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1  Introduction
Networked radars can share different views of data from multiple stand-alone radars for 
fusion so as to improve the target tracking accuracy. The information fusion of multiple 
radars has the advantages of increasing the surveillance systems accuracy and enhancing 
the reliability [1–4].

Before fusion, the data measured by local radars should be transformed to a common 
spatial coordinate system to acquire the reliable information of targets [5]. However, due 
to the deviation and measurement errors of radars, it is difficult to ensure the accuracy 
for tracking. Therefore, a significant prerequisite for successful integration of networked 
radars is the spatial alignment [6].

Previously proposed alignment methods for networked sensors fall into two classes. 
The first class formulates alignment model based on target trajectories from local 
radars. The Kalman filter (KF) alignment algorithm [7] was used to estimate sensor 
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deviation parameters, and extended Kalman filter (EKF) [8], unscented Kalman fil-
ter (UKF) [9], sparse-grid quadrature Kalman filtering (SGQKF) [10] alignment were 
proposed for nonlinear models. A linear least squares (LS) estimator of bias terms 
was derived in [11], where the registration errors including attitudes, measurements, 
and position biases were all considered. The attitudes here mean attitude (orientation) 
angles. The attitude angles include three angles: the yaw angle, pitch angle and roll 
angle. Based on LS registration, an exact least square (ELS) registration [12] was pre-
sented to correct the systematic errors for networked dissimilar sensors, and a recur-
sive two-step optimization algorithm was proposed to estimate both the target state 
and sensor bias. A maximum likelihood registration (MLR) algorithm [13] was pro-
posed for the spatial alignment of multiple possibly dissimilar sensors, which output 
estimates of the registration parameters, registered sensor measurements and target 
locations. A distributed probability hypothesis density (PHD) filter for on-line joint 
sensor registration [14] was presented for multi-target tracking by Doppler radars. An 
alignment algorithm which registered asynchronous measurements from networked 
radars was proposed in [15], where the positions, attitudes and delays of radars were 
not required. In recent years, with the development of deep learning technology, the 
alignment parameter estimations based on neural networks [16, 17] have been pro-
posed for networked radars.

The second class performs alignment in the signal level. The existing alignment algo-
rithm in the signal level transmits target echoes to the fusion center for comprehen-
sive processing, which takes full advantage of the echo information. A signal-domain 
alignment algorithm for SAR was proposed in [18], which performed registration in 
the pre-processing stage, i.e., in the target echo. Pulse correlation was used to align 
the corresponding pulses and to correct the time delay. An alignment method based 
on signal-domain Kalman filtering was presented in [19]. A Bayes based method was 
derived to jointly estimate the range and DOA errors by comparing the reference 
signal and return signal, and a precise measurement model for motion variables was 
constructed to realize tracking combined with Kalman filter. To overcome the target 
detection problem with registration errors in multistatic radar, a maximum likelihood 
estimation-based generalized likelihood ratio test (ML-GLRT) detector and a maxi-
mum a posteriori estimation-based generalized likelihood ratio test (MAP-GLRT) 
detector were proposed in [20]. Considering the influence of interference on target 
detection, the Rao and Wald tests for subspace target detection were proposed in the 
presence of three cases of coherent interference, namely, known interference, par-
tially known interference, and completely unknown interference [21]. A three-dimen-
sional (3D) reconstruction algorithm was proposed for multistatic ISAR systems 
[22], and the target 3D geometry can be obtained by solving the projection equations 
between the target 3D geometry and ISAR images. In [23], a multi-dimensional signal 
model was established including the parameters on the target 3-D position, transla-
tion velocity, and rotating angular velocity. A gridless method based on atomic norm 
optimization and the pairing correction were proposed to remove registration errors 
and improve the accuracy. However, the aforementioned algorithms align the target 
echo directly and usually require each radar station to transmit all the received sig-
nals to the fusion center for alignment, which requires a high-communication-rate. 
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In addition, the signal submerged in noise reduces the accuracy of alignment in case 
of low SNR. Moreover, prior spatial information (including locations and attitudes of 
radar stations) are required.

Using the alignment method based on target trajectories (the first class), it is only 
required to transmit the target trajectories measured by local radars to the fusion 
center, and then the spatial alignment parameters can be estimated from the com-
prehensive processing by the fusion center. The advantage of such an approach is that 
the communication-rate between the local radar and the fusion center is low. How-
ever, since only the data in the trajectory level is used, a lot of echo information is 
discarded, which reduces the accuracy of the spatial alignment. Conversely, the align-
ment algorithm in the signal level (the second class) makes the best use of echo infor-
mation, and the accuracy of the spatial registration for networked radars is improved. 
Accordingly, the required communication-rate increases substantially. The existing 
alignment in the signal level uses the echo signal from multiple radars, and the align-
ment in the trajectory level uses the target trajectory. The echo signal contains more 
informative data, therefore, the accuracy of the alignment in the signal level is higher 
compared with that in the trajectory level. However, the amount of the data trans-
mission is too large if the whole echo is used in the alignment algorithm of the sig-
nal level. Only partial signals in the echo are available for global decision-making due 
to power and bandwidth limitations. Therefore, the censoring method of the data is 
important. If the censoring method is unreasonable and too much target information 
in the echo is lost, the accuracy of the alignment in the signal level will be reduced. 
Some quantitative fusion and censoring sensors algorithms [24–26] have been pro-
posed to reduce the communication-rate between the local radars and fusion center. 
However, these low-communication-rate algorithms are discussed in the condition 
that the data have been aligned exactly (i.e. there are no registration errors). There-
fore, these algorithms are not applicable to the transmission for unaligned signals.

In this paper, a low-communication-rate algorithm is proposed to estimate the spa-
tial alignment parameters for networked radars in range-Doppler domain. Multiple 
radars preprocess the echoes received by the antenna and obtain their respective signals 
after moving target detection (MTD). The signal in range-Doppler domain is used for 
alignment, which is different from the existing alignment of the echo signal. In order to 
reduce the radar-to-fusion-center communication-rate, initial constant false alarm rate 
(CFAR) detection is used to censor the informative data in range-Doppler domain from 
local radars. The parameters to be estimated for the spatial alignment include the rota-
tion matrix and translation vector. Based on the alignment model in geometry, a maxi-
mization problem is formulated. The objective function is the cross-correlation between 
the range-Doppler domain signals from different local radars. The optimization problem 
can be solved by a genetic algorithm (GA) to estimate the rotation matrix and transla-
tion vector. The technical contributions of this paper are summarized below: 

1.	 A spatial alignment algorithm in range-Doppler domain is proposed for networked 
radars without the prior information including positions and attitudes of local radars, 
which is different from the existing methods in trajectory or echo domain for align-
ment and improves the alignment accuracy.
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2.	 Before transmission, the signals in range-Doppler domain are censored by initial 
CFAR detection. Only data that exceed the threshold are transmitted to the fusion 
center for alignment, which greatly reduces the communication-rate.

3.	 The objective function is established symmetrically, that is, local radars are respec-
tively used as the reference radar for alignment, which improves the accuracy for 
alignment.

The rest of the paper is organized as follows. Section 2 proposes the alignment prob-
lem formulation in range-Doppler domain. The spatial alignment algorithm in range-
Doppler domain for networked radars is presented in Sect.  3. Section  4 provides 
experimental results. Section 5 gives conclusions.

2 � Problem formulation
The signal processing and fusion model for networked radars is shown in Fig. 1. Two 
radars are considered as examples without loss of generality.

A linear frequency modulation (LFM) signal is selected as the detection signal for 
networked radars. We assume that each coherent processing interval (CPI) contains 
N pulse repetition intervals (PRIs), and the n-th transmitted pulse from radar A can 
be expressed as

where a0 is the amplitude of transmitted signals, Tp is the pulse width, Tr is the pulse rep-
etition interval, fc is the carrier frequency, µ = B

Tp
 is the chirp rate, B is the bandwidth of 

the LFM signal, rect(x) =
{

1 0 <x< 1
0 else

 , n is the index of the transmitted pulse , 

tn = nTr is the slow time, t̃ is the fast time. After down-conversion and digital beam 
forming (DBF) in the receiver, the echo can be represented as

(1)sA,0
(

tn, t̃
)

= a0

{

rect

(

t̃

Tp

)

exp

[

j2π

(

fc
(

tn + t̃
)

+
1

2
µt̃2

)]

}

,

Fig. 1  The signal processing and fusion model for networked radars
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where GA is the antenna gain, KA

(

tn, t̃
)

 is the amplitude of the echo signal, 
τA

(

tn, t̃
)

=
2
(

RA(tn)+vA t̃
)

c  is the delay of the target at time 
(

tn, t̃
)

 , RA(tn) is the range 
between radar A and the target at time tn , vA denotes the radial velocity of the target to 
radar A, fA,d =

2vA
�

 is the Doppler frequency, � =
fc
c  is the wave length, c is the electro-

magnetic wave velocity, wA

(

tn, t̃
)

 is complex white Gaussian noise. Pulse compression is 
performed for each PRI of the echo, and the n-th pulse after pulse compression can be 
represented as

where h(t) is the pulse response of the pulse compression filter, and ⊗ is convolution. To 
suppress spectrum leakage, Hamming Window wh is added to the filter, therefore h

(

t̃
)

 
can be expressed as

In order to suppress clutter, moving target detection (MTD) [27] is performed for the 
signals in (3), and the spectral lines of moving targets are filtered using a Doppler filter 
bank. Generally, fast Fourier transform (FFT) is used to realize the Doppler filter bank. 
After MTD, the echo is transformed to the signal in range-Doppler domain. Compared 
with the echo signal, the signals in range-Doppler domain are accumulates in the fre-
quency domain, which is convenient to extract the target information in low SNRs. Since 
the complex signals received by different radars are non-coherent, the absolute values 
of signals after MTD are measured for alignment. The measurements in range-Doppler 
domain can be represented as

In a pulse, t̃ = 1
fs
, 2
fs
, 3
fs
, ..Tr , where fs is the sample rate. An N ×M matrix S with K CPIs, 

which denotes the signal after MTD, is shown in Fig. 2, where M = fsTr . After MTD, the 
signals from radar A in range-Doppler domain can be represented as SkA,m in the k-th 
CPI (Similarly, the signals from radar B in range-Doppler domain are SkB,m ). The range 
and radial velocity of the target to radar A is different from those to radar B. Therefore, 
the signals SkA,m and SkB,m in range-Doppler domain should be aligned before fusion.

3 � Proposed method
3.1 � Spatial alignment model

The spatial relation in geometry between radars A and B is shown in Fig. 3. The position 
vectors of the target in A and B coordinate system for the kth CPI can be expressed as 
Pk =

[

xkA, y
k
A, z

k
A

]T
 and Qk =

[

xkB, y
k
B, z

k
B

]T
 , respectively, where the superscript T denotes 

(2)
sA,r

(

tn, t̃
)

= GAKA

(

tn, t̃
)

{

rect

(

t̃−τA
(

tn,t̃
)

Tp

)

·

exp
[

j2π
(

fA,d
(

t̃ + tn
)

+ 1
2µ

(

t̃ − τA
(

tn, t̃
))2

− fcτA
(

tn, t̃
)

)]}

+ wA

(

tn, t̃
)

,

(3)sA,c
(

tn, t̃
)

= sA,r
(

tn, t̃
)

⊗ h
(

t̃
)

,

(4)h
(

t̃
)

= wh

(

t̃
)

exp

(

j2π

(

−
1

2
µt̃2

))

.

(5)sA,m
(

tn, t̃
)

=

∣

∣

∣

∣

∣

N
∑

i=1

sA,c
(

ti, t̃
)

e−j2πni/N

∣

∣

∣

∣

∣

, n = 1, 2, 3, ...,N
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the transpose. It is worth stressing that, in this work, P and Q refer to the position vec-
tors in Cartesian coordinates, while the measurements from radars refer to the positions 
in spherical coordinates. The geometrical convention for the Cartesian coordinate 

Fig. 2  Signal data after MTD

Fig. 3  The alignment model for networked radars
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system is that X axis is aligned with the East, Y axis with the North, and Z points 
upwards, which is called local Cartesian coordinate. For the spherical coordinates, we 
have that the azimuth ϕ is positive counter-clockwise from the East ( X axis) and the ele-
vation θ is positive counter-clockwise from the X − Y plane. From the geometry of the 
problem shown in Fig. 3, the following relation holds

where H is 3× 3 the rotation matrix of angles α,β , γ that aligns the radar B reference 
frame to the radar A reference frame. The rotation matrix H is given by

In (6), r is 3× 1 the translation vector expressed as r =
[

rx, ry, rz
]T . The spherical-to-

Cartesian transformation can be expressed as

where ρk
A , θkA , ϕk

A are the range, elevation angle and azimuth angle of the target to radar 
A, respectively, and ρk

B , θkB , ϕk
B are the range, elevation angle and azimuth angle of the tar-

get to radar B, respectively. The ranges and radial velocities of the target to radars A and 
B can be expressed as

where vkA and vkB are the radial velocities of the target to radars A and B, �RA and �RB 
are the range resolution cells, �dA and �dB are velocity resolution cells, pkA and qkA are 
the indexes of the cell in range-Doppler domain for radar A, pkB and qkB are the indexes of 
the cell in range-Doppler domain for radar B. By making use of (6), (8) and (9), the align-
ment for the range dimension can be expressed as

where the superscript + denotes the generalized inverse. The Doppler measured by 
radars A and B has a different mapping in different CPI. The radial velocities of the tar-
get to radars A and B in geometry are shown in Fig. 4.

(6)Pk = HQk + r,

(7)

H =





cosα cosβ cosα sin β sin γ − sin α cos γ cosα sin β cos γ + sin α sin γ

sin α cosβ sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ

− sin β cosβ sin γ cosβ cos γ



.

(8)P
k
=









ρk

A
cos θk

A
cosϕk

A

ρk

A
cos θk

A
sin ϕk

A

ρk

A
sin θk

A









,Q
k
=









ρk
B
cos θk

B
cosϕk

B

ρk
B
cos θk

B
sin ϕk

B

ρk
B
sin θk

B









,

(9)ρk
A = pkA�RA, ρ

k
B = pkB�RB,

(10)vkA = qkA�dA, v
k
B = qkB�dB,

(11)pk
B
=

1

�RB









H









cos θk
B
cosϕk

B
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B
sin ϕk
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
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
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The alignment for Doppler dimension can be expressed as

where �qk = vkA/�dA − vkB/�dB . Based on the range and velocity relations between 
radars A and B, the alignment equation between the index 

(

Dk
A(i),R

k
A(i)

)

 of the target 

signal from radar A and 
(

Xk
B(i),Y

k
B (i)

)

 from radar B in range-Doppler domain can be 

modeled as

 Equation (13) is the fundamental alignment equation in range-Doppler domain, which 
allows us to align signals coming from radar B to radar A. In the alignment model, 
(α,β , γ ) in H and 

(

rx, ry, rz
)

 in r are the unknown parameters to be estimated.

3.2 � Range‑Doppler domain spatial alignment

In this subsection, the signals in range-Doppler domain are aligned based on the spatial 
alignment equation above. In the radar network, the energy consumption and commu-
nication requirements are increased when local radars transmit all the data to the fusion 
center. Thus, when energy or communication resources are limited, we need to minimize 
the data transmissions between the local radars and the fusion center [24]. The two-step 
detection scheme is presented when a communication-rate restriction is imposed on 
a distributed radar network [26]. One approach to restricting the communication-rate 
is to initially censor. The initial threshold is set at each local radar, and only the data 

(12)qkB = qkA −�qk ,

(13)

�

Xk
B
(i),Y k

B
(i)

�

=








Dk
A
(i)−�qk , 1

�RB









H









cos θk
B
cosϕk

B

cos θk
B
sin ϕk

B

sin θk
B

















+







�RAR
k
A
(i)









cos θk
A
cosϕk

A

cos θk
A
sin ϕk

A

sin θk
A









− r

















.

Fig. 4  The target Doppler from radars A and B
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that pass the initial threshold test are shared. The initial threshold test is considered as 
Stage 1 (first-stage detection) of the two-step detection scheme. After being censored, 
the data are transmitted to Stage 2 (second-stage detection) of the two-step detection 
scheme where they are integrated and compared to a final threshold corresponding to 
the desired overall probability of false alarm.

With the inspiration of the two-step detection scheme, initial CFAR as Stage 1 is carried 
out for the signal in range-Doppler domain to reduce the communication rate for align-
ment. The first-stage false alarm rate can be denoted as Pfa1 , and T1 is the first-stage thresh-
old associated with Pfa1 . In this paper, we use cell averaging false alarm rate (CA-CFAR) 
detector. Therefore, T1 =

(

∑Nc
i=1 xi

)(

Pfa1
− 1

Nc − 1
)

 , where xi is the signal in the i-th cell 

and Nc is the number of reference cells. Only the cells that exceed the threshold T1 are sent 
to the fusion center, and cells below the threshold T1 is uninformative and simply not trans-
mitted. In consideration of the situation that the strong signals raise the threshold of the 
surrounding cells, the weak signals near the strong signals may be undetected. In order to 
retain the weak signal, the cells around the signals that pass the threshold test are sent to 
the fusion center together. In this way, the radars censor their observations so that each 
radar only sends informative observations to the fusion center, and discards those unin-
formative data.

The informative cells in the kth CPI are censored and transmitted to the fusion center to 
prepare for the following alignment, as shown in Fig. 5. We select a W × G data set around 
the cell that passes the initial CFAR detection.

After the initial CFAR, the informative cells in range-Doppler domain are shown in Fig. 6. 
In this way, the information of the target can be retained to the greatest extent. Moreover, 
the communication-rate between local radars and the fusion center can be reduced.

The measurements �k
A,m and �k

B,m after the initial CFAR from radars A and B in the kth 
CPI can be denoted as

Fig. 5  A schematic diagram of censoring data using initial CFAR detection a signals after MTD from radar 
A in the k-th CPI b signals after MTD from radar B in the k-th CPI: The blue cells represent all the data after 
MTD. The yellow cells represent the data after the initial CFAR. For radar A, Rk

A
(1) , Rk

A
(G) are the starting and 

ending indexes of censored cells in range dimension, and Dk
A
(1) , Dk

A
(W) are the starting and ending indexes 

in Doppler dimension. For radar B, Rk
B
(1) , Rk

B
(G) are the starting and ending indexes of censored cells in range 

dimension, and Dk
B
(1) , Dk

B
(W) are the starting and ending indexes in Doppler dimension



Page 10 of 25Cong et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:12 

where FA =
[

f
Dk
A(1)

f
Dk
A(2)

· · · f
Dk
A(W )

]

 , f
Dk
A(i)

=
[

0
Dk
A(i)

1 0
M−Dk

A(i)

]

 , 

EA =
[

e
RkA(1)

e
RkA(2)

· · · e
RkA(G)

]

 , eRkA(i) =
[

0
RkA(i)

1 0
N−RkA(i)

]

,

where FB =
[

f
Dk
B(1)

f
Dk
B(2)

· · · f
Dk
B(W )

]

 , f
Dk
B(i)

=
[

0
Dk
B(i)

1 0
M−Dk

B(i)

]

 , 

EB =
[

e
RkB(1)

e
RkB(2)

· · · e
RkB(G)

]

 , eRkB(i) =
[

0
RkB(i)

1 0
N−RkB(i)

]

.

The data transmitted from local radars to the fusion center consist of two W × G 
matrices and a 8× 1 vector containing the starting and ending indexes �k = (Rk

A(1) , 
Rk
A(G) , Dk

A(1) , D
k
A(W ) , Rk

B(1) , R
k
B(G) , Dk

B(1) , D
k
B(W )) of the selected areas. The censored 

signals in range-Doppler domain are used for alignment to reduce the transmission 
from 2× N ×M to (2×W × G + 8) compared with the traditional echo transmission 
method, and W << N ,G << M . In the fusion center, the signals from radars A and B 
in range-Doppler domain are reconstructed based on �k

A , �k
B and the indexes �k . The 

reconstructed signals from radars A and B in range-Doppler domain can be represented 
as

(14)�
k
A,m = (FA)

TSkA,mEA,

(15)�
k
B,m = (FB)

TSkB,mEB,

(16)

�
k
A,m =











0�
N−Dk

A(W )

�

×RkA(1)
0�

N−Dk
A(W )

�

×
�

RkA(G)−RkA(1)
� 0�

N−Dk
A(W )
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,

Fig. 6  Data censor for the signals in range-Doppler domain
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respectively. Then, we can align the data coming from radar B to radar A. Based on 
the alignment model in (13), the measurements from radar B after alignment can be 
expressed as

where VB =
[

v
Xk
B(1)

v
Xk
B(2)

· · · v
Xk
B(W )

]

 , v
Xk
B(i)

=
[

0
Xk
B(i)

1 0
M−Xk

B(i)

]

 , 

UB =
[

u
Y k
B (1)

u
Y k
B (2)

. . . u
Y k
B (G)

]

 , uY k
B (i)

=
[

0
Y k
B (i)

1 0
N−Y k

B (i)

]

 . It is worth mentioning 

that Y k
B (i) is not always an integer, it can be interpolated from the adjacent point (integer 

time) locations: lkB(i) =
⌊

Y k
B (i)

⌋

 and hkB(i) =
⌈

Y k
B (i)

⌉

 , where ⌊ ⌋ and ⌈ ⌉ are the round 

operators towards minus and plus infinity. After the interpolation in range-Doppler 
domain, (18) can be rewritten as

where UBl =
[

u
lkB(1)

u
lkB(2)

. . . u
lkB(G)

]

 , UBh =
[

u
hkB(1)

u
hkB(2)

. . . u
hkB(G)

]

,

and φi = Y k
B (i)−

⌊

Y k
B (i)

⌋

 . In (19), ∗ is Hadamard product, and its elements are defined 

as the product of the corresponding elements of two matrices.
When radars A and B detect the same targets, the ranges of the target to radars A 

and B are different, and the radar cross sections (RCS) at different angles are also dif-
ferent. Therefore, the amplitudes of the signals in range-Doppler domain from radars 
A and B are different, and the ratio of amplitudes is denoted as η . Therefore, the true 
values �k

A,t and Ŵk
B,t can be expressed as

(17)

�
k
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,

(18)Ŵ
k
B,m = (VB)

T
�

k
B,mUB,

(19)Ŵ
k
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σ ∗ (VB)
T
�

k
B,mUBl + ω ∗ (VB)

T
�

k
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)

,
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k
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B,t.
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We get the following equations for the measurement models

where the random measurement noises εA , εB are zero-mean Gaussian noises with 
covariance matrices �A , �B , respectively. By making use of (23) and (24), (22) can be 
rewritten as

where ε is a zero-mean Gaussian random noise with covariance matrix � = �A + η2�B . 
Cross-correlation is the optimal approach to aligning the signals, in a minimum mean 
square error (MMSE) sense, when the signal noise is Gaussian. The parameter vector to 
be estimated is given by

To align signals coming from radar B to radar A, the alignment in range-Doppler domain 
can be formulated as the following optimization problem

where corr(X,Y) = (vec(X))T (vec(Y))
√

(

(vec(X))T (vec(X))
)(

(vec(Y))T (vec(Y))
)

 , the vectorization operator vec(·) 

stacks the columns vectors of the argument matrix into a long column vector in chrono-
logical order. The estimate � can be obtained by maximizing the objective function 
J1(�).

Symmetrically, to align the range-Doppler signal coming from radar A to radar B, the 
alignment can be formulated as the similar optimization problem

where

and VA =
[

v
Xk
A(1)

v
Xk
A(2)

· · · v
Xk
A(W )

]

 , UAl
=

[

u
lkA(1)

u
lkA(2)

. . . u
lkA(G)

]

 , 

UAh
=

[

u
hkA(1)

u
hkA(2)

. . . u
hkA(G)

]

 . The definitions of vXk
A(i)

 , ulkA(i) , uhkA(i) , σ
′ and ω′ are 

similar to those of vXk
B(i)

 , ulkB(i) , uhkB(i) , σ and ω , and they will not be repeated here.

Therefore, the optimization problem for alignment can be rewritten as

The estimate � can be obtained by maximizing the objective function J (�).

(23)�
k
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k
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k
A,

(24)Ŵ
k
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k
B,t + ε

k
B,

(25)�
k
A,m = ηŴk

B,m + ε
k ,

(26)� =
(

α,β , γ , rx, ry, rz
)T

.

(27)J1(�) =

K
∑

k=1

corr
(

�
k
A,m,Ŵ

k
B,m

)

,

(28)J2(�) =

K
∑

k=1

corr
(

Ŵ
k
A,m,�

k
B,m

)

,

(29)Ŵ
k
A,m = σ

′ ∗ (VA)
T
�

k
A,mUAl

+ ω
′ ∗ (VA)

T
�

k
A,mUAh

,

(30)J (�) = J1(�)+ J2(�).
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3.3 � Genetic algorithm

To solve the estimate � in (30), a genetic algorithm (GA) is used to maximize J (�) in 
this subsection. GAs [28] are one of the most widely used artificial intelligent techniques 
for optimization. A GA is a stochastic searching algorithm based on the mechanisms 
of natural selection and genetics. GAs have been proven to be very efficient and stable 
in searching for global optimum solutions. Usually, a GA is mainly composed of three 
operations: initial population, evolution environment, genetic operation (see Fig. 7). A 
brief summary for a GA can be summarized as follows.

Fig. 7  The flow diagram for genetic algorithm
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(1) Initial population:
The GA starts the iteration with the initial population as the initial values. The initial 

population size np represents the number of individuals in the population. The initial set 
of population �I is usually generated by coding as follow

where nv denotes the number of the estimated parameters, �min
j  and �max

j  are the mini-
mum and maximum values of the parameter �i,j . The initial population is usually gen-
erated randomly, but if the actual distribution of the population is known, the initial 
population can also be generated according to this distribution.

(2) Fitness Function:
The fitness function of the parameter vector � is expressed as

The form of the fitness function depends on the objective function in (30) of the 
algorithm.

(3) Genetic Operation:
The most important operations of a GA for solving objective functions are main-

taining, reproduction, crossover, and mutation. A brief description of these opera-
tions is shown below [29].

(a) Maintaining: The individual with the highest fitness in this generation is copied 
to the next generation. It ensures that the best genes will not be destroyed in the next 
generation.

(b) Reproduction: Based on their fitness values, some individuals are selected to 
reproduce the next generation with the corresponding probability. The probability of 
the ith individual (corresponding to the ith chromosome �i ) with fitness value repro-
duced for crossover in the next generation is

(c) Crossover: The crossover operation is mainly for exchanging information from the 
two parents, chromosomes �i and �i+1 . It is an effective method to create new combi-
nations of genes.

(d) Mutation: Mutation is to create new individuals by changing the genes of the 
chromosomes with a small probability. The mutation operation ensures that the algo-
rithm can search each value in the solution space to reach the global optimum.

The flowchart of the GA is summarized in Fig. 7. The GA is used to calculate the 
maximum value of the objective function in (30), and the optimal alignment param-
eter � can be obtained. The pseudocode of the GA-based spatial alignment algorithm 
for networked radars in range-Doppler domain is shown in Algorithm 1.

(31)

�
I =

{

�1,�2, · · · ,�np

}

�i =
[

�i,1,�i,2, · · · ,�i,j , · · · ,�i,nv

]

i = 1, 2, · · · , np
j = 1, 2, · · · , nv
�

min
j ≤ �i,j ≤ �

max
j

,

(32)fitness = J (�i)

(33)Pi =
J (�i)

∑np
i′=1 J (�i′)

.
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It is worth mentioning that pairwise alignment is used when there are more than 
two radars in the multi-static radar systems. Without loss of generality, three radars 
are taken as an example. When the number of radars increases, the alignment method 
is similar to that in the situation of three radars. The radar A, B and C detect the tar-
gets independently. The alignment parameter vector between radars A and B, B and C, 
A and C can be expressed as �AB , �BC , �AC , respectively. The optimization problem 
J (�AB,�BC,�AC) can be solved by using the proposed algorithm.

4 � Results and discussion
In this section, we present numerical examples to demonstrate the performance of the 
proposed algorithm. The coordinates of radars A and B are [1000; 300; 1000] m and [100; 
10; 800] m, respectively, in local Cartesian coordinates (X-East, Y-North, Z-Up). Radars 
A and B detect targets using LFM signals, and the radar parameters are given in Table 1.

Radars A and B observe the target in their spatial coordinates with K CPIs. In our 
simulations, K = 50 . The spatial alignment algorithm is simulated in single target and 

Table 1  The radar parameters

Parameters Radar A Radar B

Carrier frequency fc/GHz 10 9

Pulse width Tp/us 0.6 0.6

Pulse repetition period Tr/us 19 19

PRI number in one CPI N 256 256

Sampling rate fs/MHz 50 50

Bandwidth B/MHz 5 4

Noise factor Fn/dB 5 6
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multi-target scenarios, respectively. The value ranges for the initial populations of the 
parameters in � are α ∈ [0, 2π)rad , β ∈ [0, 2π)rad , γ ∈ [0, 2π)rad , rx ∈ [−1000, 1000]m , 
ry ∈ [−1000, 1000]m , rz ∈ [−1000, 1000]m.

4.1 � Single target scenario

The single target located at coordinates moves with a nearly constant accel-
eration (NCA) vector 

(

ẍ, ÿ, z̈
)

 . A target state vector for NCA models [30, 31] is 
st =

[

xt ẋt ẍt yt ẏt ÿt zt żt z̈t
]T , where xt , yt , zt are the position values of the target 

in X, Y, Z axes, ẋt , ẏt , żt are the velocity values, ẍt , ÿt , z̈t are the acceleration values. The 
target state equation is given by

where

with �k being the transition matrix of the NCA model in a single dimension, and 0 being 
the zero matrix of dimension 3× 3 for NCA target model. We have

Index k corresponds to the time instant tk and the sample interval is defined by 
Tk = tk+1 − tk . Process noise vk is white Gaussian with non-singular covariance matrix

where

and q is the level of power spectral density of the corresponding continuous process 
noise.

The initial target state vector is

The level of power spectral density of the corresponding continuous process noise is 
q = 2.

A GA is used to estimate the spatial alignment parameter � in (30). Figure 8 shows 
the fitness function values for a single target. The generation for the X-axis in Fig.  8 

(34)stk+1 = Fks
t
k + vk ,
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(39)
st0 =
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]T
.
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represents the index of new populations evolved from the initial population. The x gen-
eration population is obtained from the x − 1 generation population after maintaining, 
crossover, and mutation. The stopping criterion of the GA is usually the number of gen-
erations. When the number of generations reaches 60, the iteration is stopped. As we 
can see, with the increase of generations, the value of fitness function increases, and the 
fitness function tends to be stable when it reaches the maximum value. Figure 9a–f show 
the estimated values and true values of α,β , γ , rx, ry, rz in � , respectively. As generations 
grow, the estimated values gradually converge to the true values.

Radars A and B measure the target trajectory in their respective space coordinate sys-
tems. Therefore, there is considerable difference between the target trajectories from 
radars A and B before spatial alignment, as shown in Fig.  10a. Data fusion cannot be 
completed if the space is not aligned. In the absence of positions, attitudes of radars A 
and B, the spatial alignment vector � can be estimated by using the proposed algorithm. 
The target trajectory from radar B after spatial alignment is shown in Fig. 10b compared 
with the trajectory from radar A. From Fig.  10b, the registered target trajectory from 
radar B approaches to the trajectory from radar A. The trajectories after alignment are 
in the same spatial coordinate system, which is an important prerequisite for successful 
fusion of networked radars.

4.2 � Multiple‑target scenario

For a multi-target scenario, it is assumed that data association problem has been solved 
by K-nearest neighbor algorithm [32]. Z maneuverable targets ( Z = 3 in the simulations) 
independently fly along respective paths. The motion models of multiple targets are the 
same as that of the single target, i.e., NCA models. The initial values of state vectors for 
the three targets are given by

(40)
s
t1
0 =

[

2500m 500m/s 10m/s2 90m 500m/s 60m/s2 1050m 500m/s 60m/s2
]T
,

Fig. 8  The fitness function with generations for a single target
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Fig. 9  Estimated values and true values with increase of generations for a single target

Fig. 10  Target trajectories from radars A and B a before alignment b after alignment
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Figure  11 shows fitness function values for multiple targets. As we can see, with the 
increase of generations, the value of fitness function increases, and the fitness function 
tends to be stable when it reaches the maximum value. Figure 12a–f show the estimated 
values and true values for α,β , γ , rx, ry, rz in � , respectively. As generations grow, the 
estimated values gradually converge to the true values.

In Fig. 13a, radars A and B observe multi-target trajectories in their respective coordi-
nate systems. The unregistered multi-target trajectories of radar B are deviated from the 
trajectories of radar A. Unregistered multi-target trajectories cannot be used for subse-
quent information fusion. In the proposed algorithm, spatial alignment vector � is esti-
mated in range-Doppler domain without the prior information (positions and attitudes) 
of radars. The multi-target trajectories from radar B after spatial alignment are shown 
in Fig. 13b compared with those from radar A. In Fig. 13b, the registered multi-target 
trajectories of radar B appear almost indistinguishable from those of radar A, indicating 
that the trajectories after alignment are in the same spatial coordinate system, and can 
be effectively used for information fusion.

4.3 � Performance evaluation

In this subsection, the performance of the proposed algorithm is showed and compared 
with other methods. The data after alignment are fused by SNR weighting based method. 
The number of Monte Carlo trials is 500. Figure 14 shows the detection probabilities of 
the proposed algorithm and the monostatic radar (radar A) with different false alarm 
rate ( Pf  ). The SNR for Fig. 14 and Fig. 15 is the SNR of the signal before CFAR detection, 
i.e., the SNR in range-Doppler domain, which is defined as the signal-to-noise power 

(41)
s
t2
0 =

[

4000m 650m/s 10m/s2 100m 400m/s 120m/s2 800m 800m/s 100m/s2
]T
,

(42)
s
t3
0 =

[

1000m 350m/s 10m/s2 200m 400m/s 70m/s2 1000m 600m/s 70m/s2
]T
.

Fig. 11  The fitness function with generations for multiple targets
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Fig. 12  Estimated values and true values with increase of generations for multitarget

Fig. 13  Multi-target trajectories from radars A and B a before alignment b after alignment
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ratio for the signal in range-Doppler domain before CFAR detection. For example, it is 
assumed that the SNR of the echo signal is S0 , the bandwidth of the LFM signal is B, the 
pulse width is Tp , the point number of FFT in MTD is NF . The SNR in range-Doppler 
domain can be expressed as

(43)SNR = BTpNFS0.

Table 2  The SNRs required for the same detection probability ( 90%)

False alarm rate 10
−4

10
−6

10
−8

Monostatic radar 12.4 dB 14.2 dB 15.8 dB

Proposed alignment algorithm (two 
radar)

11.1 dB 13 dB 14.7 dB

Proposed alignment algorithm (three 
radar)

10.5 dB 12.6 dB 14.2 dB

Fig. 14  The detection probability after alignment in different false alarm rate ( Pf  ) a proposed method by 
two radars compared with the monostatic radar b proposed method by three radars compared with the 
monostatic radar

Fig. 15  The detection probability of the proposed algorithm compared with the monostatic radar, pulse 
correlation method, atomic norm optimization, ML-GLRT and MAP-GLRT a alignment by two radars b 
alignment by three radars
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For the same detection probability ( 90% ), the SNRs required by the proposed fusion 
algorithm are shown in Table  2 compared with those by the monostatic radar. The 
improvements of SNR after alignment using the proposed algorithm for two and three 
radars are 1.1 dB and 1.6 dB, respectively. But apparently, with the increase of the num-
ber of radars, the number of parameters to be estimated also increases in direct propor-
tion. Therefore, the calculation of the alignment algorithm increases.

Figure  15a, b shows the detection probability by two radars and three radars after 
alignment respectively, and the detection probability of the proposed algorithm is com-
pared with the monostatic radar, pulse correlation method [18], atomic norm optimiza-
tion method [23], ML-GLRT and MAP-GLRT [20]. The false alarm rate is 10−6 . From 
Fig. 15, the detection probability increases with the increase of SNR. It shows that the 
detection probability for networked radars is improved compared with that from the 
monostatic radar at the same SNR. When the number of radars in the cooperative detec-
tion system increases, the detection probability increases after alignment and fusion, 
shown in comparison between Fig.  15a, b. Moreover, the detection probability of the 
proposed algorithm is improved compared with pulse correlation method [18], atomic 
norm optimization method [23], ML-GLRT and MAP-GLRT [20] at the same SNR.

In order to verify the tracking accuracy after alignment and fusion using the proposed 
algorithm, Fig. 16a–c show the root-mean-square error (RMSE) of the target state esti-
mation achieved by the proposed algorithm in X, Y, Z axes, respectively, compared with 

Fig. 16  RMSE of the proposed alignment algorithm compared with the other methods a in X axis b in Y axis 
c in Z axis
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the pulse correlation method [18], atomic norm optimization method [23], ML-GLRT 
and MAP-GLRT [20]. For a scalar ξ , the RMSE from N Monte Carlo runs with esti-
mated error ξ̃i in run i is defined as [31]

where ξ̃i = ξi − ξ̂i . The value ξ̂i is the estimated value of ξ . In this subsection, ξ is the 
target position in X, Y, Z axes. It can be seen that the performance of tracking using the 
proposed algorithm is better.

5 � Conclusions
In this paper, a low-communication-rate spatial alignment in range-Doppler domain was 
proposed for networked radars without the prior information (positions and attitudes) of 
radars. The signal in range-Doppler domain was censored to select the informative data 
for alignment by initial CFAR detection, which greatly reduced the communication-rate 
between local radars and the fusion center. Based on the alignment model in geometry, 
the alignment optimization problem was established in range-Doppler domain. Spatial 
registration parameters were estimated by a GA. The signals after alignment were in the 
same spatial coordinate system, and can be effectively used for information fusion. The 
detection probability and the tracking accuracy of the proposed algorithm at the same 
SNR were improved after alignment and fusion compared with state-of-art methods.
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